首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 518 毫秒
1.

Background

Resuscitation promoting factors (RPF) are secreted proteins involved in reactivation of dormant actinobacteria, including Mycobacterium tuberculosis. They have been considered as prospective targets for the development of new anti-tuberculosis drugs preventing reactivation of dormant tubercle bacilli, generally associated with latent tuberculosis. However, no inhibitors of Rpf activity have been reported so far. The goal of this study was to find low molecular weight compounds inhibiting the enzymatic and biological activities of Rpfs.

Methodology/Principal Findings

Here we describe a novel class of 2-nitrophenylthiocyanates (NPT) compounds that inhibit muralytic activity of Rpfs with IC50 1–7 µg/ml. Fluorescence studies revealed interaction of active NPTs with the internal regions of the Rpf molecule. Candidate inhibitors of Rpf enzymatic activity showed a bacteriostatic effect on growth of Micrococcus luteus (in which Rpf is essential for growth protein) at concentrations close to IC50. The candidate compounds suppressed resuscitation of dormant (“non-culturable”) cells of M. smegmatis at 1 µg/ml or delayed resuscitation of dormant M. tuberculosis obtained in laboratory conditions at 10 µg/ml. However, they did not inhibit growth of active mycobacteria under these concentrations.

Conclusions/Significance

NPT are the first example of low molecular weight compounds that inhibit the enzymatic and biological activities of Rpf proteins.  相似文献   

2.
The antibacterial activity of royalisin, an antimicrobial peptide from the royal jelly produced by honeybees, has been addressed extensively. However, its mechanism of action remains unclear. In this study, a recombinant royalisin, RAcc-royalisin from the royal jelly of Asian honeybee Apis cerana cerana, was expressed by fusing with glutathione S-transferase (GST) in Escherichia coli BL21, isolated and purified. The agar dilution assays with inhibition zone showed that RAcc-royalisin, similar to nisin, inhibits the growth of Gram-positive bacteria. The antibacterial activity of RAcc-royalisin was associated with its concentration, and was weakened by heat treatment ranging from 55°C to 85°C for 15 min. Both RAcc-royalisin and nisin exhibited the minimum inhibitory concentrations (MIC) of 62.5 µg/ml, 125 µg/ml, and 250 µg/ml against Gram-positive bacterial strains, Bacillus subtilis and Micrococcus flavus and Staphyloccocus aureus in the microplate assay, respectively. However, RAcc-royalisin did not show antimicrobial activity against tested Gram-negative bacterial and fungal strains. The antibacterial activity of RAcc-royalisin agrees well with the decrease in bacterial cell hydrophobicity, the leakage of 260-nm absorbing materials, and the observation by transmission electron microscopy, all indicating that RAcc-royalisin induced the disruption and dysfunction of cell walls and membranes. This is the first report detailing the antibacterial mechanism of royalisin against Gram-positive bacteria, and provides insight into the application of recombinant royalisin in food and pharmaceutical industries as an antimicrobial agent.  相似文献   

3.
COVID-19 has become a global pandemic and there is an urgent call for developing drugs against the virus (SARS-CoV-2). The 3C-like protease (3CLpro) of SARS-CoV-2 is a preferred target for broad spectrum anti-coronavirus drug discovery. We studied the anti-SARS-CoV-2 activity of S. baicalensis and its ingredients. We found that the ethanol extract of S. baicalensis and its major component, baicalein, inhibit SARS-CoV-2 3CLpro activity in vitro with IC50’s of 8.52 µg/ml and 0.39 µM, respectively. Both of them inhibit the replication of SARS-CoV-2 in Vero cells with EC50’s of 0.74 µg/ml and 2.9 µM, respectively. While baicalein is mainly active at the viral post-entry stage, the ethanol extract also inhibits viral entry. We further identified four baicalein analogues from other herbs that inhibit SARS-CoV-2 3CLpro activity at µM concentration. All the active compounds and the S. baicalensis extract also inhibit the SARS-CoV 3CLpro, demonstrating their potential as broad-spectrum anti-coronavirus drugs.  相似文献   

