首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
IDO IZHAKI  ASAF MAITAV 《Ibis》1998,140(2):223-233
Migrating Blackcaps Sylvia atricapilla were mist netted at the desert edge in northern Israel and in Elat (southern Israel) during spring and autumn migrations between 1970 and 1991. Birds in spring in northern Israel were representative of birds that had completed the crossing of the Sahara, while those in Elat still had to cross the 150 km of the Negev Desert, which separates Elat and northern Israel. In autumn, birds captured in northern Israel were representative of those about to cross the Sahara Desert, while those in Elat had already started to cross the desert. The data allowed analysis of seasonal and location differences in the physiological state of Blackcaps before and after crossing the Sahara. Data analysed included body mass, visible fat score and calculated fat content. Autumn migrants were in better physiological condition than spring migrants at both locations, probably as a consequence of their migration route through fertile areas in autumn compared with the crossing of the Sahara in spring. Body mass was less variable after the Sahara crossing in spring than before the crossing in autumn. In spring, 71% and 67% of the birds were fat depleted (fat scores 0 and 1) at Elat and in northern Israel, respectively, while in autumn 34% and 42% were fat depleted. Blackcaps at Elat were 1.6 g lighter than those in northern Israel in autumn and 1.9 g lighter in spring. Potential flight ranges were estimated on the basis of meteorological conditions and flight altitude of passerines above the Negev in Israel (northern Sahara edge) during migration and on a simulation model that considered both energy and water as potential limiting factors for flight duration and distance. The simulation model predicted that half of the Blackcaps that stopped over in Elat and the majority of those that stopped over in northern Israel could not make a nonstop flight over the Sahara Desert in autumn without the assistance of at least an 8 m per s tailwind. Such a wind would still not be sufficient for 34% of the birds in Elat and 42% in northern Israel, and clearly they had insufficient fat reserves to cross the Sahara in a single flight. Although the fattest Blackcaps had accumulated sufficient fat to enable them to traverse the Sahara in a single flight, they probably faced dehydration by at least 12% of their initial body mass when they reached the southern Sahara edge. These birds should use intermittent migration with stopovers at sites with drinking and feeding potential. Their decision to stop over during the day in the desert at sites with shade but without food and water would be beneficial if the meteorological conditions during daytime migration imposed greater risks of dehydration than at night. Spring migrants could not reach their breeding areas in Europe without feeding, but those examined in Elat could cross the remainder of the desert in a single flight.  相似文献   

2.
Summary The effect of body mass and fat reserves on the choice of the stopover place and on the stopover period was investigated in 3 species of passerine birds migrating through the Sahara in Egypt. Birds grounded in an oasis with food and water were more than 10% lighter than those from a desert stopover place which offered shade only. Stopover period was in general one day except for the light portion of oasis birds which stopped for up to three weeks during which they regained fat. A calculation of the maximum range which can be covered with the available fat depots revealed that nearly all birds from the desert stopover place should be able to cross the desert whereas about 60% of the oasis birds should not. An intermittant migratory strategy for the desert crossing is proposed with flight during the night and stopover during the day, even without drinking and feeding.  相似文献   

3.
Capsule Fuel load is correlated with fuel deposition rate; stopover duration is affected by arrival fuel load.

Aims To determine the stopover duration, fuel management and flight ranges at departure of Blackcaps stopping over in northern Spain.

Methods Systematic mist-netting and ringing allowed the use of mark–recapture Cormack–Jolly–Seber models for the estimation of stopover duration. Trapped birds were measured and weighed in order to estimate mass gain. FLIGHT software was used to estimate flight ranges.

Results Stopover duration ranged from 3.6 to 13.6 days, and was negatively correlated with arrival body mass (assessed by body mass at the first capture event). On average, arrival body mass was 18.4 g, whilst body mass at departure was 19.8 g. No significant differences in arrival body mass and departure body mass were observed between age or sex classes. Mass deposition rate did not differ between age or sex classes (mean = 0.20 g/day). Birds recaptured one day after the first capture event lost mass, whilst recaptures from the second day onwards had a mean gain of mass; mass was observed to increase linearly with the stopover duration. Mass deposition rate was positively correlated with departure body mass. Finally, with a mean departure body mass of 19.8 g, a Blackcap stopping over in northern Spain should be able to fly up to 1100 km.

