首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Functional studies have implicated cysteines in the interaction of ligands with the ENT1 nucleoside transporter. To better define these interactions, N-ethylmaleimide (NEM) and p-chloromercuribenzylsulfonate (pCMBS) were tested for their effects on ligand interactions with the [(3)H] nitrobenzylthioinosine (NBMPR) binding site of the ENT1 transporters of mouse Ehrlich ascites cells and human erythrocytes. NEM had biphasic, concentration-dependent effects on NBMPR binding to intact Ehrlich cells, plasma membranes, and detergent-solubilized membranes, with about 35% of the binding activity being relatively insensitive to NEM inhibition. NBMPR binding to human erythrocyte membranes also displayed heterogeneity in that about 33% of the NBMPR binding sites remained, albeit with lower affinity for NBMPR, even after treatment with NEM at concentrations in excess of 1 mM. However, unlike that seen for Ehrlich cells, no "reversal" in NBMPR binding to human erythrocyte membranes was observed at the higher concentrations of NEM. pCMBS inhibited 100% of the NBMPR binding to both Ehrlich cell and human erythrocyte membranes, but had no effect on the binding of NBMPR to intact cells. The effects of NEM on NBMPR binding could be prevented by coincubation of membranes with nonradiolabeled NBMPR, adenosine, or uridine. Treatment with NEM and pCMBS also decreased the affinity of other nucleoside transport inhibitors for the NBMPR binding site, but enhanced the affinities of nucleoside substrates. These data support the existence of at least two populations of ENT1 in both erythrocyte and Ehrlich cell membranes with differential sensitivities to NEM. The interaction of NEM with the mouse ENT1 protein may also involve additional sulphydryl groups not present in the human ENT1.  相似文献   

2.
The transport of [U-14C]uridine was investigated in rat cerebral-cortical synaptosomes using an inhibitor-stop filtration method. Under these conditions the rapid efflux of uridine from the synaptosomes is prevented and uridine is not significantly metabolized in the synaptosome during the first 1 min of uptake. The dose-response curve for the inhibition of uridine transport by nitrobenzylthioinosine (NBMPR) was biphasic: approx. 40% of the transport activity was inhibited with an IC50 (concentration causing half-maximal inhibition) value of 0.5 nM, but the remaining activity was insensitive to concentrations as high as 1 microM. Similar biphasic dose-response curves were observed for dilazep inhibition, but both transport components were equally sensitive to dipyridamole inhibition. Uridine influx by both components was saturable (Km 300 +/- 51 and 214 +/- 23 microM, and Vmax. 12 +/- 3 and 16 +/- 3 pmol/s per mg of protein, for NBMPR-sensitive and NBMPR-insensitive components respectively), and inhibited by other nucleosides such as 2-chloroadenosine, adenosine, inosine, thymidine and guanosine with similar IC50 values for the two components. Inhibition of uridine transport by NBMPR was associated with high-affinity binding of NBMPR to the synaptosome membrane (Kd 58 +/- 15 pM). Binding of NBMPR to these sites was competitively blocked by uridine and adenosine and inhibited by dilazep and dipyridamole, with Ki values similar to those measured for inhibiting NBMPR-sensitive uridine influx. These results demonstrate that there are two components of nucleoside transport in our rat synaptosomal preparation that differ in their sensitivity to inhibition by NBMPR. Thus conclusions regarding nucleoside transport in rat brain based only on NBMPR-binding activity must be viewed with caution.  相似文献   

