首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nisin is a lanthionine-containing antimicrobial peptide produced by Lactococcus lactis. Its (methyl)lanthionines are introduced by two posttranslational enzymatic steps involving the dehydratase NisB, which dehydrates serine and threonine residues, and the cyclase NisC, which couples these dehydrated residues to cysteines, yielding thioether-bridged amino acids called lanthionines. The prenisin is subsequently exported by the ABC transporter NisT and extracellularly processed by the peptidase NisP. L. lactis expressing the nisBTC genes can modify and secrete a wide range of nonlantibiotic peptides. Here we demonstrate that in the absence of NisT and NisC, the Sec pathway of L. lactis can be exploited for the secretion of dehydrated variants of therapeutic peptides. Furthermore, posttranslational modifications by NisB and NisC still occur even when the nisin leader is preceded by a Sec signal peptide or a Tat signal peptide 27 or 44 amino acids long, respectively. However, transport of fully modified prenisin via the Sec pathway is impaired. The extent of NisB-mediated dehydration could be improved by raising the intracellular concentration NisB or by modulating the export efficiency through altering the signal sequence. These data demonstrate that besides the traditional lantibiotic transporter NisT, the Sec pathway with an established broad substrate range can be utilized for the improved export of lantibiotic enzyme-modified (poly)peptides.  相似文献   

2.
The lantibiotic nisin is produced by Lactococcus lactis. In the biosynthesis of nisin, the enzyme NisB dehydrates nisin precursor, and the enzyme NisC is needed for lanthionine formation. In this study, the nisA gene encoding the nisin precursor, and the genes nisB and nisC of the lantibiotic modification machinery were expressed together in vitro by the Rapid Translation System (RTS). Analysis of the RTS mixture showed that fully modified nisin precursor was formed. By treating the mixture with trypsin, active nisin was obtained. However, no nisin could be detected in the mixture without zinc supplementation, explained by the fact that NisC requires zinc for its function. The results revealed that the modification of nisin precursor, which is supposed to occur at the inner side of the membrane by an enzyme complex consisting of NisB, NisC, and the transporter NisT, can take place without membrane association and without NisT. This in vitro production system for nisin opens up the possibility to produce nisin variants that cannot be producedin vivo. Moreover, the system is a promising tool for utilizing the NisB and NisC enzymes for incorporation of thioether rings into medical peptides and hormones for increased stability.  相似文献   

3.
Nisin is a lanthionine-containing antimicrobial peptide produced by Lactococcus lactis. Its (methyl)lanthionines are introduced by two posttranslational enzymatic steps involving the dehydratase NisB, which dehydrates serine and threonine residues, and the cyclase NisC, which couples these dehydrated residues to cysteines, yielding thioether-bridged amino acids called lanthionines. The prenisin is subsequently exported by the ABC transporter NisT and extracellularly processed by the peptidase NisP. L. lactis expressing the nisBTC genes can modify and secrete a wide range of nonlantibiotic peptides. Here we demonstrate that in the absence of NisT and NisC, the Sec pathway of L. lactis can be exploited for the secretion of dehydrated variants of therapeutic peptides. Furthermore, posttranslational modifications by NisB and NisC still occur even when the nisin leader is preceded by a Sec signal peptide or a Tat signal peptide 27 or 44 amino acids long, respectively. However, transport of fully modified prenisin via the Sec pathway is impaired. The extent of NisB-mediated dehydration could be improved by raising the intracellular concentration NisB or by modulating the export efficiency through altering the signal sequence. These data demonstrate that besides the traditional lantibiotic transporter NisT, the Sec pathway with an established broad substrate range can be utilized for the improved export of lantibiotic enzyme-modified (poly)peptides.  相似文献   