4.
The number of fully active antibiotic options that treat nosocomial infections due to multidrug-resistant Acinetobacter baumannii (A. baumannii) is extremely limited. Magnolia officinalis, Mahonia bealei, Rabdosia rubescens, Rosa rugosa, Rubus chingii, Scutellaria baicalensis, and Terminalia chebula plant extracts were previously shown to have growth inhibitory activity against a multidrug-resistant clinical strain of A. baumannii. In this study, the compounds responsible for their antimicrobial activity were identified by fractionating each plant extract using high performance liquid chromatography, and determining the antimicrobial activity of each fraction against A. baumannii. The chemical structures of the fractions inhibiting >40% of the bacterial growth were elucidated by liquid chromatography/mass spectrometry analysis and nuclear magnetic resonance spectroscopy. The six most active compounds were identified as: ellagic acid in Rosa rugosa; norwogonin in Scutellaria baicalensis; and chebulagic acid, chebulinic acid, corilagin, and terchebulin in Terminalia chebula. The most potent compound was identified as norwogonin with a minimum inhibitory concentration of 128 µg/mL, and minimum bactericidal concentration of 256 µg/mL against clinically relevant strains of A. baumannii. Combination studies of norwogonin with ten anti-Gram negative bacterial agents demonstrated that norwogonin did not enhance the antimicrobial activity of the synthetic antibiotics chosen for this study. In conclusion, of all identified antimicrobial compounds, norwogonin was the most potent against multidrug-resistant A. baumannii strains. Further studies are warranted to ascertain the prophylactic and therapeutic potential of norwogonin for infections due to multidrug-resistant A. baumannii.  相似文献   

5.
Staphylococcus pseudintermedius is a major cause of skin and soft tissue infections in companion animals and has zoonotic potential. Additionally, methicillin-resistant S. pseudintermedius (MRSP) has emerged with resistance to virtually all classes of antimicrobials. Thus, novel treatment options with new modes of action are required. Here, we investigated the antimicrobial activity of six synthetic short peptides against clinical isolates of methicillin-susceptible and MRSP isolated from infected dogs. All six peptides demonstrated potent anti-staphylococcal activity regardless of existing resistance phenotype. The most effective peptides were RRIKA (with modified C terminus to increase amphipathicity and hydrophobicity) and WR-12 (α-helical peptide consisting exclusively of arginine and tryptophan) with minimum inhibitory concentration50 (MIC50) of 1 µM and MIC90 of 2 µM. RR (short anti-inflammatory peptide) and IK8 “D isoform” demonstrated good antimicrobial activity with MIC50 of 4 µM and MIC90 of 8 µM. Penetratin and (KFF)3K (two cell penetrating peptides) were the least effective with MIC50 of 8 µM and MIC90 of 16 µM. Killing kinetics revealed a major advantage of peptides over conventional antibiotics, demonstrating potent bactericidal activity within minutes. Studies with propidium iodide and transmission electron microscopy revealed that peptides damaged the bacterial membrane leading to leakage of cytoplasmic contents and consequently, cell death. A potent synergistic increase in the antibacterial effect of the cell penetrating peptide (KFF)3K was noticed when combined with other peptides and with antibiotics. In addition, all peptides displayed synergistic interactions when combined together. Furthermore, peptides demonstrated good therapeutic indices with minimal toxicity toward mammalian cells. Resistance to peptides did not evolve after 10 passages of S. pseudintermedius at sub-inhibitory concentration. However, the MICs of amikacin and ciprofloxacin increased 32 and 8 fold, respectively; under similar conditions. Taken together, these results support designing of peptide-based therapeutics for combating MRSP infections, particularly for topical application.  相似文献   