3.
The importance of sulfhydryl groups for hexose transport in undifferentiated L6 rat myoblasts was investigated. N-ethylmaleimide (NEM) and p-chloromer-curibenzenesulfonic acid (pCMBS) inhibited 2-deoxy-D-glucose (2-DOG) transport in a time and concentration-dependent manner. The inhibition produced by both reagents was virtually complete within 5 min, although neither reagent inhibited transport more than 70–80% regardless of the concentrations or incubation times used. Furthermore, the inhibition of 2-DOG transport by pCMBS or NEM could not be prevented by simultaneous preincubation of cells with 20 mM D-glucose or 20 mM 2-DOG. This suggests that sulfhydryl groups required for transport are separate from the hexose binding and transport site. By comparing the effects of the membrane impermeant pCMBS to those of the membrane permeant NEM, cell surface sulfhydryl groups were shown to be essential for hexose binding and transport. In contrast to the inhibition of 2-DOG transport, pCMBS and NEM had much less of an effect on 3-O-methyl-D-glucose (3-OMG) transport. For example, 1 mM NEM inhibited 2-DOG transport by 66%, whereas 3-OMG transport was inhibited by only 7%. This supports the suggestion that these hexose analogues may be transported by different carriers. Kinetic analysis of transport shows that treatment of cells with 1 mM NEM or 1 pCMBS results in inactivation of the high affinity 2-DOG transport system, whereas the low affinity transport system is unaffected. 3-OMG is preferentially transported by the low affinity system.  相似文献   

4.
A line of HeLa cells resistant to 5-bromo-2′-deoxyuridine (BUdR) was established by continuous culture in growth medium containing BUdR; during the selection period, BUdR concentrations, initially 15 μM, were gradually increased to 100 μM. Cells of a clone (HeLa/B5) established from this line were also resistant to 5-fluoro-2′-deoxyuridine (FUdR), but not to the free base, 5-fluorouracil. Although extracts of HeLa/B5 cells exhibited levels of thymidine kinase activity comparable to those of parental cells, rates of uptake of BUdR, FUdR, and thymidine into intact cells were much reduced. The kinetics of uptake of uridine and adenosine, nucleosides which appear to be transported independently of thymidine in HeLa cells, were similar for HeLa/B5 and the parental line (HeLa/0). Relative to thymidine uptake by HeLa/0 cells, that by HeLa/B5 cells was distinctly less sensitive to nitrobenzlthionosine (NBMPR), a specific inhibitor of nucleoside transport in various types of animal cells. Despite this difference in NBMPR sensitivity, both cell lines possessed the same number of high affinity NBMPR binding sites per mg cell protein. The altered kinetics of thymidine uptake and the NBMPR insensitivity of that function in HeLa/B5 cells suggest that resistance to BUdR is due to an altered thymidine transport mechanism.  相似文献   

5.
Nucleosides cross the human erythrocyte membrane by a facilitated-diffusion process which is selectively inhibited by nanomolar concentrations of nitrobenzylthioinosine (NBMPR). The chemical asymmetry of the transporter was investigated by studying the effects of p-chloromercuriphenyl sulphonate (PCMBS) on uridine transport and high-affinity NBMPR binding in inside-out and right-side-out membrane vesicles, unsealed erythrocyte ghosts and intact cells. PCMBS was an effective inhibitor of the transporter (50% inhibition at 30 microM), but only when the organomercurial had access to the cytoplasmic membrane surface. PCMBS inhibition of NBMPR binding to ghosts was reversed by incubation with dithiothreitol. Both uridine and NBMPR were able to protect the transporter against PCMBS inhibition.  相似文献   

6.
Nucleoside transport in various types of animal cells is inhibited by the binding of nitrobenzylthioinosine (NBMPR) to a set of high-affinity sites on the plasma membrane. This work examined the binding of [3H]NBMPR to the nucleoside transporters of cultured Nil 8 hamster fibroblasts and of cells of a virus-transformed clone (Nil SV) derived from Nil 8. Experiments conducted with intact Nil 8 and Nil SV cells and with membrane preparations indicated that the two lines differed significantly in the cellular content of binding sites and only slightly in the affinities of these sites for NBMPR. Nil 8 and Nil SV cells possessed (4.2-8.0) X 10(5) and (2.0-4.0) X 10(6) sites per cell respectively, whereas the dissociation constants of site-bound NBMPR obtained with intact cells and with membrane preparations were similar, ranging from 0.29 to 1.5 nM. Dilazep, a potent inhibitor of nucleoside transport that is structurally unrelated to NBMPR, appeared to compete with NBMPR for binding to the high-affinity sites when tested under equilibrium conditions with Ki values for inhibition of NBMPR binding to Nil 8 and Nil SV cells respectively of 15 +/- 4 and 32 +/- 4 nM. The dissociation of NBMPR from the binding site--NBMPR complex of Nil SV membrane preparations was a first-order decay process with a rate constant of 0.68 +/- 0.26 min-1. The rate of dissociation of NBMPR from the binding-site complex of membrane preparations and intact cells was decreased significantly in the presence of dilazep and increased in the presence of the permeant uridine. These results suggest that the apparent competitive-inhibition kinetics obtained for dilazep under equilibrium conditions should not be interpreted as binding of dilazep to the same site as NBMPR but rather as binding of the two inhibitors to closely associated sites on the nucleoside transporter. Similarly, uridine also appears to bind to a site separate from the NBMPR-binding site.  相似文献   