Conclusions Stopover duration assessed by Cormack–Jolly–Seber models was longer than that observed in birds recaptured more than once (‘minimum stopover duration’). Stopover was longer for birds arriving with less fuel. The positive relationship between departure body mass and mass deposition rate suggests a time-minimizing strategy. The lack of difference in fuel deposition rate between age and sex classes suggests a relatively abundant food supply at the study site, but other explanations might also account for the lack of age and sex differences, for example if competition for food was not determined by social hierarchies but by scramble competition. Departing fuel load would allow these birds to arrive at their wintering areas in southern Spain under still-air conditions, without needing to refuel.  相似文献   

4.
《Ostrich》2013,84(1-2):67-69
This study was undertaken to understand the migratory strategies of the Dunlins (Calidris alpina) caught in Eilat, Israel, before and after they accomplish the crossing of the combined ecological barrier of the Sinai, Sahara and Sahel deserts. Between 1999–2001, a total of 410 adults and 342 juveniles were banded. The significant difference in mean wing length between birds caught in autumn and spring reflects the degree of abrasion of the outer primaries during over-wintering in Africa. Dunlins caught in Eilat in autumn and early winter had a mean wing length 1.4–1.9mm longer than in the spring. The rate of body mass increase was comparatively high and the mean body mass of the heaviest 10% of Dunlin at Eilat was 56.2g (SE ± 0.6, N = 80). The heaviest birds from Eilat carried on average about 10g of fat with a lipid index (fat mass as a percentage of total body mass) of 18%. These reserves allow a flight of approximately 1 000km, which is probably sufficient for continued migration to more southerly wintering grounds.  相似文献   

5.
Birds on migration spend much more time on stopover sites to refuel for the next migration step than aloft, but empirical data on stopover duration are rare, especially for Palearctic trans-Sahara migrants whilst crossing the desert. Previous studies suggest that stopover duration of fat birds in oases is much shorter than that of lean birds. During 2003 and 2004 capture–recapture data of migrating passerines from two inland oases in spring and from one coastal site in autumn in Mauritania, West Africa, were analysed to test whether the probability of being a transient and the stopover duration depend on fuel stores at first capture. The application of capture–recapture models revealed that during autumn migration at the coast the proportion of transients (individuals that stop over only for 1 day) was relatively high (77–90%) in three out of four species investigated and stopover duration was short (1.9–4.6 days). In the inland oases in spring, transients were detected in only four out of 12 analyses. Stopover duration was longer than at the coast in autumn and surprisingly long in some species with durations of up to 30 days. Models taking into account the initial fat load of birds on the first capture occasion were, with one exception, never the most parsimonious ones. This indicates that the time spent after and before capture at the stopover site did not depend on the fat stores at first capture. Therefore, we cannot confirm the assumption that birds arriving at stopover sites in the desert with low fat loads stay longer than birds that arrive with high fat loads.  相似文献   

6.
Migratory birds wintering in Africa face the challenge of passing the Sahara desert with few opportunities to forage. During spring migration birds thus arrive in the Mediterranean area with very low energy reserves after crossing the desert. Since early arrival to the breeding grounds often is of importance to maximize reproductive success, finding stopover sites with good refuelling possibilities after the Saharan passage is of utmost importance. Here we report on extensive fuelling in the great reed warbler Acrocephalus arundinaceus on the south coast of Crete in spring, the first land that they encounter after crossing the Sahara desert and the Mediterranean Sea in this area. Birds were studied at a river mouth and due to an exceptional high recapture rate (45 and 51% in two successive years), we were able to get information about stopover behaviour in 56 individual great reed warblers during two spring seasons. The large proportion of trapped great reed warbler compared to other species and the large number of recaptures suggest that great reed warblers actively choose this area for stopover. They stayed on average 3–4 d, increased on average about 3.5 g in body mass and the average rate of body mass increase was 4.8% of lean body mass d–1. Wing length affected the rate of increase and indicated that females have a slower increase than males. The results found show that great reed warblers at this site regularly deposit larger fuel loads than needed for one continued flight stage. The low body mass found in great reed warblers (also in birds with high fat scores) is a strong indication that birds staging at Anapodaris still had not been able to rebuild their structural tissue after the strenuous Sahara crossing, suggesting that rebuilding structural tissue may take longer time than previously thought.  相似文献   