6.
Streptococcus suis (S.suis) is an important emerging worldwide pig pathogen and zoonotic agent with rapid evolution of virulence and drug resistance. In this study, we wanted to investigate the effect of licochalcone A on growth and properties of Streptococcus suis. The antimicrobial activity of licochalcone A was tested by growth inhibition assay and the minimal inhibitory concentrations (MICs) also were determined. The effect of licochalcone A on S.suis biofilm formation was characterized by crystal violet staining. The effect of licochalcone A on suilysin secretion was evaluated by titration of hemolytic activity. To understand the antimicrobial effect, gene expression profile of S.suis treated by licochalcone A was analyzed by DNA microarray. Our results demonstrated that licochalcone A showed antimicrobial activity on S.suis with MICs of 4 µg/ml for S.suis serotype 2 strains and 8 µg/ml for S.suis serotype 7 strains. Biofilm formation was inhibited by 30–40% in the presence of licochalcone A (3 µg/ml) and suilysin secretion was also significantly inhibited in the presence of licochalcone A (1.5 µg/ml). The gene expression profile of S.suis in the presence of licochalcone A showed that 132 genes were differentially regulated, and we analyzed the regulated genes in the aspect of the bacterial cell cycle control. Among the deregulated genes, the genes responsible for the mass doubling was increased expression, but the genes responsible for DNA replication and cell division were inhibited the expression. So, we think the regulation of the cell cycle genes might provide a mechanistic understanding of licochalcone A mediated antimicrobial effect against S.suis.  相似文献   

7.
Fluopyram is a succinate dehydrogenase inhibitor (SDHI) fungicide that is being evaluated as a seed treatment and in-furrow spray at planting on row crops for management of fungal diseases and its effect on plant-parasitic nematodes. Currently, there are no data on nematode toxicity, nematode recovery, or effects on nematode infection for Meloidogyne incognita or Rotylenchulus reniformis after exposure to low concentrations of fluopyram. Nematode toxicity and recovery experiments were conducted in aqueous solutions of fluopyram, while root infection assays were conducted on tomato. Nematode paralysis was observed after 2 hr of exposure at 1.0 µg/ml fluopyram for both nematode species. Using an assay of nematode motility, 2-hr EC50 values of 5.18 and 12.99 µg/ml fluopyram were calculated for M. incognita and R. reniformis, respectively. Nematode recovery in motility was greater than 50% for M. incognita and R. reniformis 24 hr after nematodes were rinsed and removed from a 1-hr treatment of 5.18 and 12.99 µg/ml fluopyram, respectively. Nematode infection of tomato roots was reduced and inversely proportional to 1-hr treatments with water solutions of fluopyram at low concentrations, which ranged from 1.3 to 5.2 µg/ml for M. incognita and 3.3 to 13.0 µg/ml for R. reniformis. Though fluopyram is nematistatic, low concentrations of the fungicide were effective at reducing the ability of both nematode species to infect tomato roots.  相似文献   

8.
9.
Ochratoxin A (OTA) is a mycotoxin which is a common contaminant in grains during storage. Aspergillus ochraceus is the most common producer of OTA. Essential oils play a crucial role as a biocontrol in the reduction of fungal contamination. Essential oils namely natural cinnamaldehyde, cinnamon oil, synthetic cinnamaldehyde, Litsea citrate oil, citral, eugenol, peppermint, eucalyptus, anise and camphor oils, were tested for their efficacy against A. ochraceus growth and OTA production by fumigation and contact assays. Natural cinnamaldehyde proved to be the most effective against A. ochraceus when compared to other oils. Complete fungal growth inhibition was obtained at 150–250 µL/L with fumigation and 250–500 µL/L with contact assays for cinnamon oil, natural and synthetic cinnamaldehyde, L. citrate oil and citral. Essential oils had an impact on the ergosterol biosynthesis and OTA production. Complete inhibition of ergosterol biosynthesis was observed at ≥100 µg/mL of natural cinnamaldehyde and at 200 µg/mL of citral, but total inhibition was not observed at 200 µg/mL of eugenol. But, citral and eugenol could inhibit the OTA production at ≥75 µg/mL and ≥150 µg/mL respectively, while natural cinnamaldehyde couldn’t fully inhibit OTA production at ≤200 µg/mL. The inhibition of OTA by natural cinnamaldehyde is mainly due to the reduction in fungal biomass. However, citral and eugenol could significant inhibit the OTA biosynthetic pathway. Also, we observed that cinnamaldehyde was converted to cinnamic alcohol by A. ochraceus, suggesting that the antimicrobial activity of cinnamaldehyde was mainly attributed to its carbonyl aldehyde group. The study concludes that natural cinnamaldehyde, citral and eugenol could be potential biocontrol agents against OTA contamination in storage grains.  相似文献   

