首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intercropping is regarded as an important agricultural practice to improve crop production and environmental quality in the regions with intensive agricultural production, e.g., northern China. To optimize agronomic advantage of maize (Zea mays L.) and soybean (Glycine max L.) intercropping system compared to monoculture of maize, two sequential experiments were conducted. Experiment 1 was to screening the optimal cropping system in summer that had the highest yields and economic benefits, and Experiment 2 was to identify the optimum row ratio of the intercrops selected from Experiment 1. Results of Experiment 1 showed that maize intercropping with soybean (maize || soybean) was the optimal cropping system in summer. Compared to conventional monoculture of maize, maize || soybean had significant advantage in yield, economy, land utilization ratio and reducing soil nitrate nitrogen (N) accumulation, as well as better residual effect on the subsequent wheat (Triticum aestivum L.) crop. Experiment 2 showed that intercropping systems reduced use of N fertilizer per unit land area and increased relative biomass of intercropped maize, due to promoted photosynthetic efficiency of border rows and N utilization during symbiotic period. Intercropping advantage began to emerge at tasseling stage after N topdressing for maize. Among all treatments with different row ratios, alternating four maize rows with six soybean rows (4M:6S) had the largest land equivalent ratio (1.30), total N accumulation in crops (258 kg ha-1), and economic benefit (3,408 USD ha-1). Compared to maize monoculture, 4M:6S had significantly lower nitrate-N accumulation in soil both after harvest of maize and after harvest of the subsequent wheat, but it did not decrease yield of wheat. The most important advantage of 4M:6S was to increase biomass of intercropped maize and soybean, which further led to the increase of total N accumulation by crops as well as economic benefit. In conclusion, alternating four maize rows with six soybean rows was the optimum row ratio in maize || soybean system, though this needs to be further confirmed by pluri-annual trials.  相似文献   

2.
Interspecific interactions and soil nitrogen supply levels affect intercropping productivity. We hypothesized that interspecific competition can be alleviated by increasing N application rate and yield advantage can be obtained in competitive systems. A field experiment was conducted in Wuwei, Gansu province in 2007 and 2008 to study intercropping of faba bean/maize, wheat/maize, barley/maize and the corresponding monocultures of faba bean (Vicia faba L.), wheat (Triticum aestivum L.), barley (Hordeum vulgare L.) and maize (Zea mays L.) with N application rates of 0, 75, 150, 225 and 300 kg N ha?1. Total land equivalent ratios (TLER) were 1.22 for faba bean/maize, 1.16 for wheat/maize, and 1.13 for barley/maize intercropping over the 2-year study period. Maize was overyielding when intercropped with faba bean, but underyielding when intercropped with wheat or barley according to partial land equivalent ratios (PLER) based on grain yields of individual crops in intercropping and sole cropping. There was an interspecific facilitation between intercropped faba bean and maize, and interspecific competition between maize and either wheat or barley. The underyielding of maize was higher when intercropped with barley than with wheat. Fertilizer N alleviated competitive interactions in intercrops with adequate fertilizer N at 225 kg ha?1. Yield advantage of intercropping can be acquired with adequate nitrogen supply, even in an intensive competitive system such as barley/maize intercropping. This is important when using intercropping to develop intensive farming systems with high inputs and high outputs.  相似文献   

3.

Background and aims

Legume-brassica intercrops may help to reduce N fertilizer input. We tested whether (i) intercropping with faba bean can improve N status of rapeseed, and (ii) root complementarity and/or N transfer is involved in such performance.

Methods

Pre-germinated rapeseed and faba bean were grown either together or in monospecific rhizotrons (2 plants per rhizotron). Root growth was recorded. N rhizodeposition of the crops and N transferred between species were assessed using a 15N stem-labelling method.

Results

Intercropped rapeseeds accumulated 20 % higher amounts of N per plant than monocultures. Up to 32 days after sowing, root distribution in the rhizotrons was favourable to physical sharing of the soil N: 64 % of faba bean root length was located in the upper part, as 70 % was in the lower part for rapeseed. At late flowering of the faba bean (52 days after sowing), N rhizodeposition of the two crops were similar and reached 8 to 9 % of the plant N. N transferred from the faba bean to the rapeseed was similar to that transferred from the rapeseed to the faba bean.