7.
The transport of uridine into rabbit renal outer-cortical brush-border and basolateral membrane vesicles was compared at 22 degrees C. Uridine was taken up into an osmotically active space in the absence of metabolism for both types of membrane vesicles. Uridine influx by brush-border membrane vesicles was stimulated by Na+, and in the presence of inwardly directed gradients of Na+ a transient overshoot phenomenon was observed, indicating active transport. Kinetic analysis of the saturable Na+-dependent component of uridine flux indicated that it was consistent with Michaelis-Menten kinetics (Km 12 +/- 3 microM, Vmax. 3.9 +/- 0.9 pmol/s per mg of protein). The sodium:uridine coupling stoichiometry was found to be consistent with 1:1 and involved the net transfer of positive charge. In contrast, uridine influx by basolateral membrane vesicles was not dependent on the cation present and was inhibited by nitrobenzylthioinosine (NBMPR). NBMPR-sensitive uridine transport was saturable (Km 137 +/- 20 microM, Vmax. 5.2 +/- 0.6 pmol/s per mg of protein). Inhibition of uridine flux by NBMPR was associated with high-affinity binding of NBMPR to the basolateral membrane (Kd 0.74 +/- 0.46 nM). Binding of NBMPR to these sites was competitively blocked by adenosine and uridine. These results indicate that uridine crosses the brush-border surface of rabbit proximal renal tubule cells by Na+-dependent pathways, but permeates the basolateral surface by NBMPR-sensitive facilitated-diffusion carriers.  相似文献   

8.
Passive K transport, as modified by N-ethyl maleimide (NEM), was studied in erythrocytes of the low-K (LK) phenotype of sheep. Brief (5- min) treatment with NEM at less than 0.5 mM caused inhibition of passive K influx; NEM at concentrations greater than 0.5 mM caused stimulation of K influx. NEM had similar effects on K efflux. The treatments with NEM did not affect cell volumes (passive K transport in LK cells is sensitive to changes in cell volume). The stimulation of K transport by high [NEM] was also not a consequence of an effect on the metabolic state of the cells. Passive K transport in LK cells is dependent on Cl (it is inhibited in Cl-free media; it may be K/Cl cotransport). NEM had no effect on K influx in Cl-free (NO3- substituted) media. Pretreatment of the cells with anti-L antiserum (L antigen is found on LK cells and not on HK cells) prevented stimulation of K influx by NEM, but did not prevent inhibition. Therefore, NEM modifies the Cl-dependent K transport pathway at two separate sites, a low-affinity site, at which it stimulates, and a high-affinity site, at which it inhibits. Anti-L antibody prevents NEM's action, but only at the low-affinity site.  相似文献   

