首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yields of above ground biomass and total N were determined in summer-grown maize and cowpea as sole crops or intercrops, with or without supplementary N fertilizer (25 kg N ha−1, urea) at an irrigated site in Waroona, Western Australia over the period 1982–1985. Good agreement was obtained between estimates of N2 fixation of sole or intercrop cowpea (1984/85 season) based on the15N natural abundance and15N fertilizer dilution techniques, both in the field and in a glasshouse pot study. Field-grown cowpea was estimated to have received 53–69% of its N supply from N2-fixation, with N2-fixation onlyslightly affected by intercropping or N fertilizer application. Proportional reliance on N2-fixation of cowpea in glasshouse culture was lower (36–66%) than in the field study and more affected by applied N. Budgets for N were drawn up for the field intercrops, based on above-ground seed yields, return of crop residues, inputs of fixed N and fertilizer N. No account was taken of possible losses of N through volatilization, denitrification and leaching or gains of N in the soil from root biomass. N2-fixation was estimated tobe 59 kg N ha−1 in the plots receiving no fertilizer N, and 73 kg N ha−1 in plots receiving 25 kg N ha−1 as urea. Comparable fixation by sole cowpea was higher (87 and 82 kg N ha−1 respectively) but this advantage was outweighed by greater land use efficiency by the intercrop than sole crops.  相似文献   

2.
Safeena  A.N.  Wahid  P.A.  Balachandran  P.V.  Sachdev  M.S. 《Plant and Soil》1999,208(2):161-166
A pot experiment was conducted with rice to study the relative absorption of urea in molecular form compared to the other forms of N produced in soil from the applied urea. A method involving application of 14C-labelled urea and 15N-labelled urea alternately in two splits was used to quantify the absorption of molecular urea and other forms of N formed from it. Biomass production and N uptake were greater in plants grown under flooded soil conditions than in plants grown under non-flooded (upland) conditions. Absorption of N by rice increased with increasing rate of urea application up to 250 mg pot−1 and declined thereafter. The absorption of urea from the flooded soil constituted 9.4% of total N uptake from applied N compared to only 0.2% from the non-flooded. Under submerged conditions, absorption of urea from topdressing was about twice that from basal application at planting. High water solubility of the fertilizer and better developed rice root system might have enhanced the absorption of molecular urea by flooded rice, especially from topdressing. Thus, in the flooded rice system, the direct absorption of molecular urea from topdressing accounted for 6.3% of the total N uptake from added urea. Under upland condition, it was 0.12%. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
为探索玉米-大豆套作系统中作物对N素吸收的差异特性,揭示减量施N对玉米-大豆套作系统的N高效利用机理。利用15N同位素示踪技术,结合小区套微区多年定位试验,研究了玉米单作(MM)、大豆单作(SS)、玉米-大豆套作(IMS)及不施N(NN)、减量施N(RN:180 kg N/hm2)、常量施N(CN:240 kg N/hm2)下玉米、大豆的生物量、吸N量、N肥利用率及土壤N素含量变化。结果表明,与MM(SS)相比,IMS下玉米茎叶及籽粒的生物量、吸N量降低,15N%丰度及15N吸收量增加,大豆籽粒及植株的生物量、吸N量及15N吸收量显著提高;IMS下玉米、大豆植株的N肥利用率、土壤N贡献率、土壤15N%丰度降低,15N回收率显著增加。施N与不施N相比,显著提高了单、套作下玉米、大豆植株的生物量、吸N量、15N丰度及15N吸收量;RN与CN相比,IMS下,RN的玉米、大豆植株总吸N量提高13.4%和12.4%,N肥利用率提高213.0%和117.5%,土壤总N含量提高12.2%和11.6%,土壤N贡献率降低12.0%和11.2%,玉米植株15N吸收量与15N回收率提高14.4%和52.5%,大豆的则降低57.1%和42.8%,单作与套作的变化规律一致。玉米-大豆套作系统中作物对N素吸收存在数量及形态差异,减量施N有利于玉米-大豆套作系统对N肥的高效吸收与利用,实现作物持续增产与土壤培肥。  相似文献   

