首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The anaerobic fungus Neocallimastix sp. strain L2, isolated from the feces of a llama, was tested for growth on a range of soluble and insoluble carbohydrate substrates. The fungus was able to ferment glucose, cellobiose, fructose, lactose, maltose, sucrose, soluble starch, inulin, filter paper cellulose, and Avicel. No growth was observed on arabinose, galactose, mannose, ribose, xylose, sorbitol, pectin, xylan, glycerol, citrate, soya, and wheat bran. The fermentation products after growth were hydrogen, formate, acetate, ethanol, and lactate. The fermentation pattern was dependent on the carbon source. In general, higher hydrogen production resulted in decreased formation of lactate and ethanol. Recovery of the fermented carbon in products at the end of growth ranged from 50% to 80%. (Hemi)cellulolytic enzyme activities were affected by the carbon source. Highest activities were found in filtrates from cultures grown on cellulose. Growing the fungus on inulin and lactose yielded the lowest cellulolytic activities. Highest specific activities for avicelase, endoglucanase, β-glucosidase, and xylanase were obtained with Avicel as the substrate for growth (0.29, 5.9, 0.57, and 13 IU · mg−1 protein, respectively). Endoglucanase activity banding patterns after SDS-PAGE were very similar for all substrates. Minor differences indicated that enzyme activities may in part be the result of secretion of different sets of isoenzymes. Received: 10 July 1996 / Accepted: 22 July 1996  相似文献   

2.
Five anaerobic fungal isolates from the bovine rumen were grown on Coastal Bermuda grass (CBG) leaf blades and monitored over a 9-day period for substrate utilization, fermentation products, cellulase, and xylanase activities. Two of the fungal isolates showed monocentric growth patterns; one (isolate MC-1) had monoflagellated zoospores and morphologically resembled members of the genus Piromyces; the other (isolate MC-2) had multiflagellated zoospores and resembled members of the genus Neocallimastix. Three other isolates (PC-1, PC-2, and PC-3) exhibited polycentric growth and have not yet been described in the literature; these isolates were characterized by differences in morphology. All of the isolates degraded CBG to approximately the same extent (70% [dry weight]) in 9 days. Fermentation product accumulation was concurrent with substrate utilization. The major fermentation products for all isolates were formate, acetate, D-(-)-lactate, L-(+)-lactate, ethanol, carbon dioxide, and hydrogen. Succinate was produced by all cultures, with the exception of MC-1. Fermentation balances revealed different profiles for each isolate. As a group, monocentric isolates produced a greater ratio of oxidized to reduced products when grown on glucose or CBG than did the polycentric isolates, which produced a nearly equal ratio of these products. All isolates exhibited cellulolytic and xylanolytic activities, including endoglucanase, exoglucanase, beta-glucosidase, xylanase, and beta-xylosidase activities. Increasing enzyme activity correlated with the accumulation of fermentation products and substrate utilization. The optimum pH for the enzymatic activity of polycentric isolates was within a more narrow range (pH 6.4 to 7.0) than that of the monocentric isolates (pH 5.5 to 7.5). Activity toward cellulosic substrates was not detected until after the disappearance of reducing sugars. Xylanase activity was found to be five to seven times that of carboxymethyl cellulase activity for all cultures grown on CBG.  相似文献   

3.
Extracellular cellulolytic and xylanolytic enzymes ofStreptomyces sp. EC22 were produced during submerged fermentation. The cell-free culture supernatant of the streptomycete grown on microcrystalline cellulose contained enzymes able to depolymerize both crystalline and soluble celluloses and xylans. Higher cellulase and xylanase activities were found in the cell-free culture supernatant of the strain when grown on microcrystalline cellulose than when grown on xylan. Total cellulase and endoglucanase [carboxymethyl-cellulase (CMCase)] activities reached maxima after 72 h and xylanase activity was maximal after 60h. Temperature and pH optima were 55°C and 5.0 for CMCase activity and 60°C and 5.5 for total crystalline cellulase and xylanase activities. At 80°C, approximate half-lives of the enzymes were 37, 81 and 51 min for CMCase, crystalline cellulose depolymerization and xylanase, respectively.  相似文献   

