首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Cytochalasin B and nitrobenzylthioinosine (NBMPR), which inhibit membrane transport of glucose and nucleosides, respectively, have served as photoaffinity ligands that become covalently linked at inhibitor binding sites on transporter-associated proteins. Thus, when membranes from erythrocytes of neonatal pigs with site-bound [3H]cytochalasin B or [3H]NBMPR were irradiated with uv light, two labeled membrane polypeptides (peak Mr values: 55,000 and 64,000, respectively) were identified. Treatment of the photolabeled membranes with endoglycosidase F increased the mobility of [3H]cytochalasin B- and [3H]NBMPR-labeled material (peak Mr values: 44,000 and 57,000, respectively) and limited digestion with trypsin yielded different polypeptide fragments (Mr values: 18,000-23,000 and 43,000, respectively). Identification of the photolabeled polypeptides as transporter components was established using monoclonal antibodies (MAbs) raised against partially purified preparations of band 4.5 from erythrocytes of adult pigs and humans. MAbs 65D4 and 64C7 (anti-human band 4.5), raised in this study, reacted with [3H]cytochalasin B-labeled material from membranes of human erythrocytes and bound to permeabilized erythrocytes but not to intact cells. MAb 65D4 also bound to erythrocytes of mice and neonatal pigs and to a variety of cultured cells (mouse, human, rat), including AE1 mouse lymphoma cells, which lack an NBMPR-sensitive nucleoside transporter. Also employed was MAb 11C4 (anti-pig band 4.5), which recognizes the NBMPR-binding protein of erythrocyte membranes from adult pigs. When membrane proteins from neonatal and adult pigs were subjected to electrophoretic analysis and blots were probed with different MAbs, MAb 65D4 (anti-human band 4.5) bound to material that comigrated with [3H]cytochalasin B-labeled polypeptides (band 4.5) from neonatal, but not adult, pig erythrocytes, whereas MAb 11C4 (anti-pig band 4.5) bound to material that comigrated with [3H]NBMPR-labeled band 4.5 polypeptides of erythrocytes from both neonatal and adult pigs. These results, which indicate structural differences in the cytochalasin B- and NBMPR-binding proteins of pig erythrocytes, establish the presence of both proteins in erythrocytes of neonatal pigs and suggest that only the NBMPR-binding protein is present in erythrocytes of adult pigs.  相似文献   

2.
Uptake of [3H]uridine by Ehrlich cells was mediated by both nitrobenzylthioinosine (NBMPR)-sensitive (75%) and NBMPR-insensitive (25%) mechanisms. Each cell contained approx. 26,000 high-affinity (KD = 0.19 nM) recognition sites for [3H]NBMPR, and binding was inhibited by dipyridamole and adenosine at concentrations similar to those required for inhibition of [3H]uridine uptake. Calculations show that each cell contains a total of about 35,000 nucleoside transporters. Photoaffinity labelling of a partially purified preparation of plasma membranes with [3H]NBMPR resulted in a single broad 3H-labelled band on SDS/polyacrylamide gels, with an apparent molecular-mass peak of 42 kDa. This is in contrast with human erythrocyte membranes, where [3H]NBMPR photolabelled two broad bands with peaks at 55 and 80 kDa. Treatment of photoaffinity-labelled membranes with endoglycosidase F decreased the apparent molecular masses of both the Ehrlich-cell and erythrocyte [3H]NBMPR-labelled proteins to approx. 40 kDa. These results suggest that the human erythrocyte [3H]NBMPR-binding polypeptides are more extensively glycosylated than the corresponding Ehrlich-cell polypeptides. Octyl beta-D-glucopyranoside [1.0% (w/v) + asolectin] solubilized over 90% of the [3H]NBMPR-binding sites, with near-complete retention of [3H]NBMPR-binding characteristics. The only major change was a 65-fold decrease in affinity for dipyridamole, which was partly reversed upon incorporation of the solubilized proteins into asolectin membranes. Proteoliposomes, prepared by using asolectin and the octyl glucoside-solubilized plasma membranes, were capable of accumulating [3H]uridine via a protein-dependent dipyridamole/nitrobenzylthioguanosine/dilazep-sensitive mechanism. We have thus demonstrated the efficient solubilization and functional reconstitution of a nucleoside-transport system from Ehrlich ascites-tumour cells.  相似文献   