7.
The annual migration of small birds depends on the optimal management of time and energy. Since refueling at stopovers between flights consumes most of the birds’ time and energy, selection of food‐rich sites, and timely departure therefrom are likely crucial to success. We examined this concept quantifying body composition of 200 migrating blackcaps, Sylvia atricapilla, in Eilat, Israel, using dual‐energy x‐ray absorptiometry and generated a model to predict body composition as it changes with body mass (mb). We then back‐calculated body composition of > 20 000 blackcaps ringed between 1984 and 2005, and tested the hypothesis that the amount of fuel that a bird stores determines the length of its stopover. We predicted that 1) if time‐constrained in spring, birds at the stopover site carry less than a maximum fuel load, but 2) if not time‐constrained, as in autumn, their fuel load is much higher than in spring. We found the change in body composition of blackcaps to be biphasic and correlated with increasing mb. At mb < ? 17.8 g, increasing mb is due to increasing lean mass (ml), while at mb > ? 17.8 g increasing mb results from increasing fat mass (mf), which is accompanied by decreasing ml. Body composition of blackcaps at a spring stopover site indicates that blackcaps leave stopovers as soon as they regain functionality of their digestive systems, but before laying down much mf. In autumn blackcaps arrive with fuel stores much larger than in spring. For these birds, the Eilat stopover apparently serves to complete fat accumulation before crossing the deserts ahead. We conclude that in spring, the decision to depart is not determined by the bird's fuel stores, especially when early arrival at the breeding site, and therefore time, is of the essence. In autumn, accumulating enough fuel to ensure successful crossing of the deserts ahead probably dictates stopover time.  相似文献   

8.
During migration, birds undergo alternating periods of fasting and re-feeding that are associated with dynamic changes in body mass (m(b)) and in organ size, including that of the digestive tract. After arrival at a migratory stopover site, following a long flight, a bird must restore the tissues of its digestive tract before it can refuel. In the present study we examined how the availability of dietary protein influences refueling of migrating blackcaps (Sylvia atricapilla) during a migratory stopover. We tested the following predictions in blackcaps deprived of food and water for 1-2 days to induce stopover behavior: (1) birds provided with a low-protein diet will gain m(b), lean mass and fat mass, and increase in pectoral muscle size slower than do birds fed a high-protein diet; (2) since stopover time is shorter in spring, birds will gain m(b) and build up fat tissue and lean tissue faster than in autumn; and (3) if low dietary protein limits a bird's ability to gain m(b) and fat reserves, then birds that do not obtain enough protein will initiate migratory restlessness (Zugunruhe) earlier than will birds with adequate dietary protein. These predictions were tested by providing captured migrating blackcaps with semisynthetic isocaloric diets differing only in their protein content. Each day, we measured m(b), and food intake; also lean mass and fat mass were measured using dual energy X-ray absorptiometry. In addition, we monitored nocturnal activity with a video recording system. In both spring and autumn, birds fed diets containing either 3 or 20% protein increased in m(b), lean mass and fat mass at similar rates during the experiment. However, the group receiving 3% protein ate more than did the group receiving 20% protein. In support of our predictions, m(b), lean mass, fat mass, and intake of food all were higher in spring than in autumn. We also found that in spring all birds had higher levels of migratory restlessness, but birds fed 3% protein were less active at night than were birds fed 20% protein, possibly an adaptation conserving energy and protein. We conclude that protein requirements of migrating blackcaps during stopover are lower than expected, and that birds can compensate for low dietary protein by behavioral responses, i.e. hyperphagia and decreased migratory restlessness, that ensure rapid refueling.  相似文献   