9.
L1210 mouse leukemia cells exhibit two distinct types of nucleoside transport activity that have similar kinetic properties and substrate specificity, but differ markedly in their sensitivity to the inhibitor nitrobenzylthioinosine (NBMPR) (Belt, J. A. (1983) Mol. Pharmacol. 24, 479-484). It is not known whether these two transport activities are mediated by a single protein or by separate and distinct nucleoside transport proteins. We have isolated a mutant from the L1210 cell line that has lost the NBMPR-insensitive component of nucleoside transport, but retains NBMPR-sensitive transport. In the parental cell line 20-40% of the nucleoside transport activity is insensitive to 1 microM NBMPR. In the mutant, however, uridine and thymidine transport are almost completely inhibited by NBMPR. Consistent with the loss of NBMPR-insensitive transport, the mutant cells can be protected from the toxic effects of several nucleoside analogs by NBMPR. In contrast, the toxicity of the same analogs in the wild type cells is not significantly affected by NBMPR, presumably due to uptake of the nucleosides via the NBMPR-insensitive transporter. On the other hand, NBMPR-sensitive transport in the mutant appears to be unaltered. The mutant is not resistant to cytotoxic nucleosides in the absence of NBMPR and the cells retain the wild type complement of high affinity binding sites for NBMPR. Furthermore, the affinity of the binding site for the inhibitor is similar to that of parental L1210 cells. These results suggest that NBMPR-sensitive and NBMPR-insensitive nucleoside transport in L1210 cells are mediated by genetically distinct proteins. To our knowledge this is the first report of a mutant deficient in NBMPR-insensitive nucleoside transport.  相似文献   

10.
The zero-trans influx of 500 microM uridine by CHO, P388, L1210 and L929 cells was inhibited by nitrobenzylthioinosine ( NBTI ) in a biphasic manner; 60-70% of total uridine influx by CHO cells and about 90% of that in P388, L1210 and L929 cells was inhibited by nmolar concentrations of NBTI (ID50 = 3-10 nM) and is designated NBTI -sensitive transport. The residual transport activity, designated NBTI -resistant transport, was inhibited by NBTI only at concentrations above 1 microM (ID50 = 10-50 microM). S49 cells exhibited only NBTI -sensitive uridine transport, whereas Novikoff cells exhibited only NBTI -resistant uridine transport. In all instances NBTI -sensitive transport correlated with the presence of between 7 7 X 10(4) and 7 X 10(5) high-affinity NBTI binding sites/cell (Kd = 0.3-1 nM). Novikoff cells lacked such sites. The two types of nucleoside transport, NBTI -resistant and NBTI -sensitive, were indistinguishable in substrate affinity, temperature dependence, substrate specificity, inhibition by structurally unrelated substances, such as dipyridamole or papaverine, and inhibition by sulfhydryl reagents or hypoxanthine. We suggest, therefore, that a single nucleoside transporter can exist in an NBTI -sensitive and an NBTI -resistant form depending on its disposition in the plasma membrane. The sensitive form expresses a high-affinity NBTI binding site(s) which is probably made up of the substrate binding site plus a hydrophobic region which interacts with the lipophilic nitrobenzyl group of NBTI . The latter site seems to be unavailable in NBTI -resistant transporters. The proportion of NBTI -resistant and sensitive uridine transport was constant during proportion of NBTI -resistant and sensitive uridine transport was constant during progression of P388 cells through the cell cycle and independent of the growth stage of the cells in culture. There were additional differences in uridine transport between cell lines which, however, did not correlate with NBTI sensitivity and might be related to the species origin of the cells. Uridine transport in Novikoff cells was more sensitive to inhibition by dipyridamole and papaverine than that in all other cell lines tested, whereas uridine transport in CHO cells was the most sensitive to inactivation by sulfhydryl reagents.  相似文献   

11.
Cells of an adenosine-resistant clone (AE1) of S49 mouse lymphoma cells were compared with cells of the parental line with respect to (a) characteristics of nucleoside transport, (b) high affinity binding of the inhibitor of nucleoside transport, nitrobenzylthionisine (NBMPR), and (c) the antiproliferative effects of the nucleoside antibiotics, tubercidin, arabinosyladenine and showdomycin. Rates of inward transport of uridine, thymidine, adenosine, 2′-deoxyadenosine, tubercidin, showdomycin, and arabinosyladenine in AE1 cells were less than 1% of those in cells of the parental S49 line. The inhibitor of nucleoside transport, NBMPR, reduced rates of inward nucleoside transport in S49 cells to levels comparable to those seen in the transport-defective mutant. S49 cells possessed high affinity sites that bound NBMPR (6.6 · 104 sites/cell, Kd  0.2 nM), whereas site-specific binding of NBMPR to AE1 cells was not demonstrable, indicating that loss of nucleoside transport activity in AE1 cells was accompanied by loss of the high affinity NBMPR binding sites. Relative to S49 cells, AE1 cells were resistant to the antiproliferative effects of tubercidin and showdomycin, but differences between the two cell lines in sensitivity toward arabinosyladenine were minor, suggesting that nucleoside transport activity was required for cytotoxicity of tubercidin and showdomycin, but not for that of arabinosyladenine.  相似文献   