4.
Five anaerobic fungal isolates from the bovine rumen were grown on Coastal Bermuda grass (CBG) leaf blades and monitored over a 9-day period for substrate utilization, fermentation products, cellulase, and xylanase activities. Two of the fungal isolates showed monocentric growth patterns; one (isolate MC-1) had monoflagellated zoospores and morphologically resembled members of the genus Piromyces; the other (isolate MC-2) had multiflagellated zoospores and resembled members of the genus Neocallimastix. Three other isolates (PC-1, PC-2, and PC-3) exhibited polycentric growth and have not yet been described in the literature; these isolates were characterized by differences in morphology. All of the isolates degraded CBG to approximately the same extent (70% [dry weight]) in 9 days. Fermentation product accumulation was concurrent with substrate utilization. The major fermentation products for all isolates were formate, acetate, D-(-)-lactate, L-(+)-lactate, ethanol, carbon dioxide, and hydrogen. Succinate was produced by all cultures, with the exception of MC-1. Fermentation balances revealed different profiles for each isolate. As a group, monocentric isolates produced a greater ratio of oxidized to reduced products when grown on glucose or CBG than did the polycentric isolates, which produced a nearly equal ratio of these products. All isolates exhibited cellulolytic and xylanolytic activities, including endoglucanase, exoglucanase, beta-glucosidase, xylanase, and beta-xylosidase activities. Increasing enzyme activity correlated with the accumulation of fermentation products and substrate utilization. The optimum pH for the enzymatic activity of polycentric isolates was within a more narrow range (pH 6.4 to 7.0) than that of the monocentric isolates (pH 5.5 to 7.5). Activity toward cellulosic substrates was not detected until after the disappearance of reducing sugars. Xylanase activity was found to be five to seven times that of carboxymethyl cellulase activity for all cultures grown on CBG.  相似文献   

5.
Fructose, glucose and xylose were the only monosaccharides to be fermented by the polycentric fungi, Orpinomyces joyonii (three cattle isolates) and O. intercalaris (two cattle isolates) and Anaeromyces spp. (four cattle isolates and two water buffalo isolates). Both Orpinomyces spp. utilised a similar range of oligosaccharides and polysaccharides by fermenting cellobiose, gentiobiose, lactose, maltose, sucrose, cellulose, glycogen, starch and xylan. In contrast, there was considerable variation in carbohydrate fermentation amongst Anaeromyces spp., with only cellobiose, gentiobiose and cellulose being fermented by all strains. Formate, acetate and ethanol were the major fermentation end-products formed from glucose by all polycentric fungi. In addition, Anaeromyces spp. produced considerable amounts of lactate, although only small amounts were formed by Orpinomyces spp. This difference was explained by the low specific activity for lactate dehydrogenase in Orpinomyces spp. Several Anaeromyces spp. also produced malate as a significant end-product of glucose fermentation. Fermentation of specifically-labelled Z14C]glucose molecules by polycentric fungi showed that hexose was catabolised by both polycentric and monocentric fungi via the glycolysis pathway with end-products being derived from the following carbon atoms: lactate and malate (C1-C3; C4-C6), acetate and ethanol (C1-C2; C5-C6), CO2 and formate (C3; C4). The results were compared to those obtained for monocentric and polycentric fungi isolated from temperate climate ruminants.  相似文献   

6.
Lactobacillus plantarum is an attractive candidate for bioprocessing of lignocellulosic biomass due to its high metabolic variability, including its ability to ferment both pentoses and hexoses, as well as its high acid tolerance, a quality often utilized in industrial processes. This bacterium grows naturally on biomass; however, it lacks the inherent ability to deconstruct lignocellulosic substrates. As a first step toward engineering lignocellulose-converting lactobacilli, we have introduced genes coding for a GH6 cellulase and a GH11 xylanase from a highly active cellulolytic bacterium into L. plantarum. For this purpose, we employed the recently developed pSIP vectors for efficient secretion of heterologous proteins. Both enzymes were secreted by L. plantarum at levels estimated at 0.33 nM and 3.3 nM, for the cellulase and xylanase, respectively, in culture at an optical density at 600 nm (OD600) of 1. Transformed cells demonstrated the ability to degrade individually either cellulose or xylan and wheat straw. When mixed together to form a two-strain cell-based consortium secreting both cellulase and xylanase, they exhibited synergistic activity in the overall release of soluble sugar from wheat straw. This result paves the way toward metabolic harnessing of L. plantarum for novel biorefining applications, such as production of ethanol and polylactic acid directly from plant biomass.  相似文献   