10.
Antibiotic-resistant infections caused by gram-negative bacteria are a major healthcare concern. Repurposing drugs circumvents the time and money limitations associated with developing new antimicrobial agents needed to combat these antibiotic-resistant infections. Here we identified the off-patent antifungal agent, ciclopirox, as a candidate to repurpose for antibiotic use. To test the efficacy of ciclopirox against antibiotic-resistant pathogens, we used a curated collection of Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae clinical isolates that are representative of known antibiotic resistance phenotypes. We found that ciclopirox, at 5–15 µg/ml concentrations, inhibited bacterial growth regardless of the antibiotic resistance status. At these same concentrations, ciclopirox reduced growth of Pseudomonas aeruginosa clinical isolates, but some of these pathogens required higher ciclopirox concentrations to completely block growth. To determine how ciclopirox inhibits bacterial growth, we performed an overexpression screen in E. coli. This screen revealed that galE, which encodes UDP-glucose 4-epimerase, rescued bacterial growth at otherwise restrictive ciclopirox concentrations. We found that ciclopirox does not inhibit epimerization of UDP-galactose by purified E. coli GalE; however, ΔgalU, ΔgalE, ΔrfaI, or ΔrfaB mutant strains all have lower ciclopirox minimum inhibitory concentrations than the parent strain. The galU, galE, rfaI, and rfaB genes all encode enzymes that use UDP-galactose or UDP-glucose for galactose metabolism and lipopolysaccharide (LPS) biosynthesis. Indeed, we found that ciclopirox altered LPS composition of an E. coli clinical isolate. Taken together, our data demonstrate that ciclopirox affects galactose metabolism and LPS biosynthesis, two pathways important for bacterial growth and virulence. The lack of any reported fungal resistance to ciclopirox in over twenty years of use in the clinic, its excellent safety profiles, novel target(s), and efficacy, make ciclopirox a promising potential antimicrobial agent to use against multidrug-resistant problematic gram-negative pathogens.  相似文献   

11.
The effect of aqueous extracts of carob (Ceratonia siliqua) pods, gallotannic acid, gallic acid, and catechol on several microorganisms was studied. Carob pod extract and tannic acid showed a strong antimicrobial activity toward some cellulolytic bacteria. On the basis of tannin content, to which antimicrobial effect was related, carob pod extracts inhibited Cellvibrio fulvus and Clostridium cellulosolvens at 15 μg/ml, Sporocytophaga myxococcoides at 45 μg/ml, and Bacillus subtilis at 75 μg/ml. The inhibiting concentrations for tannic acid were found to be 12, 10, 45, and 30 μg/ml, respectively. Gallic acid and catechol were much less effective. Tannic acid and the tannin fraction of carob extract exerted both bacteriostatic and bactericidal effects on C. fulvus. Respiration of C. fulvus in the presence of bactericidal concentrations of tannic acid or tannin fraction of carob extract was inhibited less than 30%. A partial formation of “protoplasts” by C. fulvus was obtained after 2 hr of incubation in a growth medium to which 20% sucrose, 0.15% MgSO4·7H2O, and 10 to 50 μg/ml of tannic acid or 500μg/ml of penicillin, or both, had been added. Tannic acid and the tannin fraction of carob extract protected C. fulvus from metabolic lysis in sucrose solution. Although the growth of other microorganisms tested was only slightly affected, the morphology of some of them was drastically changed in the presence of subinhibitory concentrations of carob pod extracts of tannic acid. It is suggested that the site of action of tannins on sensitive microorganisms is primarily the cell envelope.  相似文献   