12.
Summary The sensitivity of nucleoside transport by rat erythrocytes to inhibition by nitrobenzylthioinosine (NBMPR) and the slowly permeating organomercurial,p-chloromercuriphenyl sulfonate (pCMBS), was investigated. The dose response curve for the inhibition of uridine transport (100 M) by NBMPR was biphasic –35% of the transport activity was inhibited with an IC50 value of 0.25 nM, but 65% of the activity remained insensitive to concentrations as high as 1 M. These two components of uridine transport are defined as NBMPR-sensitive and NBMPR-insensitive, respectively. Uridine influx by both components was saturable and conformed to simple Michaelis-Menten kinetics, and was inhibited by other nucleosides. The uridine affinity of the NBMPR-sensitive transport component was threefold higher than for the NBMPR-insensitive transport mechanism (apparentK m for uridine 50±18 and 163±28 M, respectively). The two transport systems also differed in their sensitivity topCMBS. NBMPR-insensitive uridine transport was inhibited bypCMBS with an IC50 of 25M, while 1 mMpCMBS had little effect on NBMPR-sensitive transport by intact cells.pCMBS inhibition was reduced in the presence of uridine and adenosine and reversed by the addition by -mercaptoethanol, suggesting that thepCMBS-sensitive thiol group is located on the exterior surface of the erythrocyte membrane within the nucleoside binding site of the transport system. Inhibition of uridine transport by NBMPR was associated with high-affinity [3H]NBMPR binding to the cell membrane (apparentK d46±25 pM). Binding of inhibitor to these sites was competitively blocked by uridine and inhibited by adenosine, thymidine, dipyridamole, dilazep and nitrobenzylthioguanosine. Assuming that each NBMPR-sensitive transport site binds a single molecule of NBMPR, the calculated translocation capacity of each site is 25±6 molecules/site per sec at 22°C.pCMBS had no effect on [3H]NBMPR binding to intact cells but markedly inhibited binding to disrupted membranes indicating that the NBMPR-sensitive nucleoside transporter probably has a thiol group located on the inner surface of the membrane. Exposure of rat erythrocyte membranes to UV light in the presence of [3H]NBMPR resulted in covalent radiolabeling of a membrane protein(s) (apparent Mr on SDS gel electropherograms of 62,000). Labeling of this protein was abolished in the presence of nitrobenzylthioguanosine. We conclude that nucleoside transport by rat erythrocytes occurs by two facilitated-diffusion systems which differ in their sensitivity to inhibition by both NBMPR andpCMBS.  相似文献   

13.
Identification of the Adenosine Uptake Sites in Guinea Pig Brain   总被引:3,自引:0,他引:3  
Nitrobenzylthioinosine (NBMPR), a potent and specific inhibitor of nucleoside transport, was employed as a photolabile probe of the adenosine transporter in guinea pig brain membranes. Reversible, high-affinity binding of [3H]NBMPR to a crude preparation of guinea pig brain membranes was demonstrated (apparent KD 0.075 +/- 0.012 nM; Bmax values of 0.24 +/- 0.04 pmol/mg protein). Adenosine, uridine, dipyridamole, and nitrobenzylthioguanosine inhibited high-affinity binding. Low concentrations of cyclohexoadenosine (10-300 nM) had no effect on NBMPR binding. These properties of the high-affinity NBMPR binding sites were consistent with NBMPR binding to the nucleoside transport protein. Exposure of brain membranes in the presence of [3H]NBMPR and dithiothreitol, a free-radical scavenger, to ultraviolet light resulted in covalent incorporation of 3H into polypeptides of apparent MW 66,000-45,000, a value similar to that for the human erythrocyte nucleoside transporter. Covalent attachment of [3H]NBMPR was inhibited by adenosine, dipyridamole, and nitrobenzylthioguanosine.  相似文献   