4.
Several Lactococcus lactis strains produce the lantibiotic nisin. The dedicated enzymes NisB and NisC and the transporter NisT modify and secrete the ribosomally synthesized nisin precursor peptide. NisB can function in the absence of the cyclase NisC, yielding the dehydrated prenisin that lacks the thioether rings. A kinetic analysis of nisin production by L. lactis NZ9700 demonstrated that the prenisin was released from the cell into the medium before the processing of the leader sequence occurred. Upon the deletion of nisC, the production of prenisin was reduced by 70%, while in the absence of nisB, the production of prenisin was nearly completely abolished. In cells lacking nisT, no secretion was observed, while the expression of nisABC in these cells resulted in considerable growth rate inhibition caused by the intracellular accumulation of active nisin. Overall, these data indicate that the efficiency of prenisin transport by NisT is markedly enhanced by NisB, suggesting a channeling mechanism of prenisin transfer between the nisin modification enzymes and the transporter.  相似文献   

5.
Nisin is a pentacyclic peptide antibiotic active against Gram-positive bacteria. Its thioether rings are formed by two enzymatic steps: nisin dehydratase (NisB)-mediated dehydration of serines and threonines followed by nisin cyclase (NisC)-catalyzed enantioselective coupling of cysteines to the formed dehydroresidues. Here, we report the in vivo activity of NisC to cyclize a wide array of unrelated and designed peptides that were fused to the nisin leader peptide. To assess the role of NisC, leader peptide fusions, secreted by Lactococcus lactis cells containing NisBT with or without NisC were compared. In hexapeptides, a dehydroalanine could spontaneously react with a more C-terminally located cysteine. In contrast, peptides containing dehydrobutyrines require NisC for cyclization. In agreement with in silico predictions NisC could efficiently cyclize the hexapeptides ADhbVECK and IDhbPGCK, but ADhbVWCE was not cyclized. Interestingly, NisC could efficiently catalyze the synthesis of peptides with intertwined rings and of a designed polyhexapeptide containing four thioether rings. Taken together the data demonstrate that NisC can be widely applied for the cyclization and stabilization of nonlantibiotic peptides.  相似文献   

6.
Nisin is a pentacyclic peptide antibiotic produced by some Lactococcus lactis strains. Nisin contains dehydroresidues and thioether rings that are posttranslationally introduced by a membrane-associated enzyme complex, composed of a serine and threonine dehydratase NisB and the cyclase NisC. In addition, the transporter NisT is necessary for export of the modified peptide. We studied the potential of L. lactis expressing NisB and NisT to produce peptides whose serines and threonines are dehydrated. L. lactis containing the nisBT genes and a plasmid coding for a specific leader peptide fusion construct efficiently produced peptides with a series of non-naturally occurring multiple flanking dehydrobutyrines. We demonstrated NisB-mediated dehydration of serines and threonines in a C-terminal nisin(1-14) extension of nisin, which implies that also residues more distant from the leader peptide than those occurring in prenisin or any other lantibiotic can be modified. Furthermore, the feasibility and efficiency of generating a library of peptides containing dehydroresidues were demonstrated. In view of the particular shape and reactivity of dehydroamino acids, such a library provides a novel source for screening for peptides with desired biological and physicochemical properties.  相似文献   

7.
Nisin is a pentacyclic peptide antibiotic produced by some Lactococcus lactis strains. Nisin contains dehydroresidues and thioether rings that are posttranslationally introduced by a membrane-associated enzyme complex, composed of a serine and threonine dehydratase NisB and the cyclase NisC. In addition, the transporter NisT is necessary for export of the modified peptide. We studied the potential of L. lactis expressing NisB and NisT to produce peptides whose serines and threonines are dehydrated. L. lactis containing the nisBT genes and a plasmid coding for a specific leader peptide fusion construct efficiently produced peptides with a series of non-naturally occurring multiple flanking dehydrobutyrines. We demonstrated NisB-mediated dehydration of serines and threonines in a C-terminal nisin(1-14) extension of nisin, which implies that also residues more distant from the leader peptide than those occurring in prenisin or any other lantibiotic can be modified. Furthermore, the feasibility and efficiency of generating a library of peptides containing dehydroresidues were demonstrated. In view of the particular shape and reactivity of dehydroamino acids, such a library provides a novel source for screening for peptides with desired biological and physicochemical properties.  相似文献   