12.
Zanthoxylum rhoifolium (Rutaceae) is a plant alkaloid that grows in South America and has been used in Brazilian traditional medicine for the treatment of different health problems. The present study was designed to evaluate the antimicrobial activity of the steam bark crude methanol extract, fractions, and pure alkaloids of Z. rhoifolium. Its stem bark extracts exhibited a broad spectrum of antimicrobial activity, ranging from 12.5 to 100 µg/mL using bioautography method, and from 125 to 500 µg/mL in the microdilution bioassay. From the dichloromethane basic fraction, three furoquinoline alkaloids (1–3), and nine benzophenanthridine alkaloids (4–12) were isolated and the antimicrobial activity of the benzophenanthridine alkaloids is discussed in terms of structure-activity relationships. The alkaloid with the widest spectrum of activity was chelerythrine (10), followed by avicine (12) and dihydrochelerythrine (4). The minimal inhibitory concentrations of chelerythrine, of 1.50 µg/mL for all bacteria tested, and between 3.12 and 6.25 µg/mL for the yeast tested, show this compound to be a more powerful antimicrobial agent when compared with the other active alkaloids isolated from Z. rhoifolium. To verify the potential importance of the methylenedioxy group (ring A) of these alkaloids, chelerythrine was selected to represent the remainder of the benzophenanthridine alkaloids isolated in this work and was subjected to a demethylation reaction giving derivative 14. Compared to chelerythrine, the derivative (14) was less active against the tested bacteria and fungi. Kinetic measurements of the bacteriolytic activities of chelerythrine against the bacteria Bacillus subtilis (Gram-positive) and Escherichia coli (Gram-negative) were determined by optical density based on real time assay, suggesting that its mechanism of action is not bacteriolytic. The present study did not detect hemolytic effects of chelerythrine on erythrocytes and found a protective effect considering the decrease in TBARS and AOPP (advanced oxidized protein products) levels when compared to the control group.  相似文献   

13.
Protozoan parasites belonging to genera Leishmania and Trypanosoma are the etiological agents of severe neglected tropical diseases (NTDs) that cause enormous social and economic impact in many countries of tropical and sub-tropical areas of the world. In our screening program for new drug leads from natural sources, we found that the crude extract of the endophytic fungus Cochliobolus sp. (UFMGCB-555) could kill 90% of the amastigote-like forms of Leishmania amazonensis and inhibit by 100% Ellman''s reagent reduction in the trypanothione reductase (TryR) assay, when tested at 20 µg mL−1. UFMGCB-555 was isolated from the plant Piptadenia adiantoides J.F. Macbr (Fabaceae) and identified based on the sequence of the internally transcribed spacer (ITS) regions of its ribosomal DNA. The chromatographic fractionation of the extract was guided by the TryR assay and resulted in the isolation of cochlioquinone A and isocochlioquinone A. Both compounds were active in the assay with L. amazonensis, disclosing EC50 values (effective concentrations required to kill 50% of the parasite) of 1.7 µM (95% confidence interval = 1.6 to 1.9 µM) and 4.1 µM (95% confidence interval = 3.6 to 4.7 µM), respectively. These compounds were not active against three human cancer cell lines (MCF-7, TK-10, and UACC-62), indicating some degree of selectivity towards the parasites. These results suggest that cochlioquinones are attractive lead compounds that deserve further investigation aiming at developing new drugs to treat leishmaniasis. The findings also reinforce the role of endophytic fungi as an important source of compounds with potential to enter the pipeline for drug development against NTDs.  相似文献   