9.
Stopover sites used to accumulate the energy that fuels migration, especially those used prior to crossing ecological barriers, are regarded as critically important for the survival of Nearctic?Neotropical migratory birds. To assess whether South American stopover sites are used to store the energy required to cross the Caribbean Sea and the Gulf of Mexico to North America by a Neotropical migratory landbird, we studied Gray‐cheeked Thrushes in northern Colombia through constant effort mist‐netting during spring migration in 2010 and 2011. We combined stopover duration estimates and models of body mass change based on recaptures to estimate departure body mass and potential flight range from our study site. We recaptured 62 birds, the majority of which gained mass. Models indicated significant differences in rates of mass gain between years and age groups and with arrival date. Estimated total stopover durations varied between 15.4 (2010) and 12.5 days (2011). Predicted departure mass ranged between 41.3 and 44.9 g, and potential flight range was estimated at between 2727 and 4270 km. Gray‐cheeked Thrushes therefore departed our study site with sufficient energy reserves to cross the Caribbean Sea and the Gulf of Mexico (2550 km). As the first demonstration that birds departing from South American stopover sites can reach North America without refuelling, this has important implications for stopover site protection. Strategic conservation measures in the Sierra Nevada de Santa Marta could protect habitats in which up to 40% of the energy required to complete spring migration is stored by a Neotropical migratory land bird.  相似文献   

10.
The strategy of migrants crossing the Sahara desert has been the subject of debate, but recent evidence from radar studies has confirmed that most passerines use an intermittent migration strategy. The latter has also been suggested from previous studies in oases during autumn migration. It was found that migrants with relatively high fuel loads rest in the desert during daytime and continue migration during the following night, whereas lean migrants stopover in oases for several days to refuel. However, data from the Sahara are scarce for spring migration. We captured passerine migrants near B?r Amrane (22°47′N, 8°43′W) in the plain desert of Mauritania for 3 weeks during spring migration in 2004. We estimated flight ranges of 85 passerines stopping over in the desert to test whether they carried sufficient fuel loads to accomplish migration across the Sahara successfully. High fat loads of the majority of birds indicated that they were neither “fall-outs” nor too weak to accomplish migration successfully. The flight range estimates, based on mean flight speeds derived from radar measurements (59 km/h), revealed that 85% of all birds were able to reach the northern fringe of the desert with an intermittent migration strategy. Furthermore, birds stopping over in an oasis (Ouadane, 370 km to the southwest of B?r Amrane) did not carry consistently lower fuel loads compared to the migrants captured in the desert.  相似文献   

11.
Migratory birds use stopovers to replenish their fuel reserves and they generally spend more time at stopover sites than they do in actual flight. When arriving at a new stopover site birds may need to search extensively to find a suitable feeding area and this search and settling period may affect the duration of stopover. Stopover behaviour can thus have profound effects on the migratory programme and studies on stopover behaviour are important to understand migratory strategies. We followed 51 first‐year garden warblers Sylvia borin with radio‐transmitters at an autumn stopover site on the island of Gotland in southern Sweden. Our aim was to determine the distance birds relocated from the coastal capture site when searching for an area to settle in, and also to establish the duration of stopover and put it in relation to refuelling rate by recapturing a subset of the radio‐tracked individuals. Sixteen birds made an extended stopover (> 2 d), relocated inland from the capture site and settled on average 5.6 km from the capture site, with the longest recorded relocation being fourteen kilometres. Birds that relocated nocturnally settled in areas further away than birds that relocated diurnally. Thirteen birds that continued migration after a short stop carried larger fuel stores than birds that stopped over longer and they remained close to the capture site until departure. Three birds were re‐trapped and showed high fuelling rates, between 0.3 and 1.1 g d–1. They left the stopover site with fuel loads between 40–56 percent of lean body mass, which possibly would have allowed them to reach the Mediterranean area without additional refuelling stops.  相似文献   