7.
An arbitrarily chosen selection of 37 cyanobacterial strains of the Oldenburg culture collection were tested for their ability of fermentation and secretion of fermentation products. In all examined strains at least one fermentation product could be detected. For the most part fermentation products were only shed in traces. Thus, for a large part of the investigated strains fermentation does not seem to be a sufficient metabolism to survive dark and anaerobic periods. Only five strains secreted remarkable amounts of products. Glycollate was mostly found in combination with formate and/or traces of oxalate. Lactate, ethanol and acetate were found in combination or single. Most of those strains sheding high amounts of glycollate and formate, did not show a remarkable lactate, ethanol or acetate excretion; those excreting high amounts of lactate, ethanol or acetate produced only minor volumes of glycollate and formate. It was not possible to find similar fermentation patterns by comparing fermentation of species belonging to the same family. Organisms fermenting or not fermenting could be found among marine, brackish and freshwater cyanobacteria. Fermentation, therefore seems to be a unique, and likely old capability among cyanobacteria, which was partly lost during evolution.  相似文献   

8.
The enzyme diversity of the cellulolytic system produced by Clostridium cellulolyticum grown on crystalline cellulose as a sole carbon and energy source was explored by two-dimensional electrophoresis. The cellulolytic system of C. cellulolyticum is composed of at least 30 dockerin-containing proteins (designated cellulosomal proteins) and 30 noncellulosomal components. Most of the known cellulosomal proteins, including CipC, Cel48F, Cel8C, Cel9G, Cel9E, Man5K, Cel9M, and Cel5A, were identified by using two-dimensional Western blot analysis with specific antibodies, whereas Cel5N, Cel9J, and Cel44O were identified by using N-terminal sequencing. Unknown enzymes having carboxymethyl cellulase or xylanase activities were detected by zymogram analysis of two-dimensional gels. Some of these enzymes were identified by N-terminal sequencing as homologs of proteins listed in the NCBI database. Using Trap-Dock PCR and DNA walking, seven genes encoding new dockerin-containing proteins were cloned and sequenced. Some of these genes are clustered. Enzymes encoded by these genes belong to glycoside hydrolase families GH2, GH9, GH10, GH26, GH27, and GH59. Except for members of family GH9, which contains only cellulases, the new modular glycoside hydrolases discovered in this work could be involved in the degradation of different hemicellulosic substrates, such as xylan or galactomannan.  相似文献   

9.
Obligately anaerobic, mesophilic, cellulolytic bacteria were isolated from the wetwood of elm and maple trees. The isolation of these bacteria involved inoculation of selective enrichment cultures with increment cores taken from trees showing evidence of wetwood. Cellulolytic bacteria were present in the cores from seven of nine trees sampled, as indicated by the disappearance of cellulose from enrichment cultures. With two exceptions, cellulolytic activity was confined to the darker, wetter, inner section of the cores. Cellulolytic bacteria were also present in the fluid from core holes. The cellulolytic isolates were motile rods that stained gram negative. Endospores were formed by some strains. The physiology of one of the cellulolytic isolates (strain JW2) was studied in detail. Strain JW2 fermented cellobiose, d-glucose, glycerol, l-arabinose, d-xylose, and xylan in addition to cellulose. In a defined medium, p-aminobenzoic acid and biotin were the only exogenous growth factors required by strain JW2 for the fermentation of cellobiose or cellulose. Acetate and ethanol were the major nongaseous end products of cellulose fermentation. The guanine-plus-cytosine content of the DNA of strain JW2 was 33.7 mol%. Cellulolytic bacteria have not previously been reported to occur in wetwood. The isolation of such bacteria indicates that cellulolytic bacteria are inhabitants of wetwood environments and suggests that they may be involved in wetwood development.  相似文献   