14.
Lapachol was chemically modified to obtain its thiosemicarbazone and semicarbazone derivatives. These compounds were tested for antimicrobial activity against several bacteria and fungi by the broth microdilution method. The thiosemicarbazone and semicarbazone derivatives of lapachol exhibited antimicrobial activity against the bacteria Enterococcus faecalis and Staphylococcus aureus with minimal inhibitory concentrations (MICs) of 0.05 and 0.10 µmol/mL, respectively. The thiosemicarbazone and semicarbazone derivatives were also active against the pathogenic yeast Cryptococcus gattii (MICs of 0.10 and 0.20 µmol/mL, respectively). In addition, the lapachol thiosemicarbazone derivative was active against 11 clinical isolates of Paracoccidioides brasiliensis, with MICs ranging from 0.01-0.10 µmol/mL. The lapachol-derived thiosemicarbazone was not cytotoxic to normal cells at the concentrations that were active against fungi and bacteria. We synthesised, for the first time, thiosemicarbazone and semicarbazone derivatives of lapachol. The MICs for the lapachol-derived thiosemicarbazone against S. aureus, E. faecalis, C. gattii and several isolates of P. brasiliensis indicated that this compound has the potential to be developed into novel drugs to treat infections caused these microbes.  相似文献   

15.
Inhibition of the functional activity of Filamenting temperature-sensitive mutant Z (FtsZ) protein, an essential and highly conserved bacterial cytokinesis protein, is a promising approach for the development of a new class of antibacterial agents. Berberine, a benzylisoquinoline alkaloid widely used in traditional Chinese and native American medicines for its antimicrobial properties, has been recently reported to inhibit FtsZ. Using a combination of in silico structure-based design and in vitro biological assays, 9-phenoxyalkyl berberine derivatives were identified as potent FtsZ inhibitors. Compared to the parent compound berberine, the derivatives showed a significant enhancement of antibacterial activity against clinically relevant bacteria, and an improved potency against the GTPase activity and polymerization of FtsZ. The most potent compound 2 strongly inhibited the proliferation of Gram-positive bacteria, including methicillin-resistant S. aureus and vancomycin-resistant E. faecium, with MIC values between 2 and 4 µg/mL, and was active against the Gram-negative E. coli and K. pneumoniae, with MIC values of 32 and 64 µg/mL respectively. The compound perturbed the formation of cytokinetic Z-ring in E. coli. Also, the compound interfered with in vitro polymerization of S. aureus FtsZ. Taken together, the chemical modification of berberine with 9-phenoxyalkyl substituent groups greatly improved the antibacterial activity via targeting FtsZ.  相似文献   

16.
Five series of novel carbazole derivatives containing an aminoguanidine, dihydrotriazine, thiosemicarbazide, semicarbazide or isonicotinic moiety were designed, synthesised and evaluated for their antimicrobial activities. Most of the compounds exhibited potent inhibitory activities towards different bacterial strains (including one multidrug-resistant clinical isolate) and one fungal strain with minimum inhibitory concentrations (MICs) between 0.5 and 16 µg/ml. Compounds 8f and 9d showed the most potent inhibitory activities (MICs of 0.5–2 µg/ml). Furthermore, compounds 8b, 8d, 8f, 8k, 9b and 9e with antimicrobial activities were not cytotoxic to human gastric cancer cell lines (SGC-7901 and AGS) or a normal human liver cell line (L-02). Structure–activity relationship analyses and docking studies implicated the dihydrotriazine group in increasing the antimicrobial potency and reducing the toxicity of the carbazole compounds. In vitro enzyme activity assays suggested that compound 8f binding to dihydrofolate reductase might account for the antimicrobial effect.  相似文献   