4.
In the recent past considerable attention is paid to minimize dependence on purchased inputs such as inorganic nitrogen fertilizer. Green manure in the form of flood-tolerant, stem-nodulatingSesbania rostrata andAeschynomene afraspera is an alternative N source for rice, which may also increase N use efficiency. Therefore research was conducted to determine the fate of N applied to lowland rice (Oryza sativa L.) in the form ofSesbania rostrata andAeschynomene afraspera green manure and urea in two field experiments using15N labeled materials.15N in the soil and rice plant was determined, and15N balances established. Apparent N recoveries were determined by non-tracer method. 15N recoveries averaged 90 and 65% of N applied for green manure and urea treatments, respectively. High partial pressures of NH3 in the floodwater, and high pH probably resulted from urea application and favoured losses of N from the urea treatment. Results show that green manure N can supply a substantial proportion of the N requirements of lowland rice. Nitrogen released fromSesbania rostrata andAeschynomene afraspera green manure was in synchrony with the demand of the rice plant. The effect of combined application of green manure and urea on N losses from urea fertilizer were also investigated. Green manure reduced the N losses from15N labeled urea possibly due to a reduction in pH of the floodwater. Positive added N interactions (ANIs) were observed. At harvest, an average of 45 and 25% of N applied remained in the soil for green manure and urea, respectively.Contribution from IRRI, Los Baños, Philippines and Justus-Liebig-University, Giessen, GermanyContribution from IRRI, Los Baños, Philippines and Justus-Liebig-University, Giessen, Germany  相似文献   

5.
Summary The fate of 100 kg N ha–1 applied as15N-urea and its modified forms was followed in 4 successive field-grown wetland rice crops in a vertisol. The first wet season crop recovered about 27 to 36.6% of the applied N depending upon the N source. In subsequent seasons the average uptake was very small and it gradually decreased from 1.4 to 0.5 kg N ha–1 although about 18 to 20, 12 to 17 and 14 to 18 kg ha–1 residual fertilizer N was available in the root zone after harvest of first, second and third crops, respectively. The average uptake of the residual fertilizer N was only 7.6% in the second crop and it decreased to 4.5% in the third and to 3.2% in the fourth crop although all these crops were adequately fertilized with unlabelled urea. The basal application of neem coated urea was more effective in controlling the leaching loss of labelled NH4+NO3–N than split application of uncoated urea. In the first 3 seasons in which15N was detectable, the loss of fertilizer N through leaching as NH4+NO3–N amounted to 0.5 kg ha–1 from neem-coated urea, 1.5 kg from split urea and 4.1 kg from coal tar-coated urea. At the end of 4 crops, most of the labelled fertilizer N (about 69% on average) was located in the upper 0–20 cm soil layer showing very little movement beyond this depth. In the profile sampled upto 60 cm depth, totally about 13.8 kg labelled fertilizer N ha–1 from neem-coated urea, 12.7 kg from coal-tar coated urea, and 11.8 kg from split urea were recovered. The average recovery of labelled urea-N in crops and soil during the entire experimental period ranged between 42 and 51%. After correcting for leaching losses, the remaining 47 to 56% appeared to have been lost through ammonia volatilization and denitrification.  相似文献   

6.
Foliage from a mature stand of Scots pine (Pinus sylvestris L.) receiving increasing doses of ammonium nitrate and urea nitrogen was assayed during the five subsequent growing seasons for total N concentration and 15N abundance. The aim of the study was to examine the potential of the 15N technique to provide estimates on fertilizer N recovery and its fate in the ecosystem. The 15N abundance in the foliage increased in proportion to the dose of fertilizer application. This was generally owing to the fact that the 15N of the fertilizer N was significantly higher than that in the soil inorganic-N pool, as well as in the needle biomass of the Scots pine trees on the nonfertilized plots. Due to 15N isotope discrimination occurring during N transformations in soil the relationship was however not very close. Calculations based on the principle of isotope dilution yielded only rough and, in some cases, even misleading estimates of the fraction of the fertilizer-derived nitrogen (Ndff) in the needles. This was especially the case for the urea-N, which undergoes significant isotopic fractionation during the process of ammonia volatilization and possibly microbial NH4 + assimilation in soil. Over five growing seasons, foliar total N concentration peaked at the end of the second season while the 15N abundance continued to increase. Although large methodological errors may be involved when interpreting natural 15N abundance, the measurement of 15N seems to provide semi-quantitative information about fertilizer N accumulation and transformation processes in coniferous ecosystems. A better understanding of the tree and soil processes causing isotopic fractionation is a prerequisite for correct interpretation of 15N data.  相似文献   