12.
Long-distance migration is widespread among birds, connecting breeding and wintering areas through a set of stopover localities where individuals refuel and/or rest. The extent of the stopover is critical in determining the migratory strategy of a bird. Here, we examined the relationship between minimum length of stay of PVC-ringed birds in a major stopover site and the remaining flight distance to the overwintering area in the Eurasian spoonbill (Platalea l. leucorodia) during four consecutive autumn migrations. We also analysed the potential effect of timing (arrival date), as well as the role of experience in explaining stopover duration of spoonbills. Overall, birds wintering in Africa, and facing long-distance travel from the stopover site (ca. 3,000 km) stay for longer (2.7 ± 0.4 days) than Iberian winterers (1.5 ± 0.2 days) that perform a much shorter migration (ca. 800 km). These differences were consistent between years. Stopover duration was not significantly affected by the age of the bird. However, there was a significant reduction as migration advanced. Our results suggest that spoonbills develop different stopover strategies depending on the expected distance to the wintering grounds. Adults, especially long-distance migratory ones, could reduce the potential negative effects of density-dependence processes by avoiding stopover at the end of the migration period. These findings are of significant relevance for understanding differences in migratory behaviour within single populations, especially for declining waterbirds, as well as stress the relevance of preserving stopover localities for the conservation of intraspecific diversity in migratory species.  相似文献   

13.
We investigated the flexibility of body composition in relation to seasonally variable demands for endurance flight capacity and hyperphagia in a migratory shorebird. Migrating western sandpipers were sampled in spring and fall while refueling at a north temperate stopover and were compared with nonmigrating birds captured at a tropical wintering area in Panama. Sandpipers weighed 25% more at stopover, and nearly 40% of migratory mass increase consisted of lean body components. Most organs and flight muscles were 10%-100% larger during migration, and the greatest relative size increases occurred in the digestive system (including liver). Birds preparing to initiate spring migration from Panama deposited only fat, suggesting that changes in lean body components take place after migration has begun, possibly through training effects. Sex did not influence body composition. Juveniles making their first southward migration were similar to adults in structural size and body mass but had substantially enlarged alimentary tracts. Sandpipers appeared to deposit lean mass during stopover in fall but not in spring. The dramatic enlargement of the digestive system in this small species that makes short flights and fuels frequently contrasts with the reduction of digestive components in larger species that fuel only once or twice by making one or two very long flights to their destination.  相似文献   

14.
Most studies of lean mass dynamics in free-living passerine birds have focused on Old World species at geographical barriers where they are challenged to make the longest non-stop flight of their migration. We examined lean mass variation in New World passerines in an area where the distribution of stopover habitat does not require flights to exceed more than a few hours and most migrants stop flying well before fat stores near exhaustion. We used either quantitative magnetic resonance (QMR) analysis or a morphometric model to measure or estimate, respectively, the fat and lean body mass of migrants during stopovers in New York, USA. With these data, we examined (1) variance in total body mass explained by lean body mass, (2) hourly rates of fat and lean body mass change in single-capture birds, and (3) net changes in fat and lean mass in recaptured birds. Lean mass contributed to 50% of the variation in total body mass among white-throated sparrows Zonotrichia albicollis and hermit thrushes Catharus guttatus. Lean mass of refueling gray catbirds Dumetella carolinensis and white-throated sparrows, respectively, increased 1.123 and 0.320 g h−1. Lean mass of ovenbirds Seiurus aurocapillus accounted for an estimated 33–40% of hourly gains in total body mass. On average 35% of the total mass gained among recaptured birds was lean mass. Substantial changes in passerine lean mass are not limited to times when birds are forced to make long, non-stop flights across barriers. Protein usage during migration is common across broad taxonomic groups, migration systems, and migration strategies.  相似文献   