8.
Lantibiotics are lanthionine-containing peptide antibiotics. Nisin, encoded by nisA, is a pentacyclic lantibiotic produced by some Lactococcus lactis strains. Its thioether rings are posttranslationally introduced by a membrane-bound enzyme complex. This complex is composed of three enzymes: NisB, which dehydrates serines and threonines; NisC, which couples these dehydrated residues to cysteines, thus forming thioether rings; and the transporter NisT. We followed the activity of various combinations of the nisin enzymes by measuring export of secreted peptides using antibodies against the leader peptide and mass spectroscopy for detection. L. lactis expressing the nisABTC genes efficiently produced fully posttranslationally modified prenisin. Strikingly, L. lactis expressing the nisBT genes could produce dehydrated prenisin without thioether rings and a dehydrated form of a non-lantibiotic peptide. In the absence of the biosynthetic NisBC enzymes, the NisT transporter was capable of excreting unmodified prenisin and fusions of the leader peptide with non-lantibiotic peptides. Our data show that NisT specifies a broad spectrum (poly)peptide transporter that can function either in conjunction with or independently from the biosynthetic genes. NisT secretes both unmodified and partially or fully posttranslationally modified forms of prenisin and non-lantibiotic peptides. These results open the way for efficient production of a wide range of peptides with increased stability or novel bioactivities.  相似文献   

9.
Lacticin 3147 is a two-component bacteriocin produced by Lactococcus lactis subspecies lactis DPC3147. In order to further characterize the biochemical nature of the bacteriocin, both peptides were isolated which together are responsible for the antimicrobial activity. The first, LtnA1, is a 3,322 Da 30-amino acid peptide and the second component, LtnA2, is a 29-amino acid peptide with a mass of 2,847 Da. Conventional amino acid analysis revealed that both peptides contain the thioether amino acid, lanthionine, as well as an excess of alanine to that predicted from the genetic sequence of the peptides. Chiral phase gas chromatography coupled with mass spectrometry of amino acid composition indicated that both LtnA1 and LtnA2 contain D-alanine residues and amino acid sequence analysis of LtnA1 confirmed that the D-alanine results from post-translational modification of a serine residue in the primary translation product. Taken together, these results demonstrate that lacticin 3147 is a novel, two-component, D-alanine containing lantibiotic that undergoes extensive post-translational modification which may account for its potent antimicrobial activity against a wide range of Gram-positive bacteria.  相似文献   

10.
Although nisin is a model lantibiotic, our knowledge of the specific interactions of prenisin with its modification enzymes remains fragmentary. Here, we demonstrate that the nisin modification enzymes NisB and NisC can be pulled down in vitro from Lactococcus lactis by an engineered His-tagged prenisin. This approach enables us to determine important intermolecular interactions of prenisin with its modification machinery within L. lactis. We demonstrate that (i) NisB has stronger interactions with precursor nisin than NisC has, (ii) deletion of the propeptide part keeping the nisin leader intact leads to a lack of binding, (iii) NisB point mutants of highly conserved residues W616, F342A, Y346F and P639A are still able to dehydrate prenisin, (iv) NisB Δ(77-79)Y80F mutant decreased the levels of NisB-prenisin interactions and resulted in unmodified prenisin, (v) substitution of an active site residue H331A in NisC leads to higher amounts of the co-purified complex, (vi) NisB is present in the form of a dimer, and (vii) the region FNLD (-18 to -15) of the leader is an important site for binding not only to NisB, but also to NisC.  相似文献   