10.
A new mesophilic anaerobic cellulolytic bacterium, CM126, was isolated from an anaerobic sewage sludge digester. The organism was non-spore-forming, rod-shaped, Gram-negative and motile with peritrichous flagella. It fermented microcrystalline Avicel cellulose, xylan, Solka floc cellulose, filter paper, L-arabinose, D-xylose, beta-methyl xyloside, D-glucose, cellobiose and xylitol and produced indole. The % G + C content was 36. Acetic acid, ethanol, lactic acid, pyruvic acid, carbon dioxide and hydrogen were produced as metabolic products. This strain could grow at 20-44.5 degrees C and at pH values 5.2-7.4 with optimal growth at 37-41.5 degrees C and pH 7. Both endoglucanase and xylanase were detected in the supernatant fluid of a culture grown on medium containing Avicel cellulose and cellobiose. Exoglucanase could not be found in either supernatant fluid or the cell lysate. When cellulose and cellobiose fermentation were compared, the enzyme production rate in cellobiose fermentation was higher than in cellulose fermentation. The optimum pH for both enzyme activities was 5.0, the optimum temperature was 40 degrees C for the endoglucanase and 50 degrees C for the xylanase. Both enzyme activities were inhibited at 70 degrees C Co-culture of this organism with a Methanosarcina sp. (A145) had no effect on cellulose degradation and both endoglucanase and xylanase were stable in the co-culture.  相似文献   

11.
A new mesophilic anaerobic cellulolytic bacterium, CM126, was isolated from an anaerobic sewage sludge digester. The organism was non-spore-forming, rod-shaped, Gram-negative and motile with peritrichous flagella. It fermented microcrystalline Avicel cellulose, xylan, Solka floc cellulose, filter paper, L-arabinose, D-xylose, β-methyl xyloside, D-glucose, cellobiose and xylitol and produced indole. The % G + C content was 36. Acetic acid, ethanol, lactic acid, pyruvic acid, carbon dioxide and hydrogen were produced as metabolic products. This strain could grow at 20–44·5°C and at pH values 5·2–7·4 with optimal growth at 37–41·5°C and pH 7. Both endoglucanase and xylanase were detected in the supernatant fluid of a culture grown on medium containing Avicel cellulose and cellobiose. Exoglucanase could not be found in either supernatant fluid or the cell lysate. When cellulose and cellobiose fermentation were compared, the enzyme production rate in cellobiose fermentation was higher than in cellulose fermentation. The optimum pH for both enzyme activities was 5·0, the optimum temperature was 40°C for the endoglucanase and 50°C for the xylanase. Both enzyme activities were inhibited at 70°C. Co-culture of this organism with a Methanosarcina sp. (A145) had no effect on cellulose degradation and both endoglucanase and xylanase were stable in the co-culture.  相似文献   

12.
Summary A system was developed for the semi-continuous cultivation of an anaerobic fungus, Piromyces sp. strain E2 (isolated from an Indian elephant), on Avicel (microcrystalline cellulose). The fungus was grown in a semi-continuous culture system: solids and fungal biomass was retained by means of a simple filter construction whereas the culture fluid was removed continuously. The production of fermentation products (acetate, ethanol, formate, lactate, hydrogen or methane), cellulolytic and xylanolytic enzymes, and protein by the fungus in monoculture or co-culture with Methanobacterium formicicum during growth on Avicel was monitored up to 45 days. These productions stabilized after an adaptation period of 24 and 30 days in the semi-continuous co-culture and monoculture, respectively. After this period the average (±SD) avicelase, -glucosidase, endoglucanase, and xylanase production in the semi-continuous monoculture were 27±6, 140±16, 1057±120 and 5012±583 IU.l–1.dya–1, respectively. Co-culture with the methanogen caused a shift in fermentation products to more acetate, and less ethanol and lactate. Furthermore, the production of all cellulolytic enzymes increased (40%) and xylanolytic enzyme production decreased (35%).Correspondence to: H. J. M. Op den Camp  相似文献   

13.
A cellulolytic and thermophilic anaerobe was isolated from soil. This bacterium made a halo on a roll-tube culture containing Avicel. Analysis of the PCR-based 16S rRNA gene sequence showed that the bacterium was closely related to Moorella thermoacetica. Scanning electron microscopy showed the bacterium is a rod and has no protuberant structure on the surface of cells growing on cellulose, suggesting that this strain is a non-cellulosomal cellulolytic bacterium. Carboxymethyl cellulase and xylanase activities were detected in the culture broth. A major fermentation product from ball-milled cellulose was acetate. This strain has a potential to convert cellulosic biomass to acetate, directly.  相似文献   