Conclusions

Niche complementarity benefits more intercropped rapeseed than net N fluxes between species in the early growth.  相似文献   

4.

Key message

Nitrogen fertilizer enhances local cytokinin synthesis to increase flower numbers in the panicles of rice. Localized cytokinin biosynthesis is an important response to nitrogen.

Abstract

Flower number per panicle is one of the most important traits in rice productivity determination. The number of flowers is established in the early stages of panicle development. Nitrogen fertilizer application before panicle initiation is well known to increase flower number. Nitrogen increases cytokinin (CKs) biosynthesis in plants, and CKs have very similar effects as nitrogen fertilizer on panicle branching. The effects of nitrogen fertilizer on panicle branching may be mediated by CKs, in which accumulation in the inflorescence meristem can regulate panicle development, resulting in increased numbers of flowers and branches. Adenosine phosphate-isopentenyltransferase (IPT) catalyzes the rate-limiting step of CKs biosynthesis. We analyzed the effect of nitrogen fertilizer (urea) on the expression of OsIPT genes (OsIPTs). The results showed that OsIPTs were markedly increased, and CKs accumulated in panicle when nitrogen fertilizer was applied. CKs biosynthesis in the roots and leaves was not up-regulated by nitrogen. These results suggest that nitrogen fertilizer enhances local CKs synthesis to increase flower numbers in the panicles of rice. Localized CKs biosynthesis is an important response to nitrogen.  相似文献   

5.

Background

Pogonus littoralis and Pogonus chalceus are very close related species with quite different ecological preferences within salt marshes. We study the evolutionary processes in and between these presumably young species. Therefore, we compare the variation in ecologically relevant characters and the genetic variation within one of the species (intraspecific differentiation) with the variation of the two types of characters between the two species (interspecific variation). Data are compared between two independent sets of populations, one set at a small geographical scale (the ecologically diverse Guérande area in France) and the other set at a Atlantic-Mediterranean scale.

Results

Body and relative wing size and IDH1 allozyme data show that the intraspecific variation in P. chalceus is high and in the same range as the interspecific variation (P. chalceus versus P. littoralis). Based on neutral markers (other allozymes and mitochondrial DNA) on the other hand, the intraspecific variation in P. chalceus is much lower in comparison to the interspecific variation.

Conclusion

The different ecotypes in the highly polytypic species P. chalceus are as highly differentiated in ecological characters as true species, but are not recognised as such by screening neutral DNA polymorphisms. This can be interpreted as a case of ongoing speciation driven by natural selection adapting each ecotype to its respective ecological niche. The same ecological process can be recognised in the differentiation between the two sister species, where en plus reproductive isolation between the two gene pools occurred, allowing independent drift and mutation accumulation in neutral genetic characters.  相似文献   

6.

Aims

Sweet potato (Ipomoea batatas) is known for its ability to grow under nitrogen-limited conditions. To clarify the possible contribution of biological nitrogen fixation, we tried to isolate and identify diazotrophic bacteria from sweet potatoes.

Methods

By using cultivation technique, we isolated putative endophytes, which possess nifH genes, from surface-sterilized sweet potatoes. Their nitrogen-fixing abilities were demonstrated by the acetylene reduction assay in a semi-solid malate medium and sweet potato extracts. We also examined the colonization of an isolated strain (AT1) in sweet potatoes and their influence on growth and nitrogen fixation in plants as assessed by an acetylene reduction assay and 15N-isotope dilution technique.

Results

The isolates were identified as strains of Bradyrhizobium sp. AT1, Paenibacillus sp. AS2 and Pseudomonas sp. T16 based on their 16S rRNA gene sequences. They showed acetylene reduction activity (ARA) in the semi-solid malate medium. Among them, B. sp. AT1 showed ARA in sweet potato extracts under micro-aerobic conditions whereas both P. sp. AS2 and P. sp. T16 showed no ARA. The inoculation of B. sp. AT1 to the sweet potatoes resulted in increases in the fresh weights and detection of ARA in the inoculated plants. Moreover, the reduction of 15N atom % was observed in the inoculated plants compared to uninoculated controls.

Conclusions

B. sp. AT1 actively expresses nitrogenase activity in sweet potatoes and may contribute to the nitrogen nutrition of host plants.  相似文献   

7.