11.
Lantibiotics are antibacterial peptides isolated from bacterial sources that exhibit activity toward Gram-positive organisms and are usually several orders of magnitude more potent than traditional antibiotics such as penicillin. They contain a number of unique structural features including dehydro amino acid and lanthionine (thioether) residues. Introduced following ribosomal translation of the parent peptide, these moieties render conventional methods of peptide analysis ineffective. We report herein a new method using nickel boride (Ni(2)B), in the presence of deuterium gas, to reduce dehydro side chains and reductively desulfurize lanthionine bridges found in lantibiotics. Using this approach, it is possible to identify and distinguish the original locations of dehydro side chains and lanthionine bridges by traditional peptide sequencing (Edman degradation) followed by mass spectrometry. The strategy was initially verified using nisin A, a structurally well characterized lantibiotic, and subsequently extended to the novel two-component lantibiotic, lacticin 3147, produced by Lactococcus lactis subspecies lactis DPC3147. The primary structures of both lacticin 3147 peptides were then fully assigned by use of multidimensional NMR spectroscopy, showing that lacticin 3147 A1 has a specific lanthionine bridging pattern which resembles the globular type-B lantibiotic mersacidin, whereas the A2 peptide is a member of the elongated type-A lantibiotic class. Also obtained by NMR were solution conformations of both lacticin 3147 peptides, indicating that A1 may adopt a conformation similar to that of mersacidin and that the A2 peptide adopts alpha-helical structure. These results are the first of their kind for a synergistic lantibiotic pair (only four such pairs have been reported to date).  相似文献   

12.
Ltnα and Ltnβ are individual components of the two-peptide lantibiotic lacticin 3147 and are unusual in that, although ribosomally synthesized, they contain d-amino acids. These result from the dehydration of l-serine to dehydroalanine by LtnM and subsequent stereospecific hydrogenation to d-alanine by LtnJ. Homologues of LtnJ are rare but have been identified in silico in Staphylococcus aureus C55 (SacJ), Pediococcus pentosaceus FBB61 (PenN), and Nostoc punctiforme PCC73102 (NpnJ, previously called NpunJ [P. D. Cotter et al., Proc. Natl. Acad. Sci. U. S. A. 102:18584-18589, 2005]). Here, the ability of these enzymes to catalyze d-alanine formation in the lacticin 3147 system was assessed through heterologous enzyme production in a ΔltnJ mutant. PenN successfully incorporated d-alanines in both peptides, and SacJ modified Ltnα only, while NpnJ was unable to modify either peptide. Site-directed mutagenesis was also employed to identify residues of key importance in LtnJ. The most surprising outcome from these investigations was the generation of peptides by specific LtnJ mutants which exhibited less bioactivity than those generated by the ΔltnJ strain. We have established that the reduced activity of these peptides is due to the inability of the associated LtnJ enzymes to generate d-alanine residues in a stereospecific manner, resulting in the presence of both d- and l-alanines at the relevant locations in the lacticin 3147 peptides.  相似文献   

13.
Nisin is a posttranslationally modified antimicrobial peptide containing the cyclic thioether amino acids lanthionine and methyllanthionine. Although much is known about its antimicrobial activity and mode of action, knowledge about the nisin modification process is still rather limited. The dehydratase NisB is believed to be the initial interaction partner in modification. NisB dehydrates specific serine and threonine residues in prenisin, whereas the cyclase NisC catalyzes the (methyl)lanthionine formation. The fully modified prenisin is exported and the leader peptide is cleaved off by the extracellular protease NisP. Light scattering analysis demonstrated that purified NisB is a dimer in solution. Using size exclusion chromatography and surface plasmon resonance, the interaction of NisB and prenisin, including several of its modified derivatives, was studied. Unmodified prenisin binds to NisB with an affinity of 1.05 ± 0.25 μm, whereas the dehydrated and the fully modified derivatives bind with respective affinities of 0.31 ± 0.07 and 10.5 ± 1.7 μm. The much lower affinity for the fully modified prenisin was related to a >20-fold higher off-rate. For all three peptides the stoichiometry of binding was 1:1. Active nisin, which is the equivalent of fully modified prenisin lacking the leader peptide did not bind to NisB, nor did prenisin in which the highly conserved FNLD box within the leader peptide was mutated to AAAA. Taken together our data indicate that the leader peptide is essential for initial recognition and binding of prenisin to NisB.  相似文献   