3.
Nitrobenzylthioniosine (NBMPR), a potent and specific inhibitor of nucleoside transport, is bound reversibly by high affinity sites on nucleoside transporter proteins of erythrocyte membranes and, upon photoactivation, NBMPR molecules become covalently bonded to the sites. This study showed that [3H]NBMPR molecules reversibly bound to intact S49 and L5178Y mouse lymphoma cells became covalently bound upon exposure to UV light. Electrophoretic analysis of plasma membrane fractions from the labelled cells showed that 3H was present in polypeptides which migrated as a major band with an apparent Mr of 45000–65000.  相似文献   

4.
Nitrobenzylthioinosine (NBMPR) was employed as a probe of the nucleoside transporters from rat and guinea-pig liver. Purified liver plasma membranes prepared on self-generating Percoll density gradients exhibited 16-fold (rat) and 10-fold (guinea pig) higher [3H]NBMPR-binding activities than in crude liver homogenates (3.69 and 14.7 pmol/mg of protein for rat and guinea-pig liver membranes respectively, and 0.23 and 1.47 pmol/mg of protein for crude liver homogenates respectively). Binding to membranes from both species was saturable (apparent Kd 0.14 and 0.63 nM for rat and guinea-pig membranes respectively) and inhibited by uridine, adenosine, nitrobenzylthioguanosine (NBTGR) and dilazep. Uridine was an apparent competitive inhibitor of high-affinity NBMPR binding to rat membranes (apparent Ki 1.5 mM). There was a marked species difference with respect to dipyridamole inhibition of NBMPR binding (50% inhibition at 0.2 and greater than 100 microM for guinea-pig and rat respectively). These results are consistent with a role of NBMPR-binding proteins in liver nucleoside transport. Exposure of rat and guinea pig membranes to high-intensity u.v. light in the presence of [3H]NBMPR resulted in the selective radio-labelling of membrane proteins which migrated on sodium dodecyl sulphate/polyacrylamide gels with apparent Mr values in the same range as that of the human erythrocyte nucleoside transporter (45 000-66 000). Covalent labelling of these proteins was abolished when photolysis was performed in the presence of non-radio-active NBTGR as competing ligand.  相似文献   

5.
Derivatives of N6-(4-aminobenzyl)adenosine (substituted at the aminobenzyl group) and 5'-linked derivatives of N6-(4-nitrobenzyl)adenosine (NBAdo) were evaluated as inhibitors of site-specific binding of [3H]nitrobenzylthioinosine (NBMPR) to pig erythrocyte membranes. Potent inhibitors were SAENTA [5'-S-(2-aminoethyl)-N6-(4-nitrobenzyl)-5'-thioadenosine] and acetyl-SAENTA (the 2-acetamidoethyl derivative of SAENTA). SAENTA was coupled to derivatized agarose-gel beads (Affi-Gel 10) to form an affinity matrix for chromatographic purification of NBMPR-binding polypeptides, which in pig erythrocytes are part of, or are associated with, the equilibrative nucleoside transporter. When pig erythrocyte membranes were solubilized with octyl glucoside (n-octyl beta-D-glucopyranoside) and applied to SAENTA-Affi-Gel 10 (SAENTA-AG10), polypeptides that migrated as a broad band on SDS/PAGE with an apparent molecular mass of 58-60 kDa were selectively retained by the affinity gel. These polypeptides were identified as components of the nucleoside transporter of pig erythrocytes by reactivity with a monoclonal antibody (mAb 11C4) that recognizes the NBMPR-binding protein of pig erythrocytes. Retention of the immunoreactive polypeptides by SAENTA-AG10 was blocked by NBAdo. The immunoreactive polypeptides were released from SAENTA-AG10 by elution under denaturing conditions with 1% SDS or by elution with detergent solutions containing competitive ligands (NBAdo or NBMPR). A 72-fold enrichment of the immunoreactive polypeptides was achieved by a single passage of solubilized, protein-depleted membranes through a column of SAENTA-AG10, followed by elution with detergent solutions containing NBAdo. These results demonstrate that polypeptide components of NBMPR-sensitive nucleoside-transport systems may be partly purified by affinity chromatography using gel media bearing SAENTA groups.  相似文献   