14.
The binding of [3H]nitrobenzylthioinosine (NBMPR) to specific sites in CNS membranes was investigated using cortical tissue from a variety of mammalian species. Mass law analysis of the site-specific binding of NBMPR data revealed that rat, mouse, guinea pig, and dog cortical membranes each contained an apparent single class of high-affinity (KD 0.11-4.9 nM) binding sites for NBMPR; rabbit cortical membranes, however, exhibited two distinct classes of NBMPR binding sites with KD values of 0.4 nM and 13.8 nM. Dipyridamole, a potent inhibitor of nucleoside transport, produced a biphasic profile of inhibition of the binding of NBMPR to guinea pig, rabbit, and dog membranes (IC50 less than 20 nM and IC50 greater than 6 microM for NBMPR binding sites displaying high and low affinity for dipyridamole, respectively). These results are indicative of heterogeneity of NBMPR binding sites in mammalian cortical membranes. Rat and mouse cortical membranes appear to possess only one type of NBMPR binding site, which has low affinity for dipyridamole. Detailed analysis of inhibitor-induced dissociation of NBMPR from its sites in each species led to the conclusion that these multiple forms of NBMPR binding sites are different conformations of a single site associated with the CNS nucleoside transport system, rather than two distinct sites. It is also suggested that the affinity of dipyridamole for each conformation of NBMPR site indicates the susceptibility of that conformation of the nucleoside transport system to inhibition by dipyridamole.  相似文献   

15.
Membrane polypeptides (relative mass (Mr) 48,000--55,000) associated with the equilibrative transport of nucleosides were identified in cultured murine leukemia (L1210/C2) cells by site-specific photolabeling with [3H]nitrobenzylthioinosine ([3H]NBMPR). Growth of cells in the presence of tunicamycin resulted in the gradual conversion of 3H-labeled polypeptides to a form that migrated more rapidly (Mr 42,000--47,000) during sodium dodecyl sulfate (SDS)--polyacrylamide gel electrophoresis. When plasma membrane fractions were photolabeled and incubated with O-glycanase or endoglycosidase F, the [3H]NBMPR-labeled polypeptides migrated in SDS-polyacrylamide gels with the same mobility as native NBMPR-binding polypeptides, whereas incubation with either N-glycanase or trifluoromethane sulfonic acid converted [3H]NBMPR-labeled polypeptides to the more rapidly migrating form (Mr 41,000--48,000). These observations are consistent with the presence of N-linked oligosaccharides of the complex type on the NBMPR-binding polypeptides of L1210/C2 cells. Tunicamycin exposures that reduced incorporation of [3H]mannose into plasma membrane fractions by greater than 95% had little, if any, effect on either the affinity (Kd values, 0.1-0.2 nM) or abundance (Bmax values, 200,000--220,000 sites/cell) of NBMPR-binding sites, whereas uridine transport kinetics at 37 degrees C were altered in a complex way. Thus, although N-linked glycosylation is not required for insertion of the NBMPR-binding protein into the plasma membrane or for interaction of NBMPR with the high-affinity binding sites, it is important for function of at least one of the three nucleoside transporters expressed by L1210/C2 cells.  相似文献   