14.
The lantibiotic nisin is an antimicrobial peptide produced by Lactococcus lactis. As with all lantibiotics, nisin contains a number of dehydro-residues and thioether amino acids that introduce five lanthionine rings into the target peptide. These atypical amino acids are introduced by post-translational modification of a ribosomally synthesized precursor peptide. In certain cases, the serine residue, at position 33 of nisin, does not undergo dehydration to Dha33. With native nisin this partially processed form represents about 10% of the total peptide, whereas with the engineered variants, [Trp30]nisin A and [Lys27,Lys31]nisin A, the proportion of peptide that escapes full processing was found to be to approximately 50%. This feature of nisin biosynthesis was exploited in an investigation of the role of the NisB protein in pre-nisin maturation. Manipulation of the level of NisB was achieved by cloning and overexpressing the plasmid-encoded nisB gene in a range of different nisin-producing strains. The resulting fourfold increase in the level of NisB significantly increased the efficiency of the dehydration reaction at Ser33. The final secreted product of biosynthesis by these strains was the homogenous form of the fully processed nisin (or nisin variant) molecule. The results presented represent the first experimental evidence for the direct involvement of the NisB protein in the maturation process of nisin.  相似文献   

15.
Lantibiotics are potent antimicrobial peptides characterized by the presence of dehydrated amino acids, dehydroalanine and dehydrobutyrine, and (methyl)lanthionine rings. In addition to these posttranslational modifications, some lantibiotics exhibit additional modifications that usually confer increased biological activity or stability on the peptide. LtnJ is a reductase responsible for the introduction of d-alanine in the lantibiotic lacticin 3147. The conversion of l-serine into d-alanine requires dehydroalanine as the substrate, which is produced in vivo by the dehydration of serine by a lantibiotic dehydratase, i.e., LanB or LanM. In this work, we probe the substrate specificity of LtnJ using a system that combines the nisin modification machinery (dehydratase, cyclase, and transporter) and the stereospecific reductase LtnJ in Lactococcus lactis. We also describe an improvement in the production yield of this system by inserting a putative attenuator from the nisin biosynthesis gene cluster in front of the ltnJ gene. In order to clarify the sequence selectivity of LtnJ, peptides composed of truncated nisin and different mutated C-terminal tails were designed and coexpressed with LtnJ and the nisin biosynthetic machinery. In these tails, serine was flanked by diverse amino acids to determine the influence of the surrounding residues in the reaction. LtnJ successfully hydrogenated peptides when hydrophobic residues (Leu, Ile, Phe, and Ala) were flanking the intermediate dehydroalanine, while those in which dehydroalanine was flanked by one or two polar residues (Ser, Thr, Glu, Lys, and Asn) or Gly were either less prone to be modified by LtnJ or not modified at all. Moreover, our results showed that dehydrobutyrine cannot serve as a substrate for LtnJ.  相似文献   