6.
Nucleoside permeation across mammalian cell membranes is complex with at least four distinct transporters known. Two of these (es and ei) are equilibrative (facilitated diffusion) carriers that have been studied is considerable detail. The other two (cif and cit) are concentrative, Na(+)-dependent carriers. A major obstacle to the characterization of the latter two mechanisms has been the lack of suitable model systems expressing only a single nucleoside transport activity. The present study describes the isolation of a cell line that has cif as its sole nucleoside transporter. L1210/MC5-1 cells, which have es and cif transport activity, were mutagenized and plated in soft agar containing two cytotoxic nucleosides (tubercidin (7-deazaadenosine) and cytosine arabinoside) that are substrates for es but not cif. A clonal line (L1210/MA-27.1) was isolated which retained the capacity for Na(+)-dependent [3H]formycin B transport but was unable to transport [3H]thymidine, a substrate for es but not cif. Failure of the mutant to transport thymidine was also demonstrated by the inability of thymidine (with adenine as a purine source) to rescue these cells from methotrexate toxicity. Furthermore, the mutant lacked nitrobenzylthioinosine (NBMPR) binding activity (an integral part of the es transporter) as demonstrated by reversible NBMPR binding and photoaffinity labeling with [3H]NBMPR. Loss of es transport activity was also demonstrated by the failure of NBMPR to affect the toxicity of 2-chlorodeoxyadenosine (IC50 approximately 30 nM) in L1210/MA27.1 cells. In contrast, NBMPR decreased the IC50 for 2-chlorodeoxyadenosine from 100 to 30 nM in the parental L1210/MC5-1 cell line. These results are consistent with the mechanism of NBMPR potentiation of 2-chlorodeoxyadenosine toxicity in L1210 cells being a blockade of efflux via es while the nucleoside is pumped into the cells by the concentrative cif carrier.  相似文献   

7.
Studies are reported on the characterization of a new isolate within a novel class of variants of the L1210 cell exhibiting markedly increased transport inward of folate analogues. This variant (L1210/R83), which was selected in the presence of the antifolate metoprine, exhibited a 40-fold increase in [3H]aminopterin influx compared to parental cells and a modest (4-5-fold) increase in [3H]aminopterin efflux. The increase in influx was associated with a comparable increase in influx Vmax for the one-carbon, reduced folate transport system and the same increase in the amount of specific binding of [3H]aminopterin on the cell surface. Values for influx Km for [3H]aminopterin and specificity for various folate structures were unchanged. The alteration in influx Vmax and more rapid efflux accounted for the different level of intracellular exchangeable level of drug at steady state in this variant compared with parental L1210 cells. Otherwise, membrane potential was unchanged. The N-hydroxysuccinimide ester of [3H]aminopterin was used to covalently label the specific binding protein for folate compounds in the plasma membrane of variant and parental L1210 cells. Incorporation of label into this protein was stable under a variety of conditions and accounted for 97 and 52% of total cellular labeling, respectively, for membrane derived from R83 and parental L1210 cells at a reagent concentration of 20 nM. Specific affinity labeling on the surface of parental and variant cells was decreased in the presence of aminopterin, methotrexate, or 5-formyltetrahydrofolate, but not in the presence of folic acid. Also, [3H]aminopterin influx in these cells was inhibited by the N-hydroxysuccinimide ester of aminopterin or methotrexate, but not the N-hydroxysuccinimide ester of folic acid. These findings, in addition to the increased affinity labeling of this variant, which corresponds to the increase in influx of [3H] aminopterin also seen, appears to identify the affinity labeled protein as a component of the "classical" one-carbon, reduced folate transport system in these cells. The affinity labeled protein from each cell type was solubilized in sodium dodecyl sulfate or extracted in detergent in the presence of proteinase inhibitors and was found to elute from Sephacryl S-300 and migrate during sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a single peak of Mr = 45,000-48,000. Recovery of labeled binding protein in these fractions from R83 variant cells was approximately 40 times greater than that from parental cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Reconstitution studies of the human erythrocyte nucleoside transporter   总被引:3,自引:0,他引:3  
The human erythrocyte nucleoside transporter has been identified as a band 4.5 polypeptide (Mr 45,000-66,000) on the basis of reversible binding and photoaffinity labeling experiments with the nucleoside transport inhibitor, nitrobenzylthioinosine (NBMPR). In the present study, the NBMPR-binding protein was extracted from protein-depleted human erythrocyte "ghosts" with Triton X-100 and reconstituted into soybean phospholipid vesicles by a freeze-thaw-sonication procedure. The reconstituted proteoliposomes exhibited nitrobenzylthioguanosine (NBTGR)-sensitive [14C]uridine transport. A partially purified preparation of the NBMPR-binding protein, consisting largely of band 4.5 polypeptides, was also shown to have nucleoside transport activity. This band 4.5 preparation exhibited a 10-fold increase in uridine transport activity and a 7-fold increase in NBMPR-binding activity relative to the crude membrane extract. Uridine transport by the reconstituted band 4.5 preparation was saturable (apparent Km = 0.21 mM; Vmax = 9 nmol/mg of protein/5 s) and was inhibited by dipyridamole, dilazep, adenosine, and inosine. The vesicles reconstituted with the band 4.5 preparation also exhibited stereospecific glucose transport which was inhibited by cytochalasin B, but unaffected by NBTGR. In contrast, cytochalasin B was a poor inhibitor of NBTGR-sensitive uridine transport. These experiments implicate band 4.5 polypeptides in both nucleoside and sugar permeation.  相似文献   