Background and aims

The relationship between transpiration and root distribution under different spatial arrangements of intercropping is poorly understood. The effects of three spatial arrangements in the maize (Zea mays L.) - soybean (Glycine max L.) intercropping on root distribution, transpiration, water use efficiency (WUE) and grain yield were examined.

Methods

Two-year field experiments were conducted using three spatial arrangements of 2 rows maize × 4 rows soybean (M2S4), 2 rows maize × 2 rows soybean (M2S2) and 4 rows maize × 2 rows soybean (M4S2), with their respective sole crops (monocrop) for comparison.

Results

The grain yield of maize in intercrops was higher than its monocrop and that of soybean in intercrops was lower than its monocrop. Except for M2S2 in 2014, there were yield advantages in intercropping due to improvement in the land use efficiency. Transpiration in maize was higher than in soybean regardless of the spatial arrangements. Transpiration of both maize and soybean was influenced by the spatial arrangements of the intercropping with M4S2 or M2S4 tending to have higher daily transpiration than monocrops and other spatial arrangements. Intercropping enhanced root length density (RLD) in both maize and soybean compared to the corresponding monocrop. RLD was higher and land equivalent ratio (LER) was lower under M2S2 than under other spatial arrangements of intercropping, WUE was higher in M4S2 than in other spatial arrangements.

Conclusions

Intercropping was more efficient in using the environmental resources than monocropping. The M4S2 spatial arrangement in the maize-soybean intercropping could be selected because of its sustainability and greater land and water use efficiency.
  相似文献   

8.

Background and aims

The role of root hairs in intraspecific competition for Phosporus (P) is well examined, but their importance during interaction with other plant species is unknown, as is the differential meaning for competitive effect and response. This study aims to fill this gap of knowledge.

Methods

Competitive abilities of Arabidopsis thaliana wildtype and mutants with aberrant root hair phynotypes (root hair deficient, rhd2-1 or excessive root hair density, prc1-1) were examined in a pot-experiment with P-deficient sand. Competitive effects on a phytometer (Hieracium pilosella) or on A. thaliana itself were assessed as well as competitive responses to species mixtures.

Results

In intraspecific interaction, the competitive effect of wildtype was superior to that of rhd2-1 or prc1-1. This was much less pronounced in interspecific interaction. Competitive response was entirely uniform between Arabidopsis root phenotypes.

Conclusions

The notion that root hairs are important for competition for P should be differentiated. With A. thaliana root hairs less important in inter- than in intraspecific interaction and with root hairs entirely unimportant for competitive response, functional mechanisms of competition for P appear quite complex. Such differential importance of root traits in different facets of competition might well be more common than previously thought.  相似文献   

9.

Background and aims

Roots have morphological plasticity to adapt to heterogeneous nutrient distribution in soil, but little is known about crop differences in root plasticity. The objective of this study was to evaluate root morphological strategies of four crop species in response to soil zones enriched with different nutrients.

Methods

Four crop species that are common in intercropping systems [maize (Zea mays L.), wheat (Triticum aestivum L.), faba bean (Vicia faba L.), and chickpea (Cicer arietinum L.)] and have contrasting root morphological traits were grown for 45 days under uniform or localized nitrogen and phosphorus supply.

Results

For each species tested, the nutrient supply patterns had no effect on shoot biomass and specific root length. However, localized supply of ammonium plus phosphorus induced maize and wheat root proliferation in the nutrient-rich zone. Localized supply of ammonium alone suppressed the whole root growth of chickpea and maize, whereas localized phosphorus plus ammonium reversed (maize and chickpea ) the negative effect of ammonium. The localized root proliferation of chickpea in a nutrient-rich zone did not increase the whole root length and root surface area. Faba bean had no significant response to localized nutrient supply.

Conclusions

The root morphological plasticity is influenced by nutrient-specific and species-specific responses, with the greater plasticity in graminaceous (eg. maize) than leguminous species (eg. faba bean and chickpea).  相似文献   

10.

Aims

To elucidate the mechanisms of the beneficial effects of below-ground root interactions in maize plus legume intercropping system,

Methods

A pot experiment was conducted using root separation techniques.