15.
IDO IZHAKI  ASAF MAITAV 《Ibis》1998,140(2):234-243
Spring and autumn Palaearctic-African migration patterns of Blackcaps Sylvia atricapilla during stopover at Elat, Israel, showed that males appeared significantly earlier than females during spring but not during autumn migration, suggesting that in males there is a stronger drive to reaching breeding territories early. The difference in mean appearance dates between sexes in spring tended to be greatest in years when the males appeared earliest. Longer spread of passage (the dates between which the central 50% of individuals were captured) for each sex in spring was found in years with an early mean passage datebut was significant only for females. These observations suggest that the timing of Blackcap migration is governed not only by endogenous factors but also by exogenous factors, and when the environmental conditions are unfavourable, the differences in passage dates between sexes decrease and the passage lengths shorten. The early individuals (both males and females) that stopped over at Elat in spring were those with relatively small body size (as indicated by relatively short wings) and relatively large fat reserves and in good body condition (as indicated from fat score and body mass/wing-length ratio). No differences in body size between early and late transients were detected during the autumn migration, but late birds of both sexes carried larger fat reserves. These phenomena may be explained either by leap-frog migration or by differential fitness among wintering males and females or both, with only the fittest Blackcaps being capable of an early departure. These individuals probably face much less intensive intra- and interspecific competition with residents and other transients in stopover sites than do later transients.  相似文献   

16.
长距离迁徙鸟类对应于能量积累状态的取食行为调整   总被引:5,自引:0,他引:5  
迁徙鸟类能够预计到迁徙过程中对能量需求的增加和迁徙途中获得能量的不确定性。最佳迁徙理论指出:迁徙停留期的一系列决策受到体内能量状态、取食机会和迁徙时间的影响。利用刚完成春季跨越墨西哥湾迁徙的鸫类,我们研究了取食行为、体内能量状态和能量积累速度的相互关系。我们用雾网捕获了停留的鸫,然后给每只鸟进行了环志和称重,并估测了表皮下积累的脂肪。为了检测体内能量积累大小对取食行为的影响,我们把在野外观察到的鸟分成肥、瘦两组。当一天里被捕获鸟的平均体重低于相关种的瘦体重时,这一天被观察到的取食鸟被归到瘦组,反之就属于肥组。我们同时对一部分鸟用有色环进行了标记,以便能在野外观察到它们时能准确地知道每一只鸟的初始能量积累状态。在春天完成跨越墨西哥湾迁徙以后的鸫大约有50%在到达停留地时就已经消耗了所有的表皮下脂肪。与肥组鸟相比,瘦组的个体在停留期扩展了取食方法和取食基底,增加了取食速度。与此相关的是,瘦鸟表现出体重积累更多、速度更快。我们的数据表明迁徙鸟在到达迁徙中途停留地时的能量状态会影响到它们停留期间的取食行为和继续迁徙时的生理机能,从而影响停留期的长短和在迁徙途中停留与否的决定[动物学报51(1):12—23,2005]。  相似文献   

17.
Early arrival at the breeding site positively affects the breeding success of migratory birds. During migration, birds spend most of their time at stopovers. Therefore, determining which factors shape stopover duration is essential to our understanding of avian migration. Because the main purpose of stopover is to accumulate fat as fuel for the next flight bout, fuel reserves at arrival and the accumulation of fuel are both expected to affect stopover departure decisions. Here, we determined whether fuel reserves and fuel accumulation predict a bird''s motivation to depart, as quantified by nocturnal migratory restlessness (Zugunruhe), using northern wheatears (Oenanthe oenanthe) that were captured and temporarily contained at spring stopover. We found that fuel reserves at capture were positively correlated with Zugunruhe, and negatively correlated with fuel accumulation. This indicates that fat birds were motivated to depart, whereas lean birds were set on staying and accumulating fuel. Moreover, the change in fuel reserves was positively correlated with the concurrent change in Zugunruhe, providing the first empirical evidence for a direct link between fuel accumulation and Zugunruhe during stopover. Our study indicates that, together with innate rhythms and weather, the size and accumulation of fuel reserves shape stopover duration, and hence overall migration time.  相似文献   