9.
Nucleoside transport in various types of animal cells is inhibited by the binding of nitrobenzylthioinosine (NBMPR) to a set of high-affinity sites on the plasma membrane. This work examined the binding of [3H]NBMPR to the nucleoside transporters of cultured Nil 8 hamster fibroblasts and of cells of a virus-transformed clone (Nil SV) derived from Nil 8. Experiments conducted with intact Nil 8 and Nil SV cells and with membrane preparations indicated that the two lines differed significantly in the cellular content of binding sites and only slightly in the affinities of these sites for NBMPR. Nil 8 and Nil SV cells possessed (4.2-8.0) X 10(5) and (2.0-4.0) X 10(6) sites per cell respectively, whereas the dissociation constants of site-bound NBMPR obtained with intact cells and with membrane preparations were similar, ranging from 0.29 to 1.5 nM. Dilazep, a potent inhibitor of nucleoside transport that is structurally unrelated to NBMPR, appeared to compete with NBMPR for binding to the high-affinity sites when tested under equilibrium conditions with Ki values for inhibition of NBMPR binding to Nil 8 and Nil SV cells respectively of 15 +/- 4 and 32 +/- 4 nM. The dissociation of NBMPR from the binding site--NBMPR complex of Nil SV membrane preparations was a first-order decay process with a rate constant of 0.68 +/- 0.26 min-1. The rate of dissociation of NBMPR from the binding-site complex of membrane preparations and intact cells was decreased significantly in the presence of dilazep and increased in the presence of the permeant uridine. These results suggest that the apparent competitive-inhibition kinetics obtained for dilazep under equilibrium conditions should not be interpreted as binding of dilazep to the same site as NBMPR but rather as binding of the two inhibitors to closely associated sites on the nucleoside transporter. Similarly, uridine also appears to bind to a site separate from the NBMPR-binding site.  相似文献   