Results

It is shown that root interaction and nitrogen fertilization increased chlorophyll content and improved plant characteristics of maize, and the effect of root interaction was significant (p<0.05). Compared to a full root separation treatment, no root separation increased the leaf and grain nitrogen contents, and economic and biological yields per maize plant by 9.3? %, 6.0? %, 14.0? %, and 6.5? %, respectively. Root interaction and nitrogen fertilization enhanced the numbers of bacteria, fungi, actinomycetes and Azotobacteria and the activities of urease, invertase, acid-phosphatase and protease in soil. Correlation analyses revealed that the quantity of microorganisms and the activity of the aforementioned enzymes were all positively or significantly (p<0.05) positively correlated with chlorophyll content, plant height and economic and biological yields per maize plant.

Conclusions

The findings demonstrate that root interactions are important in improving the soil micro-ecological environment, increasing microbial quantity and enzyme activity in soil, and enhancing crop yield.  相似文献   

11.

Background and aims

In Malawi, strategies are being sought to boost maize production through improvements in soil fertility. This study assessed the impact of intercropping maize (Zea mays) with pigeon pea (Cajanus cajan) in Lixisols of Malawi on yield, biological N fixation, soil aggregation, and P forms within soil aggregates.

Methods

Maize and pigeon pea were grown intercropped in pots, with varying degrees of root interaction in order to understand the relative importance of biochemical versus physical rhizospheric interactions. Following harvest, soils were separated into aggregate fractions using wet-sieving, and the nutrient content of all fractions was assessed.

Results

The proportion of macroaggregates and microaggregates increased by 52 and 111%, respectively, in the intercropping treatment compared to sole maize, which significantly increased organic P storage in the microaggregates of intercropped compared to sole maize (84 versus 29 mg P kg?1, respectively). Biologically fixed N increased from 89% in the sole pigeon pea to 96% in the intercropped system.

Conclusions

Intercropping maize with pigeon pea can have a significant and positive impact on soil structure as well as nutrient storage in these high P-sorbing soils. This is caused primarily by physical root contact and to a lesser degree by biochemical activities.
  相似文献   

12.

Aims

Intercropping can improve plant yields and soil phosphorus (P) use efficiency. This study compares inter- and intra-species intercropping, and determines whether P uptake and shoot biomass accumulation in intercrops are affected by soil P availability.

Methods

Four barley cultivars (Hordeum vulgare L.) and three legume species (Trifolium subterreneum, Ornithopus sativus and Medicago truncatula) were selected on the basis of their contrasting root exudation and morphological responses to P deficiency. Monocultures and barley-barley and barley-legume intercrops were grown for 6 weeks in a pot trial at very limiting, slightly limiting and excess available soil P. Above-ground biomass and shoot P were measured.

Results

Barley-legume intercrops had 10–70% greater P accumulation and 0–40% greater biomass than monocultures, with the greatest gains occurring at or below the sub-critical P requirement for barley. No benefit of barley-barley intercropping was observed. The plant combination had no significant effect on biomass and P uptake observed in intercropped treatments.

Conclusions

Barley-legume intercropping shows promise for sustainable production systems, especially at low soil P. Gains in biomass and P uptake come from inter- rather than intra-species intercropping, indicating that plant diversity resulted in decreased competition between plants for P.
  相似文献   

13.
Zhang  Fusuo  Li  Long 《Plant and Soil》2003,248(1-2):305-312
This paper reviews recent research on the processes involved in the yield advantage in wheat (Triticum aestivum L.)/maize (Zea mays L.), wheat/soybean [Glycine max (L.) Merr.], faba bean (Vicia faba L.)/maize, peanut (Arachis hypogaea L.)/maize and water convolvulus (Ipomoea aquatica Forsk.)/maize intercropping. In wheat/maize and wheat/soybean intercropping systems, a significant yield increase of intercropped wheat over sole wheat was observed, which resulted from positive effects of the border row and inner rows of intercropped wheat. The border row effect was due to interspecific competition for nutrients as wheat had a higher competitive ability than either maize or soybean had. There was also compensatory growth, or a recovery process, of subordinate species such as maize and soybean, offsetting the impairment of early growth of the subordinate species. Finally, both dominant and subordinate species in intercropping obtain higher yields than that in corresponding sole wheat, maize or soybean. We summarized these processes as the `competition-recovery production principle'. We observed interspecific facilitation, where maize improves iron nutrition in intercropped peanut, faba bean enhances nitrogen and phosphorus uptake by intercropped maize, and chickpea facilitates P uptake by associated wheat from phytate-P. Furthermore, intercropping reduced the nitrate content in the soil profile as intercropping uses soil nutrients more efficiently than sole cropping.  相似文献   

14.