16.
While nisin (lantibiotic), lacticin 3147 (lantibiotic) and vancomycin (glycopeptides) are among the best studied lipid II-binding antimicrobials, their relative activities have never been compared. Nisin and lacticin 3147 have been employed/investigated primarily as food preservatives, although they do have potential in terms of veterinary and clinical applications. Vancomycin is used exclusively in clinical therapy. We reveal a higher potency for lacticin 3147 (MIC 0.95?C3.8???g/ml) and vancomycin (MIC 0.78?C1.56???g/ml) relative to that of nisin (MIC 6.28?C25.14???g/ml) against the food-borne pathogen Listeria monocytogenes. A comparison of the activity of the three antimicrobials against nisin resistance mutants of L. monocytogenes also reveals that their susceptibility to vancomycin and lacticin 3147 changed only slightly or not at all. A further assessment of relative activity against a selection of Bacillus cereus, Enterococcus and Staphylococcus aureus targets revealed that vancomycin MICs consistently ranged between 0.78 and 1.56???g/ml against all but one strain. Lacticin 3147 was found to be more effective than nisin against B. cereus (lacticin 3147 MIC 1.9?C3.8???g/ml; nisin MIC 4.1?C16.7???g/ml) and E. faecium and E. faecalis targets (lacticin 3147 MIC from 1.9 to 3.8???g/ml; nisin MIC ??8.3???g/ml). The greater effectiveness of lacticin 3147 is even more impressive when expressed as molar values. However, in agreement with the previous reports, nisin was the more effective of the two lantibiotics against S. aureus strains. This study highlights that in many instances the antimicrobial activity of these leading lantibiotics are comparable with that of vancomycin and emphasizes their particular value with respect to use in situations including foods and veterinary medicine, where the use of vancomycin is not permitted.  相似文献   

17.
Lacticin 3147 is a broad-spectrum bacteriocin produced by Lactococcus lactis subsp. lactis DPC3147 which is bactericidal against a range of mastitis-causing streptococci and staphylococci. In this study, both lacticin 3147 and the lantibiotic nisin were separately incorporated into an intramammary teat seal product. The seal containing lacticin 3147 exhibited excellent antimicrobial activity and might form the basis of an improved treatment for the prevention of mastitis in dry cows.  相似文献   