10.
Nucleoside- and glucose-transport proteins isolated from human erythrocyte membranes were photoaffinity-labelled with [3H]nitrobenzylthioinosine and [3H]cytochalasin B, respectively, and subjected to endo-beta-galactosidase or endoglycosidase-F digestion. Without enzyme treatment the two radiolabelled transporters migrated on SDS/polyacrylamide gels with the same apparent Mr (average) of 55,000. Apparent Mr (average) values after endo-beta-galactosidase digestion were 47,000 and 48,000 for the nucleoside and glucose transporters respectively, and 44,000 and 45,000 respectively after endoglycosidase-F digestion. In contrast, endo-beta-galactosidase had no effect on the electrophoretic mobility of the nucleoside transporter isolated from pig erythrocytes. This transport system exhibited a higher Mr than the human protein, endoglycosidase-F treatment decreasing its apparent Mr (average) from 64,000 to 57,000. It is concluded that the human and pig erythrocyte nucleoside transporters are glycoproteins containing N-linked oligosaccharide. The data provide evidence of substantial carbohydrate and polypeptide differences between the human and pig erythrocyte nucleoside transporters, but evidence of molecular similarities between the human erythrocyte nucleoside and glucose transporters.  相似文献   

11.
Three monoclonal antibodies have been raised against partially purified band 4.5 polypeptides [Steck (1974) J. Cell Biol. 62, 1-19] from pig erythrocyte membranes. The antibodies were capable of binding to both intact pig erythrocytes and protein-depleted membrane preparations and recognized detergent-solubilized polypeptides from adult and neonatal pig erythrocytes that were photolabelled with [G-3H]nitrobenzylthioinosine (NBMPR), a potent specific inhibitor of nucleoside transport. The antibodies did not recognize polypeptides from neonatal pig erythrocytes that were photolabelled with the glucose-transport inhibitor [3H]cytochalasin B. Reactivity with polypeptides of apparent Mr 64,000 [10% (w/v) acrylamide gels] was demonstrated by Western-blot analysis. The antibodies recognized pig band 4.5 polypeptides after prolonged treatment with endoglycosidase F, a finding consistent with reactivity against polypeptide, rather than carbohydrate, determinants. Trypsin digestion of NBMPR-labelled protein-depleted pig erythrocyte membranes generated two labelled polypeptide fragments (Mr 43,000 and 26,000). Two of the antibodies recognized both fragments on Western blots, whereas the third bound to the larger, but not to the smaller, fragment. The antibodies had no significant effect on reversible binding of NBMPR to protein-depleted pig erythrocyte membranes and did not bind to NBMPR-labelled polypeptides in human, rabbit or mouse erythrocytes.  相似文献   

12.
Nitrobenzylthioinosine (NBMPR) binds reversibly, but with high affinity (Kd 0.1--1.2 nM), to inhibitory sites on nucleoside-transport elements of the plasma membrane in a variety of animal cells. The present study explored relationships in HeLa cells between NBMPR binding and inhibition of uridine transport. The Km value for inward transport of uridine by HeLa cells in both suspension and monolayer culture was about 0.1 mM. The affinity of the transport-inhibitory sites for uridine (Kd 1.7 mM), inosine (Kd 0.4 mM) and other nucleoside permeants was low relative to that for NBMPR. The pyrimidine homologue of NBMPR, nitrobenzylthiouridine, also exhibited low affinity for the NBMPR-binding sites. Pretreatment of HeLa cells with p-chloromercuribenzene sulphonate (p-CMBS) or N-ethylmaleimide (NEM) decreased binding of NBMPR to its high-affinity sites and inhibited uridine transport, indicating the presence of thiol groups essential to both processes. NEM, a more penetrable reagent than p-CMBS, inhibited binding and transport at much lower concentrations than the latter compound. Pretreatment of cells with concentrations of p-CMBS that alone had no effect on either NBMPR binding or uridine transport increased the sensitivity of transport to NBMPR inhibition and changed the shape of the NBMPR concentration-effect curve, suggesting synergistic inhibiton of uridine-transport activity by these two agents.  相似文献   