17.
Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics in order to defeat multidrug-resistant bacteria such as Streptococcus pneumoniae. In this study, thirteen antimicrobial peptides were designed based on two natural peptides indolicidin and ranalexin. Our results revealed that four hybrid peptides RN7-IN10, RN7-IN9, RN7-IN8, and RN7-IN6 possess potent antibacterial activity against 30 pneumococcal clinical isolates (MIC 7.81-15.62µg/ml). These four hybrid peptides also showed broad spectrum antibacterial activity (7.81µg/ml) against S. aureus, methicillin resistant S. aureus (MRSA), and E. coli. Furthermore, the time killing assay results showed that the hybrid peptides were able to eliminate S. pneumoniae within less than one hour which is faster than the standard drugs erythromycin and ceftriaxone. The cytotoxic effects of peptides were tested against human erythrocytes, WRL-68 normal liver cell line, and NL-20 normal lung cell line. The results revealed that none of the thirteen peptides have cytotoxic or hemolytic effects at their MIC values. The in silico molecular docking study was carried out to investigate the binding properties of peptides with three pneumococcal virulent targets by Autodock Vina. RN7IN6 showed a strong affinity to target proteins; autolysin, pneumolysin, and pneumococcal surface protein A (PspA) based on rigid docking studies. Our results suggest that the hybrid peptides could be suitable candidates for antibacterial drug development.  相似文献   

18.

Background

The study was conducted to evaluate the in vitro antimicrobial activity, cytotoxic, and membrane stabilization activities, and in vivo antiemetic and antipyretic potentials of ethanolic extract, n-hexane and ethyl acetate soluble fractions of Spilanthes paniculata leaves for the first time widely used in the traditional treatments in Bangladesh.

Results

In antipyretic activity assay, a significant reduction (P < 0.05) was observed in the temperature in the mice tested. At dose 400 mg/kg-body weight, the n-hexane soluble fraction showed the effect (36.7 ± 0.63°C ) as like as the standard (dose 150 mg/kg-body weight) after 5 h of administration. Extracts showed significant (P < 0.001) potential when tested for the antiemetic activity compared to the standard, metoclopramide. At dose 50 mg/kg-body weight, the standard showed 67.23% inhibition, whereas n-hexane and ethyl acetate soluble fractions showed 37.53% and 24.93% inhibition of emesis respectively at dose 400 mg/kg-body weight. In antimicrobial activity assay, the n-hexane soluble fraction (400 μg/disc) showed salient activity against the tested organisms. It exerts highest activity against Salmonella typhi (16.9 mm zone of inhibition); besides, crude, and ethyl acetate extracts showed resistance to Bacillus cereus and Bacillus subtilis, and Vibrio cholera respectively. All the extracts were tested for lysis of the erythrocytes. At the concentration of 1mg/ml, ethanol extract, and n-hexane and ethyl acetate soluble fractions significantly inhibited hypotonic solution induced lysis of the human red blood cell (HRBC) (27.406 ± 3.57, 46.034 ± 3.251, and 30.72 ± 5.679% respectively); where standard drug acetylsalicylic acid (concentration 0.1 mg/ml) showed 77.276 ± 0.321% inhibition. In case of heat induced HRBC hemolysis, the plant extracts also showed significant activity (34.21 ± 4.72, 21.81 ± 3.08, and 27.62 ± 8.79% inhibition respectively). In the brine shrimp lethality bioassay, the n-hexane fraction showed potent (LC50 value 48.978 μg/ml) activity, whereas ethyl acetate fraction showed mild (LC50 value 216.77 μg/ml) cytotoxic activity.