Aims

The objective of our study was to confirm if hydraulic lift (HL) promotes nutrient uptake in field-grown plants in the same way as demonstrated previously in pot-grown plants.

Methods

We conducted a field experiment in an agroforestry system, over an entire growing season that included a dry period and a wet period. We used a shallow-root crop plant, mung bean (Vigna radiata L.), intercropped with walnut (Juglans regia L.) and jujube (Zizyphus jujube Mill.), as an indicator for the presence of HL and its effects on nutrient uptake. To monitor HL, we artificially applied deuterium isotope to the deep roots of trees.

Results

We demonstrated the presence of a natural nitrogen, phosphorus, and potassium gradient along the soil depth, and the occurrence of HL, evidenced by deuterium signature in the shallow soil layers and V. radiata stem, only during the dry season. J. regia and Z. jujube both had deep root systems, but the former species exhibited stronger HL to the shallow soil than the latter. Meanwhile, the upper soil layers of J. regia had significantly higher moisture content, and the intercropped V. radiata had higher nutrient content.

Conclusion

HL can facilitate water uptake by V. radiata from the upper soil layers in the field condition during the dry season, which relates to nutrient acquisition by the crop.  相似文献   

15.

Aims

In the long term absence of catastrophic disturbance ecosystem retrogression occurs, and this is characterized by reduced soil fertility, and impairment of plant biomass and productivity. The response of plant traits to retrogression remains little explored. We investigated how changes plant traits and litter decomposability shift during retrogression for dominant trees and understory shrubs.

Methods

We characterized changes in intraspecific, interspecific and community-averaged values of plant traits and litter decomposability, for six abundant species across thirty lake islands in boreal forest that undergo retrogression with increasing time since fire.

Results

For understory shrubs, trait values and litter decomposability often changed as soil fertility declined in a manner reflective of greater conservation (versus acquisition) of nutrients, particularly at the interspecific and whole community levels. Such responses were seldom observed for trees, meaning that trees and shrubs show a decoupled response to declining soil fertility during retrogression.

Conclusions

Our results only partially agree with previous studies on temperate and subtropical retrogressive chronosequences. Because traits of only shrubs were responsive, they also highlight that impairment of belowground ecosystem processes during retrogression is primarily driven by changes in the trait spectra of understory vegetation rather than that of the trees.  相似文献   

16.

Background

DNA barcoding, i.e. the use of a 648 bp section of the mitochondrial gene cytochrome c oxidase I, has recently been promoted as useful for the rapid identification and discovery of species. Its success is dependent either on the strength of the claim that interspecific variation exceeds intraspecific variation by one order of magnitude, thus establishing a "barcoding gap", or on the reciprocal monophyly of species.

Results

We present an analysis of intra- and interspecific variation in the butterfly family Lycaenidae which includes a well-sampled clade (genus Agrodiaetus) with a peculiar characteristic: most of its members are karyologically differentiated from each other which facilitates the recognition of species as reproductively isolated units even in allopatric populations. The analysis shows that there is an 18% overlap in the range of intra- and interspecific COI sequence divergence due to low interspecific divergence between many closely related species. In a Neighbour-Joining tree profile approach which does not depend on a barcoding gap, but on comprehensive sampling of taxa and the reciprocal monophyly of species, at least 16% of specimens with conspecific sequences in the profile were misidentified. This is due to paraphyly or polyphyly of conspecific DNA sequences probably caused by incomplete lineage sorting.