16.
The binding of [3H]nitrobenzylthioinosine (NBMPR) to specific membrane sites in guinea pig brain was rapid, reversible, and saturable, and was dependent upon protein concentration, pH, and temperature. Mass law analysis of the binding data for cortical membranes indicated that NBMPR bound with high affinity to a single class of sites at which the equilibrium dissociation constant (KD) for NBMPR was 0.10-0.25 nM and which possessed a maximum binding capacity (Bmax) per mg of protein of 300 fmol of NBMPR. Kinetic analysis of the site-specific binding of NBMPR yielded an independent estimate of the KD of 0.16 nM. A relatively homogeneous subcellular distribution of the sites for NBMPR was found in cortical tissue. Recognized inhibitors of nucleoside transport were potent, competitive inhibitors of the binding of NBMPR in guinea pig CNS membranes whereas benzodiazepines and phenothiazines have low affinity for the sites. NBMPR sites in guinea pig cortical membranes have characteristics similar to those for NBMPR in human erythrocytes, the occupation of which is associated with inhibition of nucleoside transport. The comparable affinities for a range of agents for sites in human erythrocytes and guinea pig CNS membranes suggest that NBMPR also binds to transport inhibitory elements of the guinea pig CNS nucleoside transport system. It is proposed that the study of the binding of NBMPR provides an effective method by which to examine drug interactions with the membrane-located nucleoside transport system in CNS membranes.  相似文献   

17.
Nitrobenzylthioinosine (NBMPR) was employed as a probe of the nucleoside transporters from rat and guinea-pig liver. Purified liver plasma membranes prepared on self-generating Percoll density gradients exhibited 16-fold (rat) and 10-fold (guinea pig) higher [3H]NBMPR-binding activities than in crude liver homogenates (3.69 and 14.7 pmol/mg of protein for rat and guinea-pig liver membranes respectively, and 0.23 and 1.47 pmol/mg of protein for crude liver homogenates respectively). Binding to membranes from both species was saturable (apparent Kd 0.14 and 0.63 nM for rat and guinea-pig membranes respectively) and inhibited by uridine, adenosine, nitrobenzylthioguanosine (NBTGR) and dilazep. Uridine was an apparent competitive inhibitor of high-affinity NBMPR binding to rat membranes (apparent Ki 1.5 mM). There was a marked species difference with respect to dipyridamole inhibition of NBMPR binding (50% inhibition at 0.2 and greater than 100 microM for guinea-pig and rat respectively). These results are consistent with a role of NBMPR-binding proteins in liver nucleoside transport. Exposure of rat and guinea pig membranes to high-intensity u.v. light in the presence of [3H]NBMPR resulted in the selective radio-labelling of membrane proteins which migrated on sodium dodecyl sulphate/polyacrylamide gels with apparent Mr values in the same range as that of the human erythrocyte nucleoside transporter (45 000-66 000). Covalent labelling of these proteins was abolished when photolysis was performed in the presence of non-radio-active NBTGR as competing ligand.  相似文献   

18.
Uptake of [3H]uridine by Ehrlich cells was mediated by both nitrobenzylthioinosine (NBMPR)-sensitive (75%) and NBMPR-insensitive (25%) mechanisms. Each cell contained approx. 26,000 high-affinity (KD = 0.19 nM) recognition sites for [3H]NBMPR, and binding was inhibited by dipyridamole and adenosine at concentrations similar to those required for inhibition of [3H]uridine uptake. Calculations show that each cell contains a total of about 35,000 nucleoside transporters. Photoaffinity labelling of a partially purified preparation of plasma membranes with [3H]NBMPR resulted in a single broad 3H-labelled band on SDS/polyacrylamide gels, with an apparent molecular-mass peak of 42 kDa. This is in contrast with human erythrocyte membranes, where [3H]NBMPR photolabelled two broad bands with peaks at 55 and 80 kDa. Treatment of photoaffinity-labelled membranes with endoglycosidase F decreased the apparent molecular masses of both the Ehrlich-cell and erythrocyte [3H]NBMPR-labelled proteins to approx. 40 kDa. These results suggest that the human erythrocyte [3H]NBMPR-binding polypeptides are more extensively glycosylated than the corresponding Ehrlich-cell polypeptides. Octyl beta-D-glucopyranoside [1.0% (w/v) + asolectin] solubilized over 90% of the [3H]NBMPR-binding sites, with near-complete retention of [3H]NBMPR-binding characteristics. The only major change was a 65-fold decrease in affinity for dipyridamole, which was partly reversed upon incorporation of the solubilized proteins into asolectin membranes. Proteoliposomes, prepared by using asolectin and the octyl glucoside-solubilized plasma membranes, were capable of accumulating [3H]uridine via a protein-dependent dipyridamole/nitrobenzylthioguanosine/dilazep-sensitive mechanism. We have thus demonstrated the efficient solubilization and functional reconstitution of a nucleoside-transport system from Ehrlich ascites-tumour cells.  相似文献   