Conclusions

Our results showed that the n-hexane extract has better effects than the other in all trials. In the context, it can be said that the leaves of S. paniculata possess remarkable pharmacological effects, and justify its folkloric use as antimicrobial, antipyretic, anti-inflammatory, and antiemetic agent. Therefore, further research may be suggested to find possible mode of action of the plant part.  相似文献   

19.
Withania somnifera, Warbugia ugandensis, Prunus africana and Plectrunthus barbatus are used traditionally in Kenya for treatment of microbial infections and cancer. Information on their use is available, but scientific data on their bioactivity, safety and mechanisms of action is still scanty. A study was conducted on the effect of organic extracts of these plants on both bacterial and fungal strains, and their mechanisms of action. Extracts were evaluated through the disc diffusion assay. Bacteria and yeast test strains were cultured on Mueller-Hinton agar and on Sabouraud dextrose agar for the filamentous fungi. A 0.5 McFarland standard suspension was prepared. Sterile paper discs 6 mm in diameter impregnated with 10 µl of the test extract (100 mg/ml) were aseptically placed onto the surface of the inoculated media. Chloramphenicol (30 µg) and fluconazole (25 µg) were used as standards. Discs impregnated with dissolution medium were used as controls. Activity of the extracts was expressed according to zone of inhibition diameter. MIC was determined at 0.78–100 mg/ml. Safety studies were carried using Cell Counting Kit 8 cell proliferation assay protocol. To evaluate extracts mechanisms of action, IEC-6 cells and RT-PCR technique was employed in vitro to evaluate Interleukin 7 cytokine. Investigated plants extracts have both bactericidal and fungicidal activity. W. ugandensis is cytotoxic at IC50<50 µg/ml with MIC values of less than 0.78 mg/ml. Prunus africana shuts down expression of IL 7 mRNA at 50 µg/ml. W. somnifera has the best antimicrobial (1.5625 mg/ml), immunopotentiation (2 times IL 7 mRNA expression) and safety level (IC50>200 µg/ml). Fractions from W. ugandensis and W. somnifera too demonstrated antimicrobial activity. Mechanisms of action can largely be attributed to cytotoxicity, Gene silencing and immunopotentiation. Use of medicinal plants in traditional medicine has been justified and possible mechanisms of action demonstrated. Studies to isolate and characterize the bioactive constituents continue.  相似文献   

20.
Biofilm formation by Candida species is a major contribute to their pathogenic potential.The aim of this study was to determine in vitro effects of EDTA, cycloheximide, and heparin-benzyl alcohol preservative on C. albicans (126) and non-albicans (31)vaginal yeast isolates biofilm formations and their susceptibility against three antifungal Etest strips. Results of the crystal violet-assay, indicated that biofilms formation were most commonly observed [100%] for C. kefyr, C. utilis, C. famata, and Rhodotorula mucilaginosa, followed by C. glabrata [70%], C. tropicalis [50%], C. albicans [29%], Saccharomyces cerevisiae [0.0%]. EDTA (0.3mg/ml) significantly inhibited biofilm formation in both C. albicans and non-albicans isolates (P=0.0001) presumably due to chelation of necessary metal cations for the process-completion. In contrast, heparin (-benzyl alcohol preservative) stimulated biofilm formation in all tested isolates, but not at significant level (P=0.567). Conversely, cycloheximide significantly (P=0.0001) inhibited biofilm formation in all C. albicans strains(126) and its effect was even 3 fold more pronounced than EDTA inhibition, probably due to its attenuation of proteins (enzymes) and/or complex molecules necessary for biofilm formation. Results also showed that all nonalbicans yeasts isolates were susceptible to 5-flucytosine (MIC50, 0.016 µg/ml; MIC90, 0.064 µg/ml), but 14% of C. albicans isolates were resistant (MIC50, 0.064 µg/ml; MIC90 >32 µg/ml). The MIC50 value of amphotricin B for all C. albicans and non-albicans isolates was at a narrow range of 0.023 µg /ml, and the MIC90 values were 0.047 µg/ml and 0.064 µg/ml respectively, thereby confirming its efficacy as a first line empiric- treatment of Candida spp infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号