7.
选用15N同位素标记的新型回收塑料包膜控释肥和大颗粒尿素,采用池栽试验研究夏玉米-冬小麦轮作体系中肥料氮的去向及利用率。结果表明,整个轮作体系中,控释肥处理(PCU)作物吸收的肥料氮为241.03 kg/hm,高于尿素处理(Urea)的211.02 kg/hm。控释肥处理施用的肥料氮主要残留在0~40 cm土层,而尿素处理则残留在0~60 cm土层,控释肥延缓了肥料氮向土壤深层迁移的趋势。在夏玉米和冬小麦轮作体系中,控释肥处理的氮肥利用率(32.86%,32.47%)高于尿素处理(28.23%,30.16%)。在冬小麦季,控释肥处理损失率相比尿素处理从36.07% 降至28.75%,而夏玉米季,控释肥处理损失率相比尿素处理从37.17%降至29.50%。玉米季控释肥处理与尿素处理差异不显著,但在冬小麦季控释肥处理的产量显著高于尿素处理。因此,在玉米和小麦整个生长季,新型回收塑料包膜控释肥的养分释放与作物养分需求吻合,既提高氮肥利用率,也降低了肥料氮的损失。  相似文献   

8.
Root/microbe competition was investigated as a mechanism controlling fertilizer N uptake by coniferous forest trees. Combinations of biocides both with and without 15N labelled urea, were applied to microcosms containing Sitka spruce seedlings, to selectively inhibit target microbial groups which may be competing with roots for N. After 1 growing season, concentrations of fertilizer N and total N in the trees, as well as populations of microbes and animals, were determined. Biocidal inhibition of microbial populations, particularly of fungi, was associated with significant increases in concentraions of fertilizer N and total N in Sitka spruce seedlings. Application of the fungicide benlate, for example, increased the concentration of fertilizer-derived N in spruce needles by one order of magnitude, and was associated with significant reductions in FDA-active hyphal lengths of fungi. This approach to investigating N-flow offers considerable potential for short term experiments involving competition for fertilizer/available N, where the microbial biomass represents the major sink for N in competition with roots.  相似文献   

9.
Field studies were conducted in Niger using 15N-labeled fertilizers to assess the fate and efficiency of fertilizer N in pearl millet (Pennisetum glaucum [L.] R.Br.) production. Total plant uptake of fertilizer N was low in all cases (20%–37%), and losses were severe (25%–53%). The majority of N remaining in the soil was found in the 0- to 15-cm layer though some enrichment at lower depths was found when the N fertilizer was calcium ammonium nitrate (CAN). In a comparison of urea placement methods (band, broadcast, or point placement), no significant differences in 15N uptake or yield were noted though point placement did exacerbate 15N loss. The mechanism of N loss is believed to have been ammonia volatilization. Yields were similar whether urea or CAN was used, but 15N uptake from CAN was higher. A statistical model was developed relating millet yield and N response to midseason rainfall. In drought years, no N response was found, whereas in years of good rainfall a response was found of 15 kg grain for each kilogram of N applied (at 30 kg N ha-1 rate).  相似文献   

10.
The current study investigated the short-term physiological implications of plant nitrogen uptake of urea amended with the urease inhibitor N-(n-butyl) thiophosphoric triamide (nBTPT) under both greenhouse and field conditions. 15N labelled urea amended with 0.0, 0.01, 0.1 and 0.5% nBTPT (w/w) was surface applied at a rate equivalent to 100 kg N ha–1 to perennial ryegrass in a greenhouse pot experiment. Root, shoot and soil fractions were destructively harvested 0.75, 1.75, 4, 7 and 10 days after fertilizer application. Urease activity was determined in each fraction together with 15N recovery and a range of chemical analyses. The effect of nBTPT amended urea on leaf tip scorch was evaluated together with the effect of the inhibitor applied on its own on plant urease activity.nBTPT-amended urea dramatically reduced shoot urease activity for the first few days after application compared to unamended urea. The higher the nBTPT concentration the longer the time required for shoot activity to return to that in the unamended treatment. At the highest inhibitor concentration of 0.5% shoot urease activity had returned to that of unamended urea by 10 days. Root urease activity was unaffected by nBTPT in the presence of urea but was affected by nBTPT in the absence of urea.Transient leaf tip scorch was observed approximately 7–15 days after nBTPT + urea application and was greatest with high concentrations of nBTPT and high urea-N application rates. New developing leaves showed no visual sign of tip necrosis.Urea hydrolysis of unamended urea was rapid with only 1.3% urea-N remaining in the soil after 1.75 days. N uptake and metabolism by ryegrass was rapid with 15N recovery from unamended urea, in the plant (shoot + root) being 33% after 1.75 days. Most of the 15N in the soil following the urea+0.5% nBTPT application was still as urea after 1.75 days, yet 15N plant recovery at this time was 25% (root+shoot). This together with other evidence, suggests that if urea hydrolysis in soil is delayed by nBTPT then urea can be taken up by ryegrass as the intact molecule, albeit at a significantly slower initial rate of uptake than NH4 +-N. Protein and water soluble carbohydrate content of the plant were not significantly affected by amending urea with nBTPT however, there was a significant effect on the composition of amino acids in the roots and shoots, suggesting a difference in metabolism.Although nBTPT-amended urea affected plant urease activity and caused some leaf-tip scorch the effects were transient and short-lived. The previously reported benefit of nBTPT in reducing NH3 volatilization of urea would appear to far outweigh any of the observed short-term effects, as dry-matter production of ryegrass is increased.  相似文献   