19.
Characterization of angiotensin II receptor subtypes in rat liver   总被引:4,自引:0,他引:4  
Radioligand binding studies identified two classes of 125I-angiotensin II-binding sites in rat liver membranes. High affinity binding sites (Kd = 0.35 +/- 0.13 nM, N = 372 +/- 69 fmol/mg of protein) were inactivated by dithiothreitol (0.1-10 mM) without any apparent change in low affinity binding sites (Kd = 3.1 +/- 0.8 nM, N = 658 +/- 112 fmol/mg of protein). Dithiothreitol inactivation was readily reversible but could be made permanent by alkylation of membrane proteins with iodoacetamide. Angiotensin II stimulation of glycogen phosphorylase in isolated rat hepatocytes (maximal stimulation 780%, EC50 = 0.4 nM) was completely inhibited by 10 mM dithiothreitol, a concentration which also abolished high affinity site binding; phosphorylase stimulation by glucagon and norepinephrine under these conditions was unaltered. Angiotensin II inhibition of glucagon-stimulated adenylate cyclase activity in hepatocytes required higher angiotensin II concentrations (EC50 = 3 nM) than phosphorylase stimulation and was not affected by dithiothreitol. Fractional occupancy of high affinity binding sites by 125I-angiotensin II correlated closely with angiotensin II-mediated phosphorylase stimulation, whereas occupancy of low affinity sites paralleled inhibition of adenylate cyclase activity. These data indicate that the physiologic effects of angiotensin II in rat liver are mediated by two distinct receptors, apparently not interconvertible, and provide the first evidence for angiotensin II receptor subtypes with differing biochemical features and mechanisms of action.  相似文献   

20.
Possible involvement of histidine residues and sulfhydryl groups in the function of the intestinal brush-border membrane (BBM) transporter of biotin was investigated. This was done by examining the effects of pretreatment of BBM vesicle (BBMV) isolated from rabbit intestine with the histidine-specific reagent diethyl pyrocarbonate (DEPC) and the sulfhydryl group-specific reagents p-chloromercuribenzenesulfonic acid (p-CMBS) and 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl) on carrier-mediated biotin transport. Pretreatment of BBMV with DEPC caused significant inhibition in the initial rate of biotin transport without affecting the substrate uptake at equilibrium. Addition of biotin plus Na+ to vesicle suspensions prior to treatment with DEPC provided significant protection to biotin transport. Treatment of DEPC-pretreated vesicles with the reducing agents dithiothreitol and 2,3-dimercaptopropanol failed to reverse the inhibitory effect of DEPC on biotin transport. The inhibitory effect of DEPC was found to be mediated through a marked decrease in the number of the functional biotin transport carriers with no change in their affinity, as indicated by the severe inhibition in the Vmax but not the apparent Km of the biotin transport process, respectively. Pretreatment of BBMV with p-CMBS and NBD-Cl also caused significant inhibition in the initial rate of biotin transport without affecting the substrate uptake at equilibrium. Addition of biotin plus Na+ to vesicle suspensions prior to treatment with p-CMBS (or NBD-Cl) failed to protect biotin transport from inhibition. On the other hand, treatment of vesicles pretreated with p-CMBS (or NBD-Cl) with the reducing agents dithiothreitol and mercaptoethanol caused significant reversal in the inhibition of biotin transport. The inhibitory effects of p-CMBS (and NBD-Cl) on biotin transport was also found to be mediated through inhibition in the Vmax, but not the apparent Km, of biotin transport process. These results indicate the involvement of histidine residues and sulfhydryl groups in the normal function of the biotin transport system of rabbit intestinal BBM. Furthermore, the results also suggest that the histidine residues are probably located at (or near) the substrate-binding site while the sulfhydryl groups are located at a site other than the substrate binding region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号