18.
19.
The lantibiotic nisin is a potent antimicrobial substance, which contains unusual lanthionine rings and dehydrated amino acid residues and is produced by Lactococcus lactis. Recently, the nisin biosynthetic machinery has been applied to introduce lanthionine rings in peptides other than nisin with potential therapeutic use. Due to difficulties in the isolation of the proposed synthetase complex (NisBTC), mechanistic information concerning the enzymatic biosynthesis of nisin is scarce. Here, we present the molecular characterization of a number of nisin mutants that affect ring formation. We have investigated in a systematic manner how these mutations influence dehydration events, which are performed enzymatically by the dehydratase NisB. Specific mutations that hampered ring formation allowed for the dehydration of serine residues that directly follow the rings and are normally unmodified. The combined information leads to the conclusion that 1) nisin biosynthesis is an organized directional process that starts at the N terminus of the molecule and continues toward the C terminus, and 2) NisB and NisC are alternating enzymes, whose activities follow one after another in a repetitive way. Thus, the dehydration and cyclization processes are not separated in time and space. On the basis of these results and previous knowledge, a working model for the sequence of events in the maturation of nisin is proposed.Nisin is a lantibiotic produced by Lactococcus lactis, which has been known since 1928 (1, 2). This antimicrobial peptide is active against various Gram-positive bacteria and has attained commercial success as a food preservative (3). In addition to the wide industrial applications of nisin, it became also a model system to study various aspects of lantibiotic biosynthesis, regulation, and mode of action (2). Furthermore, recently, other applications of nisin have emerged. Its biosynthetic machinery can be successfully used to install dehydrated amino acids and lanthionine rings in peptides, which are either related or totally unrelated to nisin (411). This offers great opportunities to modulate the stability and activity of peptides that are used as therapeutics (8).The post-translational modified nisin molecule is classified as a member of the Group A lantibiotics (12). Mature nisin contains 34 amino acids, three of which are posttranslationally modified, and five thioether rings that are enzymatically formed upon cyclization of five free cysteines and five dehydroamino acid residues (Fig. 1). These peculiar modifications, which are very rare in nature, give nisin its exceptional stability against proteolysis and contribute greatly to its antimicrobial activity.Open in a separate windowFIGURE 1.Primary structure of prenisin and generated mutants. Dehydrated residues are shaded gray; serine 33 sometimes escapes dehydration and is shaded light gray. Serine at position 29 is never dehydrated in wild type prenisin. The impact of mutations on the dehydration pattern of new prenisin species is schematically depicted. Mutated residues are indicated by filled red circles. Newly formed dehydrated residues are pointed to by a black arrow. Letters A–E correspond to the five consecutive lanthionine rings in nisin.Nisin is synthesized ribosomally as a 57-amino acid residue-long polypeptide. Subsequently, it is directed to a putative synthetase complex that probably consists of three different proteins that include the dehydratase NisB, responsible for dehydration of serines and threonines to dehydroalanines and dehydrobutyrines, respectively; the cyclase NisC, which forms (methyl) lanthionine bridges between cysteines and dehydroamino acids; and the ABC transporter NisT, which performs transport across the lipid bilayer by consuming ATP. Newly synthesized and modified prenisin is still antimicrobially inactive. Only upon cleavage of the leader sequence that encompasses the first 23 amino acids by the dedicated protease NisP, an active molecule is liberated.Although there are data pointing to the existence of a synthetase complex that modifies nisin, such a complex has not been isolated so far. However, both NisB (13, 14) and NisC (13) were shown by specific antibody detection to localize at the cytoplasmic membrane, although some soluble signal was also detected. This localization gives NisBC the opportunity to interact with the transporter NisT, which is an integral membrane protein. Furthermore, co-immunoprecipitation and yeast two-hybrid studies suggested an interaction between members of the nisin modification machinery and nisin itself (13). The function of each member of the putative multimeric synthetase has been investigated in vivo by knock-out studies. It also has been demonstrated that subsequent steps in nisin biosynthesis can be performed separately. Dehydration, cyclization, and transport of the modified product were dissected in vivo, and also the dehydratase has been shown to perform enzymatic reactions without the presence of other members of the complex in vivo (7) although with very low efficiency. The cyclization activity of NisC was demonstrated in vitro (15), and the ABC transporter NisT was shown to be capable of transport of unmodified prenisin in vivo (10). Based on the available data, it is difficult to assess whether multimeric lanthionine complexes are indispensable for efficient nisin production and modification. However, in vivo localization studies and interaction experiments suggest that these proteins work in a concerted manner.Here, we present data that indicates a strong coordination between members of the nisin modification machinery. The analysis of sets of nisin mutants, where key residues that take part in ring formation as well as substitutions of residues that directly follow lanthionine structures, suggests a strong interdependency of dehydratase and cyclase activity. Moreover, the data indicate that these enzymes alternate during catalysis and that they are intertwined in time and space. Our data also suggest that nisin modification is an ordered process that proceeds consecutively from the N terminus of prenisin toward its C terminus. Based on the available literature data and the data presented here, we propose a model wherein nisin is being posttranslationally modified in consecutive steps from its N terminus toward its C terminus.  相似文献   

20.
Lantibiotics are (methyl)lanthionine-containing bacterial peptides. (Methyl)lanthionines are posttranslationally introduced into the prepropeptides by biosynthetic enzymes that dehydrate serines and threonines and couple these dehydrated residues to cysteine residues. Thirty seven lantibiotic primary structures have been proposed to date, but little is known about the substrate specificity of the lantibiotic modifying enzymes. To define rules for the rational design of modified peptides, we compared all known lantibiotic structures by in silico analysis. Although no strict sequence motifs can be defined that govern the modification, statistical analysis demonstrates that dehydratable serines and threonines are more often flanked by hydrophobic than by hydrophilic amino acids. Serine residues escape dehydration more often than threonines. With these rules, novel hexapeptides were designed that either were predicted to become modified or will escape modification. The hexapeptides were fused to the nisin leader and expressed in a Lactococcus lactis strain containing the nisin modifying and export enzymes. The excreted peptides were analyzed by mass spectrometry. All designed fusion peptides were produced, and the presence or absence of modifications was found to be in full agreement with the predictions based on the statistical analysis. These findings demonstrate the feasibility of the rational design of a wide range of novel peptides with dehydrated amino acid residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号