11.
In view of the recently generated interest in Azolla and the high cost of N fertilizers, this field study was aimed at measuring the availability of Azolla-N applied in two split application in comparison to urea-N. Azolla was cultivated and labelled with 15N isotope in the field. A total of about 60 kg N ha-1 was applied as Azolla, urea or Azolla and urea in combination, in two equal splits at transplanting and at maximum tillering, i.e. 30 days after transplanting (30 DAT).The recovery by the crop of Azolla-N applied at 30 DAT was significantly higher than that applied at transplanting, viz. 30.2% and 20.2%, respectively. The recoveries of urea-N applied at the same stages were similarly low, viz. 22.5% at transplanting and 38.6% at 30 DAT. Total recoveries of fertilizer N at the time of harvest were 26.8% from Azolla, 30.7% from urea applied in the same two splits and 49.1% from urea applied in locally recommended three splits. Recoveries of labelled Azolla-N in succeeding rice crop were twice higher than those of labelled urea-N. The recoveries ranged from 1.9 to 2.1% from urea-N and 4.0 to 4.9% from Azolla-N. There were no differences in residual 15N recovery in the succeeding crop between Azolla and urea either applied at transplanting or at 30 DAT.  相似文献   

12.
Summary Field studies with bordered microplots were conducted on an Alfisol in the semiarid tropics of India to determine (1) the fate of15N-labeled urea applied to dryland sorghum in two successive rainy seasons and (2) the effect of method of application on N fertilizer efficiency. Recoveries of15N-labeled fertilizers by above-ground plant parts ranged from 46.7% to 63.6% in 1981 when the rainfall was above the average and from 54.4% to 66.9% in 1980 when the rainfall was near the average. Small (0.014 g) pellets of urea applied twice as postemergent applications in separate 5 cm deep bands were more effective than single preemergent applications either surface applied or incorporated. Both banding and the split applications contributed to overall fertilizer efficiency. Large (1.0 g) pellets of urea (supergranules) placed at a depth of 5 cm were also superior to the incorporated, small-pellet treatment in 1981. The15N-balance data for the soil (0–90 cm in depth)-plant system in 1981 showed that the unaccounted-for fertilizer N ranged from 5.1% to 20.6%. An important finding was that high grain yields, in excess of 6,000 kg/ha, with N fertilizer losses of less than 10% could be obtained through fertilizer management during a very wet season. The data from the Alfisol experiments were compared with data from similar Vertisol experiments; N fertilizer losses resulting from incorporated and surface applications were greater for Vertisols than for Alfisols in the wetter year.  相似文献   