18.
ABSTRACT Stopover‐site quality has often been assessed using changes in the body mass of migrants estimated from individuals recaptured on subsequent days or using regression methods. We compared estimates of mass change using these two techniques to estimates of mass change determined from birds recaptured on the same day. Using spring and fall banding data collected on Appledore Island, Maine, from 1990–2007, we examined body mass changes of the five most common species. Over this period, 18,954 individuals of these five species were captured and banded, with 11.6% of birds recaptured at least 1 d after initial capture and 3.1% recaptured on the same day. Using both regression and same‐day recapture methods, all five species had positive hourly mass gains during fall migration; results were mixed for the subsequent‐day analysis method. Trends were less consistent during spring migration. Using all three methods of estimating mass change, Red‐eyed Vireos (Vireo olivaceus) lost mass, American Redstarts (Setophaga ruticilla) and Northern Waterthrushes (Parkesia noveboracensis) gained mass, and results for Yellow‐bellied Flycatchers (Empidonax flaviventris), and Black‐and‐white Warblers (Mniotilta varia) varied with method. We found similar trends in mass change using the same‐day recapture and regression methods. However, we found lower mean mass gain for most species using the same‐day recapture method, suggesting that there may be a short‐term capture and handling effect. Our results provide additional support for the use of regression models to compare changes in mass of migrating songbirds at stopover sites.  相似文献   

19.
Identifying an organism's migratory strategies and routes has important implications for conservation. For most species of European ducks, information on the general course of migration, revealed by ringing recoveries, is available, whereas tracking data on migratory movements are limited to the largest species. In the present paper, we report the results of a tracking study on 29 Eurasian Teals, the smallest European duck, captured during the wintering period at three Italian sites. The departure date of spring migration was determined for 21 individuals, and for 15 the entire spring migratory route was reconstructed. Most ducks departed from wintering grounds between mid‐February and March following straight and direct routes along the Black Sea‐Mediterranean flyway. The breeding sites, usually reached by May, were spread from central to north‐Eastern Europe to east of the Urals. The migratory speed was slow (approximately 36 km/day on average) because most birds stopped for several weeks at stopover sites, mainly in south‐eastern Europe, especially at the very beginning of migration. The active flight migration segments were covered at much higher speeds, up to 872 km/day. Stopover duration tended to be shorter when birds were closer to their breeding site. These results, based on the largest satellite tracking effort for this species, revealed for the first time the main features of the migratory strategies of individual Teals wintering in Europe, such as the migration timing and speed and stopover localization and duration.  相似文献   

20.
Fat accumulation by blackcaps (Sylvia atricapilla) is a prerequisite for successful migratory flight in the autumn and has recently been determined to be constrained by availability of drinking water. Birds staging in a fruit-rich Pistacia atlantica plantation that had access to water increased their body mass and fat reserves both faster and to a greater extent than birds deprived of water. We conducted a series of laboratory experiments on birds captured during the autumn migration period in which we tested the hypotheses that drinking water increases food use by easing limitations on the birds’ dietary choices and, consequently, feeding and food processing rates, and that the availability of drinking water leads to improved digestion and, therefore, to higher apparent metabolizable energy. Blackcaps were trapped in autumn in the Northern Negev Desert, Israel and transferred to individual cages in the laboratory. Birds were provided with P. atlantica fruit and mealworms, and had either free access to water (controls) or were water-deprived. In experiment 1, in which mealworm availability was restricted, water-deprived birds had a fourfold lower fruit and energy intake rates and, consequently, gained less fat and total mass than control birds. Water availability did not affect food metabolizability. In experiment 2, in which mealworms were provided ad libitum, water availability influenced the birds’ diet: water-restricted birds ate more mealworms, while control birds consumed mainly P. atlantica fruit. Further, in experiment 2, fat and mass gain did not differ between the two treatment groups. We conclude that water availability may have important consequences for fat accumulation in migrating birds while they fatten at stopover sites, especially when water-rich food is scarce. Restricted water availability may also impede the blackcap’s dietary shift from insectivory to frugivory, a shift probably necessary for successful pre-migratory fattening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号