13.
Studies are described examining further the decline in folate analogue influx mediated by the one-carbon reduced-folate transport system in HL-60 cells following induction of maturation by cytodifferentiation agents. To facilitate the investigation of the underlying basis of this phenomenon, we derived a variant (HL-60/LCV) with 4-5-fold elevated influx capacity (Vmax) for folate analogues. A commensurate increase in the putative transporter for this system was documented by affinity labeling of these cells with N-hydroxysuccinimide-[3H]aminopterin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the affinity labeled plasma membrane in HL-60/LCV cells delineated a protein peak at Mr = 75,000-80,000. This was substantially greater than the analogous transporter (Mr = 45,000-47,000) we had delineated (Yang, C.-H., Sirotnak, F.M., and Mines, L.S. (1988) J. Biol. Chem. 263, 9703-9709) with the same methodology in the L1210 cell plasma membrane. In addition, the rate of translocation of the Mr = 75,000-80,000 transporter in HL-60 and HL-60/LCV cells was 2-fold lower than the rate of translocation determined for the Mr = 45,000-47,000 transporter in L1210 cells. During induced maturation of HL-60/LCV cells toward the granulocyte pathway, [3H]methotrexate (MTX) influx capacity and the amount of the affinity labeled transporter decreased rapidly in a parallel fashion. The decrease in [3H]MTX influx and in affinity labeling and in the amount of the Mr = 75,000-80,000 transporter was 5-fold following exposure to 210 mM dimethyl sulfoxide (Me2SO) for 5 days during growth in culture. Moreover, during cycloheximide treatment, the decay in [3H]MTX influx at 37 degrees C and in amount of affinity labeled transporter was the same (t1/2 = 144-155 min) for both control and Me2SO-treated HL-60/LCV cells. These results, which reveal no difference in metabolic turnover for control and Me2SO-treated cells, suggest that the decline in folate analogue influx in HL-60/LCV influx cells is a very early event in the program of differentiation and probably occurs by down-regulation of synthesis of the transporter for the one-carbon reduced-folate transport system.  相似文献   

14.
Cultured mouse leukemia L1210 cells express the nucleoside-specific membrane transport processes designated es, ei, and cif. The es and ei processes are equilibrative, but may be distinguished by the high sensitivity of the former to 6-[(4-nitrobenzyl)thio]-9-beta-D-ribofuranosylpurine (NBMPR); the cif process is mediated by a Na+/nucleoside cotransporter of low sensitivity to NBMPR. Cells of an ei-deficient clonal line, L1210/MC5-1, were mutagenized, and clones were selected in soft agar medium that contained (i) NBMPR (an inhibitor of es processes), (ii) erythro-9-(2-hydorxy-3-nonyl)adenine (an inhibitor of adenosine deaminase), and (iii) arabinofuranosyladenine (a cytotoxic substrate for the three nucleotide transporters). The selection medium did not allow es activity and selected against cells that expressed the Na(+)-linked cif process. Cells of the L1210/B23.1 clonal isolate were deficient in cif transport activity, and inward fluxes of formycin B, a poorly metabolized analog of inosine, were virtually abolished by NBMPR in these cells. In the mutant cells, nonisotopic formycin B behaved as a countertransport substrate during influx of [3H]formycin B, and inward fluxes of the latter were competitively inhibited by purine and pyrimidine nucleosides. The transport behavior of L1210/B23.1 cells indicates that (i) the mutation/selection procedure impaired or deleted the Na(+)-linked cif process and (ii) es nucleoside transport activity is expressed in the mutant cells.  相似文献   

15.
Nitrobenzylthioinosine (NBMPR) was employed as a covalent probe of the erythrocyte nucleoside transporter. This nucleoside analogue, a potent inhibitor of nucleoside transport, binds tightly (KD = 10(-10) - 10(-9) M) but reversibly to specific sites on the carrier mechanism. High intensity UV irradiation of intact human erythrocytes, isolated "ghosts," and "protein-depleted" membranes in the presence of [3H]NBMPR and dithiothreitol (as a free radical scavenger) under nonequilibrium and equilibrium binding conditions resulted in selective covalent incorporation of 3H into the band 4.5 region of sodium dodecyl sulfate-polyacrylamide gels (Mr = 45,000-65,000). Covalent labeling of band 4.5 protein(s) under equilibrium binding conditions was inhibited by nitrobenzylthioguanosine, dipyridamole, uridine, and adenosine. A similar photolabeling pattern was observed using membranes from pig erythrocytes. In contrast, no incorporation of radioactivity into band 4.5 was observed under equilibrium binding conditions with membranes from nucleoside-impermeable sheep erythrocytes. These experiments suggest that the human and pig erythrocyte nucleoside transporters are band 4.5 polypeptides, a conclusion supported by previous isolation studies based on the assay of reversible [3H]NBMPR binding activity.  相似文献   