13.
Youssefi  Farbod  Weinbaum  Steven A.  Brown  Patrick H. 《Plant and Soil》2000,227(1-2):273-281
Two treatments were employed to influence the amount of amino nitrogen (N) transport in phloem. In walnut trees (Juglans regia L.), developing fruit significantly reduced the efflux of foliar-applied 15N-enriched urea from treated spurs over a 33-day period in comparison with similarly-treated defruited spurs. Those data suggest that local aboveground demand for N influences vascular transport of amino N. In another experiment, a 1% urea solution was applied foliarly to 5-year old `Mission' almond trees [Prunus dulcis (Mill.) D. A. Webb] to increase the concentration of amino N in the phloem. The effect of foliar N treatments on a) the transport and distribution of labelled urea N within the trees over the experimental period and b) the uptake of soil-applied labelled N were determined by replicated whole tree excavation, fractionation into various tree components and mass spectrometric analyses of the 14N/15N ratios. Concentrations and composition of amino acids in the phloem and xylem saps of control trees and trees receiving foliar-applied urea were also determined. In foliar urea-treated trees, the amino acid concentrations increased significantly in leaf and bark phloem exudate, within 24 and 96 h, respectively. Foliar-applied urea N was translocated to the roots of almond trees over the experimental period and decreased soil N uptake. The results of these experiments are consistent with the hypothesis that aboveground N demand affects the amount of amino N cycling between shoots and roots, and may be involved in the regulation of soil N uptake. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Preston  C. M.  Mead  D. J. 《Plant and Soil》1994,160(2):281-285
Although a high proportion of fertilizer N may be immobilized in organic forms in the soil, no studies have examined the long-term availability of residual fertilizer 15N in forestry situations. We investigated this by growing lodgepole pine (Pinus contorta) seedlings in surface (0–10 cm) soil sample eight years after application of 15N-urea, 15NH4NO3 and NH4 15NO3 to lodgepole pine in interior British Columbia. After nine months of growth in the greenhouse, seedlings took up an average of 8.5% of the 15N and 4.6% of the native N per pot. Most of the mineral N in the pots without seedlings was in the form of nitrate, while pots with seedlings had very low levels of mineral N. In contrast to the greenhouse study, there was no significantuptake of 15N by trees in the field study after the first growing season, although half of the soil organic 15N was lost between one and eight years after fertilization. This indicates the need to understand the mechanisms which limit the uptake of mineral N by trees in the field, and the possible mismatch of tree demand and mineral N availability.  相似文献   

15.
Harmsen  K.  Moraghan  J. T. 《Plant and Soil》1988,105(1):55-67
In an experiment with sorghum on a medium deep red soil (Udic Rhodustalf) at Patancheru, India, where15N-labeled urea was applied at different rates during the 1981 rainy season, the apparent (ARF) and isotope recovery fractions (15NRF) were appreciably different, particularly at lower rates of fertilizer application. The fertilizer rates were corrected for losses of fertilizer nitrogen, that were estimated from the differences in the amounts of15N recovered in the soil and the crop, and the known amounts of15N applied. Introducing these ‘effective’ fertilizer rates, the apparent discrepancy between ARF and15NRF could be explained if it were assumed that the15N immobilized in the organic soil fraction was not remineralized during the course of the growing season. In the difference method, the equivalent amount of nitrogen at natural abundance released in exchange for fertilizer nitrogen (5 atom % xs15N) immobilized in the organic nitrogen fraction is treated as ‘fertilizer nitrogen’, since no distinction is made between14N and15N. In the isotope-dilution method, the nitrogen at natural abundance mineralized during biological interchange is not considered fertilizer nitrogen, and therefore the assumed effective amount of fertilizer nitrogen available to the crop is less than in the difference method.  相似文献   

16.
Jensen  L.S.  Christensen  L.  Mueller  T.  Nielsen  N.E. 《Plant and Soil》1997,190(2):193-202
We studied the fate of 15N-labelled fertilizer nitrogen in a sandy loam soil after harvest of winter oilseed rape (Brassica napus L. cv. Ceres) given 100 or 200 kg N ha-1 in spring, with or without irrigation. Our main objective was to quantify the temporal variations of the soil mineral N, the extractable soil organic N and soil microbial biomass N, and fertilizer derived N in these pools during autumn and winter. Nitrogen use efficiency of the oilseed rape crop varied from 47% of applied N in the 100N, irrigated treatment to 34% in the 200N, non-irrigated treatment. However, only in the latter treatment did we find significantly higher fertilizer derived soil mineral N than in the three other treatments which all had low soil mineral N contents at the first sampling after harvest (8 days after stubble tillage). Between 31% and 42% of the applied N could not be accounted for in the harvested plants or 0-15 cm soil layer at this first sampling. Over the following autumn and winter none of the remaining fertilizer derived soil N was lost from the 0–5 cm depth, but from the 5–15 cm depth a marked proportion of N derived from fertilizer was lost, probably by leaching. Negligible amounts of fertilizer derived extractable soil organic and mineral N (<1 kg N ha-1, 0-15 cm) were found in all treatments after the first sampling.Soil microbial biomass N was not significantly affected by treatments and showed only small temporal variability (±11% of the mean 76 kg N ha-1, 0- 15 cm depth). Surprisingly, the average amount of soil microbial biomass N derived from fertilizer was significantly affected by the treatments, with the extremes being 5.5 and 3.1 kg N ha-1 in the 200N, non-irrigated and 100N, irrigated treatments, respectively. Also, the estimated exponential decay rate of microbial biomass N derived from fertilizer, differed greatly (2 fold) between these two treatments, indicating highly different microbial turnover rates in spite of the similar total microbial biomass N values. In studies utilising 15N labelling to estimate turnover rates of different soil organic matter pools this finding is of great importance, because it may question the assumption that turnover rates are not affected by the insertion of the label.  相似文献   