Conclusion

Our results indicate that the "barcoding gap" is an artifact of insufficient sampling across taxa. Although DNA barcodes can help to identify and distinguish species, we advocate using them in combination with other data, since otherwise there would be a high probability that sequences are misidentified. Although high differences in DNA sequences can help to identify cryptic species, a high percentage of well-differentiated species has similar or even identical COI sequences and would be overlooked in an isolated DNA barcoding approach.  相似文献   

17.
Increasing crop nitrogen use efficiency while also simultaneously decreasing nitrogen accumulation in the soil would be key steps in controlling nitrogen pollution from agricultural systems. Long-term field experiments were started in 2003 to study the effects of intercropping on crop N use and soil mineral N accumulation in wheat (Triticum aestivum L. cv 2014)/maize (Zea mays L. cv Shendan16), wheat/faba bean (Vicia faba L. cv Lincan No. 5) and maize/faba bean intercropping and monocropping systems. Monocropping was compared with two types of strip intercropping: continuous intercropping (two crops intercropped continuously on the same strips of land every year) and rotational intercropping (two crops grown adjacently and rotated to the other crop??s strip every year). Maize/faba bean intercropping had greater crop N uptake than did wheat/faba bean or wheat/maize. Wheat/maize accumulated more mineral N in the top 140 cm of the soil profile during the co-growth stage from maize emergence to maturity of wheat or faba bean. Continuously intercropped maize substantially decreased soil mineral N accumulation under wheat and faba bean rows (60?C100 cm soil depth) at maize harvest. Soil mineral N accumulation under wheat rows increased with rotational intercropping with faba bean. Rotational intercropping may potentially alleviate the adverse effects of wheat on N use by other crops and increase the nitrogen harvest index of wheat, maize and faba bean. Intercropping using species with different maturity dates may be more effective in increasing crop N use efficiency and decreasing soil mineral N accumulation.  相似文献   

18.

Background and aims

Few studies have investigated the effect of nitrogen (N) fertilizer on ecosystem respiration (Re) under mixed legume and grass pastures sown at different seeding ratios,and data are almost entirely lacking for alpine meadow of the Tibetan Plateau. Our aim was to test the hypothesis that although a combination of legumes with grass and N fertilizer increases Re the combination decreases Re intensity (i.e. Re per unit of aboveground biomass) due to greater increases in aboveground biomass compared to increases in Re.

Methods

This hypothesis was tested using different seeding ratios of common vetch (Vicia sativa L.) and oat (Avena sativa L.) with and without N fertilizer on the Tibetan plateau in 2009 and 2010. Re was measured using a static closed opaque chamber. Re intensity was estimated as the ratio of seasonal average Re during the growing season to aboveground biomass.

Results

Compared with common vetch monoculture pasture, mixed legume-grass pastures only significantly decreased Re intensity (with a decrease of about 75 %–87 %) in the drought year 2009 due to greater increases in aboveground biomass compared to increases in Re. There were no significant differences in Re and Re intensity among different seeding ratios of oat and common vetch in either year. N fertilizer significantly decreased Re intensity for common vetch monoculture pasture by 24.5 % in 2009 and 69.5 % in 2010 although it did not significantly affect plant production and Re.

Conclusions

From the perspective of forage yield and Re, planting mixed legume-grass pastures without N fertilizer is a preferable way to balance the twin objectives of forage production and mitigation of atmospheric greenhouse gas emissions in alpine regions.  相似文献   

19.

Background

Within-field multiple crop species intercropping is well documented and used for disease control, but the underlying mechanisms are still unclear. As roots are the primary organ for perceiving signals in the soil from neighboring plants, root behavior may play an important role in soil-borne disease control.

Principal Findings

In two years of field experiments, maize/soybean intercropping suppressed the occurrence of soybean red crown rot, a severe soil-borne disease caused by Cylindrocladium parasiticum (C. parasiticum). The suppressive effects decreased with increasing distance between intercropped plants under both low P and high P supply, suggesting that root interactions play a significant role independent of nutrient status. Further detailed quantitative studies revealed that the diversity and intensity of root interactions altered the expression of important soybean PR genes, as well as, the activity of corresponding enzymes in both P treatments. Furthermore, 5 phenolic acids were detected in root exudates of maize/soybean intercropped plants. Among these phenolic acids, cinnamic acid was released in significantly greater concentrations when intercropped maize with soybean compared to either crop grown in monoculture, and this spike in cinnamic acid was found dramatically constrain C. parasiticum growth in vitro.

Conclusions

To the best of our knowledge, this study is the first report to demonstrate that intercropping with maize can promote resistance in soybean to red crown rot in a root-dependent manner. This supports the point that intercropping may be an efficient ecological strategy to control soil-borne plant disease and should be incorporated in sustainable agricultural management practices.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号