16.
Chemical and genetic comparison of the glucose and nucleoside transporters   总被引:2,自引:0,他引:2  
Glucose and nucleoside uptake into human red cells occurs through protein(s) which copurify in a complex, known as band 4.5 of relative mass (Mr) 66,000 to 50,000. The specific inhibitor of glucose transport, [3H]cytochalasin B, and the specific inhibitor of nucleoside transport, [3H]nitrobenzylthioribofuranosylpurine ([3H]NBMPR), incorporate covalently into component(s) of band 4.5 upon irradiation with ultraviolet light. Both photolabelled components are shown to be glycoproteins, since their migration in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) is increased after treatment of photolabelled band 4.5 with endoglycosidase F. Peptide maps of the photolabelled components were compared. Red cell membranes were photolabelled with either [3H]cytochalasin B or [3H]NBMPR and subjected to SDS-PAGE. The region containing band 4.5 was cut and transferred to a second SDS-PAGE system and exposed to either papain or Staphylococcus aureus V8 protease. Papain (5 micrograms) completely cleaved band 4.5 and produced fragments of Mr 33,000, 26,000, 21,000, 15,000, and 12,500. Of these, the 21,000 fragment was the most conspicuous and it retained the label of [3H]cytochalasin B; the 33,000 fragment retained the label of [3H]NBMPR. The V8 protease (0.75 microgram) completely cleaved band 4.5 and produced fragments of Mr 35,000, 28,000, 22,000, 16,000, 13,500, and 9,000. The 28,000 fragment retained the label of [3H]cytochalasin B. The label of [3H]NBMPR was distributed along the gel in several regions comprising the 35,000, 28,000, and 16,000 fragments. Longer treatment with the V8 protease did not alter the position of the 28,000 [3H]cytochalasin B labelled peak, but completely abolished the [3H]NBMPR labelled peaks. Genetic segregation of the glucose and nucleoside transporters was determined in a lymphoma cell line. A mutant (14T- g) of S49 cells was selected which had lost the capacity to transport thymidine or to bind NBMPR. Uptake of either 2-deoxyglucose or 3-O-methylglucose, inhibitable by cytochalasin B, was not impaired in this mutant. It is concluded that the nucleoside and glucose transporters are glycoprotein components of band 4.5, which are differentiated by peptide map analysis. Further, a lymphoblast mutant was isolated which had lost the nucleoside transport function but retained the glucose transport function.  相似文献   

17.
Identification of the Adenosine Uptake Sites in Guinea Pig Brain   总被引:3,自引:0,他引:3  
Nitrobenzylthioinosine (NBMPR), a potent and specific inhibitor of nucleoside transport, was employed as a photolabile probe of the adenosine transporter in guinea pig brain membranes. Reversible, high-affinity binding of [3H]NBMPR to a crude preparation of guinea pig brain membranes was demonstrated (apparent KD 0.075 +/- 0.012 nM; Bmax values of 0.24 +/- 0.04 pmol/mg protein). Adenosine, uridine, dipyridamole, and nitrobenzylthioguanosine inhibited high-affinity binding. Low concentrations of cyclohexoadenosine (10-300 nM) had no effect on NBMPR binding. These properties of the high-affinity NBMPR binding sites were consistent with NBMPR binding to the nucleoside transport protein. Exposure of brain membranes in the presence of [3H]NBMPR and dithiothreitol, a free-radical scavenger, to ultraviolet light resulted in covalent incorporation of 3H into polypeptides of apparent MW 66,000-45,000, a value similar to that for the human erythrocyte nucleoside transporter. Covalent attachment of [3H]NBMPR was inhibited by adenosine, dipyridamole, and nitrobenzylthioguanosine.  相似文献   