17.
Cissé  Madiama  Vlek  Paul L. G. 《Plant and Soil》2003,250(1):95-104
Nitrogen losses are notoriously high in flooded rice fertilized with urea. An Azolla intercrop can reduce such losses by immobilizing urea-N during periods of potentially high N-loss. The reduction in N loss linked with the absorption and remobilization of urea-N by Azolla, was studied in two greenhouse experiments conducted in Goettingen (Germany). Grain yield and N recovery were positively influenced by Azolla more than doubling grain yield and N uptake as compared to the split application of 300 mg N pot–1 alone (Exp. 1). In the second experiment, the yield increase was 78.3% with single applications of 97.5 and 68.4% after a split-application of a total of 195 mg N pot–1. In both years the effect of urea and Azolla combined exceeded that of the sum of the factors alone, a clear positive synergistic effect on yield and N uptake by rice. Azolla effectively competed with the young rice plants for applied urea, capturing nearly twice the urea-N than the rice plants up to tillering in experiment 1. In the second experiment, 64.6 mg N of the 97.5 mg applied early in the season was immobilized by Azolla within 2 weeks. This represented 63.1% of the total N accumulated in the Azolla. The fraction of Azolla-N derived from urea sank to 36.4 mg within 4 weeks and only 27.2 mg at maximum tillering as a result of Azolla senescence and N-release. Of this 64.6 mg urea N immobilized 28.7% is eventually taken up by the standing rice plant, representing 43.1% of the remineralized, urea-derived Azolla N. Following the second urea application, only 17.9 mg N were immobilized in the Azolla biomass during the 2 weeks, of which 6.9 mg pot–1 were still retained in the Azolla at maturity. At this stage, rice is the more effective competitor for applied N. As much as 42.1% of this immobilized N finds its way into the rice by maturity. Thus, Azolla contributed to the conservation of N in the system, particularly of the urea applied early in the season. Loss of N from the system amounted to no more than 15%. Although the early-applied N directly recovered by the rice plant was low (20%), 2/3 of the N captured by Azolla following this first urea application was released to the system by the time of rice harvest, over 40% of which was available to the rice plant. Azolla thus appears to act as a slow release fertilizer.  相似文献   

18.
Vanlauwe  B.  Sanginga  N  Merckx  R. 《Plant and Soil》2001,231(2):201-210
Crop and tree roots are crucial in the nutrient recycling hypotheses related to alley cropping systems. At the same time, they are the least understood components of these systems. The biomass, total N content and urea-derived N content of the Senna and maize roots in a Senna-maize alley cropping system were followed for a period of 1.5 years (1 maize-cowpea rotation followed by 1 maize season) to a depth of 90 cm, after the application of 15N labeled urea. The highest maize root biomass was found in the 0–10 cm layer and this biomass peaked at 38 and 67 days after planting the 1994 maize (DAP) between the maize rows (112 kg ha–1, on average) and at 38, 67 and 107 DAP under the maize plants (4101 kg ha–1, on average). Almost no maize roots were found below 60 cm at any sampling date. Senna root biomass decreased with time in all soil layers (from 512 to 68 kg ha–1 for the 0–10 cm layer between 0 and 480 DAP). Below 10 cm, at least 62% of the total root biomass consisted of Senna roots and this value increased to 87% between 60 and 90 cm. Although these observations support the existence of a Senna root `safety net' between the alleys which could reduce nutrient leaching losses, the depth of such a net may be limited as the root biomass of the Senna trees in the 60–90 cm layer was below 100 kg ha–1, equivalent to a root length density of only < 0.05 cm cm–3. The proportion of maize root N derived from the applied urea (%Ndfu) decreased significantly with time (from 21% at 21 DAP to 8% at 107 DAP), while %Ndfu of the maize roots at the second harvest (480 DAP) was only 0.6%. The %Ndfu of the Senna roots never exceeded 4% at any depth or sampling time, but decreased less rapidly compared to the %Ndfu of the maize roots. The higher %Ndfu of the maize roots indicates that maize is more efficient in retrieving urea-derived N. The differences in dynamics of the %Ndfu also indicate that the turnover of N through the maize roots is much faster than the turnover of N through the Senna roots. The recovery of applied urea-N by the maize roots was highest in the top 0–10 cm of soil and never exceeded 0.4% (at 38 DAP) between the rows and 7.1% (at 67 DAP) under the rows. Total urea N recovery by the maize roots increased from 1.8 to 3.2% during the 1994 maize season, while the Senna roots never recovered more than 0.8% of the applied urea-N at any time during the experimental period. These values are low and signify that the roots of both plants will only marginally affect the total recovery of the applied urea-N. Measurement of the dynamics of the biomass and N content of the maize and Senna roots helps to explain the observed recovery of applied urea-N in the aboveground compartments of the alley cropping system.  相似文献   

19.
施肥对麦田土壤可溶性有机氮的影响   总被引:3,自引:0,他引:3  
梁斌  李俊良  杨学云  周建斌 《生态学报》2016,36(14):4430-4437
利用长期定位试验,研究施肥和小麦生长对土壤可溶性有机氮(EON)的影响。长期不同施肥土壤包括不施肥(No-F)、施用化肥(NPK)和有机肥与化肥配施(MNPK)3种。EON含量范围为7.5—29.3 kg/hm~2,No-F、NPK和MNPK土壤中EON分别占可溶性总氮的40%、56%和56%。长期有机肥与化肥配施显著提高0—15 cm土层EON含量,但对30 cm以下土层EON含量无影响。在小麦开花期,可溶性有机氮的含量及其相对含量显著高于拔节期和收获期。虽然施用氮肥对当季EON含量无显著影响,但同位素示踪微区试验表明,土壤耕层(0—15 cm)中仍有0.4%—2.8%的可溶性有机氮来源于当季施入的肥料氮。可见,化学氮肥向可溶性有机氮的转化缓慢,但农田土壤中可溶性有机氮含量与矿质态氮含量相当,发生淋溶损失的风险大。  相似文献   

20.
A pot experiment was conducted to determine the effects of the application of 13C (1.256 atom%) and 15N (1.098 atom%) dual-labeled maize residue compost (MRC) on the nitrogen and carbon uptake by radish, komatsuna, and chingensai as compared with the effect of inorganic fertilizer (IF). The vegetables were grown over three consecutive growing seasons over 4 months; compost was applied at the rate of 24 g kg–1 soil. Nonlabeled nitrogen fertilizer was applied to the compost treatments in the second and third crops to compare the effects of blends of compost with N fertilizer to fertilizer alone. The N uptake and yield of vegetables were significantly higher with the recommended inorganic N treatment. The vegetables took up significantly (P < 0.05) lower amounts of N from MRC than from IFs during the three cultivations. The values of the N uptake derived by fertilizer application to the plant exhibited significant differences among different vegetables. Nitrogen recovered by komatsuna and chingensai from MRC was 7.3 (6.6%), 2.7 (1.8%), and 2.3, (1.7%) in the first, second, and third crops, respectively. Radish, komatsuna, and chingensai recovered significant amounts of C from MRC in the first and second crops, with negligible C recovery in the third crop. The initial loss of fertilizer C in soil at the first crop indicates that the microbial decomposition decoupled substantial amounts of 13C/15N-labeled compounds early in plant development, thus giving the microorganisms a preemptive competitive advantage in the acquisition of easily available 13C/15N-labeled substrates. It is concluded that a combination of compost and inorganic N did not supply sufficient plant-available N to increase vegetables yields or N uptake over those of fertilizer alone. The data suggested that higher productivity of vegetables might be achieved after the accumulation of a certain amount of residual compost N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号