18.
Incubation of [3H]palmitic acid, ATP, and CoA with inside-out membrane vesicles prepared from human or other mammalian red cells resulted in nearly exclusive 3H-palmitoylation of the Mr = 32,000 Rh polypeptides. [3H]Palmitic, [3H]myristic, and [3H]oleic acids were comparably esterified onto Rh polypeptides in inside-out membrane vesicles in the presence of ATP and CoA, although [3H]palmitic acid was preferentially incorporated by intact human red cells. Experiments using sulfhydryl reagents or tryptic digestions suggested that multiple sulfhydryl groups on the Rh polypeptides located near the cytoplasmic leaflet of the lipid bilayer were 3H-palmitoylated; the exofacial sulfhydryl group essential for Rh antigenic reactivity was not 3H-palmitoylated. Transfer of fatty acid from [14C]palmitoyl-CoA to sites on the Rh polypeptides occurred even after previous incubation of inside-out membrane vesicles at 95 degrees C or after solubilization of inside-out membrane vesicles in Triton X-100. Hydrodynamic analyses of Triton X-100-solubilized membranes surprisingly demonstrated that 3H-palmitoylated Rh polypeptides behaved as a protein of apparent Mr = 170,000. These in vitro studies suggest that palmitoylation of Rh polypeptides occurs within a macromolecular complex by a highly selective but possibly nonenzymatic mechanism.  相似文献   

19.
Direct photoaffinity labeling of leukotriene binding sites   总被引:1,自引:0,他引:1  
Due to their conjugated double bonds the leukotrienes themselves are photolabile compounds and may therefore be used directly for photoaffinity labeling of leukotriene binding sites. Cryofixation eliminates unspecific labeling taking place in solution by photoisomers and photodegradation products of leukotrienes. After fixation of receptor ligand interactions by shock-freezing of the samples, irradiation-induced highly reactive excited states and/or intermediates can form covalent bonds with the respective binding site in the frozen state. After cryofixation of a solution of albumin incubated with [3H8]leukotriene E4, irradiation at 300 nm resulted in time-dependent incorporation of radioactivity into the protein. Photoaffinity labeling of rat as well as of human blood serum with [3H8]leukotriene E4 after cryofixation revealed that only one polypeptide with an Mr of 67,000 was labeled. This polypeptide was identified as albumin. Photoaffinity labeling of rat liver membrane subfractions enriched with sinusoidal membranes resulted in the labeling of a polypeptide with an apparent Mr of 48,000, whereas no polypeptide was predominantly labeled in the subfraction enriched with canalicular membranes. Photoaffinity labeling of isolated hepatocytes disclosed different leukotriene E4 binding polypeptides. In the particulate fraction of hepatocytes a polypeptide with an apparent Mr of 48,000 was labeled predominantly, whereas in the soluble fraction several polypeptides were labeled to a similar extent. One of these, with an apparent Mr of 25,000, was identified as subunit 1 of glutathione transferases by immunoprecipitation. The method of direct photoaffinity labeling in the frozen state after cryofixation using leukotrienes as photoactivatable compounds, as exemplified by leukotriene E4, may be most useful for the identification and characterization of various leukotriene binding sites, including receptors, leukotriene-metabolizing enzymes, and transport systems.  相似文献   

20.
HeLa cell membranes were studied for the distribution and orientation of the Golgi marker enzyme uridine diphosphate-galactose:beta-D-N-acetylglucosamine beta, 1-4 transferase (GT). Short pulse labeling in the presence of [35S]methionine resulted in two precursor species (Mr = 44,000 and 47,000), present in a microsomal fraction with a density of 1.18 g/ml in sucrose, presumably derived from the rough endoplasmic reticulum. Processing of the N-linked oligosaccharide(s) occurred only after the precursor molecules migrated to lighter density fractions, presumably derived from the Golgi complex. The mature GT molecules (Mr = 54,000) contain O-linked oligosaccharides as shown by beta-elimination of metabolically incorporated [3H]galactose. The O-glycosylation occurred mainly in the light density fractions. The topology of GT was studied on membrane fractions after labeling with [35S]methionine as well as immunocytochemically on ultrathin cryosections at the electron microscope level. Our results indicate that both the antigenic determinants of GT as well as polypeptide chain are present intramembraneously and at the luminal side of the membranes of the Golgi complex and rough endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号