14.
It was found that crude preparation obtained from the culture medium of Fusarium avenaceum degraded cellulose and xylan. After chromatography on CM-Sepharose CL-6B of this preparation six fraction were obtained. The eluted fractions II and V showed xylanase activity, fraction IV — cellulase activity and fraction III — xylanase and cellulase activity. The end products of xylan hydrolysis by all xylanase fractions (II, III, V) were xylobiose, xylose, xylotriose and xylotetrose. The end products of cellulose hydrolysis by fractions III and IV was cellobiose, glucose and cellotriose. The data from gel filtration on Sephacryl S-200 indicated a molecular weight of more than 250,000 for both cellulase IV and xylanase V. After gel filtration in the presence of urea disaggregation of those high molecular xylanase and cellulase particles was observed. Xylanase II in difference from the other fractions contained higher amount of sugar. Digestion of fraction II with cellulase-hemicellulase preparation from Phoma hibernica decreased the content of sugar from 17% to 8%, but did not change its enzymatic properties. Cellulase IV as well as xylanase V were inactivated by N-bromosuccinimide, 2-hydroxy-5-nitrobenzyl bromide and tetranitromethane, hence it is suggested that tryptophan and tyrosine are the essential for the activity of these enzymes.  相似文献   

15.
Summary By enrichment technique, nine anaerobic mixed bacterial cultures were isolated, five of which showed stable cellulolysis. All cultures fermented cellulose and produced different fermentative products. Mixed culture BOC 25 yielded major levels of acetate and ethanol (39.6 and 12.0 mmol/l, respectively) and minor levels of propionate (2.5 mmol/l) and digested filter paper cellulose to the extent of 32.5% w/v. BOC 25 digested cellulosic and lignocellulosic substrates and produced filter paper cellulase, carboxymethyl cellulase, Avicelase and -glucosidase. Strain DC 25, a cellulolyticClostridium was purified from one of the mixed cultures. The fermentation products of DC 25 from cellulose, cellobiose or glucose were ethanol, acetate, formate, H2 and CO2.  相似文献   

16.
 Two species of anaerobic fungi, i.e. Piromyces strain E2 and Neocallimastix patriciarum strain N2, were cultivated in a 10-l batch fermenter with filter- paper cellulose as the carbon source. The accumulation of fermentation products, production of extracellular protein and (hemi-)cellulolytic enzymes were monitored during growth. Growth of Piromyces E2 in the fermenter resulted in a shift in the fermentation pattern to more acetate and formate and less ethanol, lactate, succinate and malate, possibly because of removal of hydrogen. The specific activities of Avicelase, endoglucanase, β-glucosidase and xylanase were up to threefold higher compared to small batch cultures. Enzyme activities produced per gram of cellulose were up to four times the values reported for Piromyces E2 grown in a semi-continuous coculture with the methanogen Methanobacterium formicicum. The performance of fermenter enzyme preparations from the anaerobic fungi with respect to hydrolysis of Avicel compared well to that of preparations of Trichoderma reesei. However, addition of exogenous β-glucosidase was indispensible with the latter preparation for the complete conversion to glucose. Received: 14 December 1995/Received revision: 19 March 1996/Accepted: 25 March 1996  相似文献   

17.
Qing Q  Wyman CE 《Bioresource technology》2011,102(2):1359-1366
Commercial cellulase complexes produced by cellulolytic fungi contain enzyme activities that are capable of hydrolyzing non-cellulosic polysaccharides in biomass, primarily hemicellulose and pectins, in addition to cellulose. However, xylanase activities detected in most commercial enzyme preparations have been shown to be insufficient to completely hydrolyze xylan, resulting in high xylooligomer concentrations remaining in the hydrolysis broth. Our recent research showed that these xylooligomers are stronger inhibitors of cellulase activity than others have previously established for glucose and cellobiose, making their removal of great importance. In this study, a HPLC system that can measure xylooligomers with degrees of polymerization (DP) up to 30 was applied to assess how Spezyme CP cellulase, Novozyme 188 β-glucosidase, Multifect xylanase, and non-commercial β-xylosidase enzymes hydrolyze different chain length xylooligomers derived from birchwood xylan. Spezyme CP cellulase and Multifect xylanase partially hydrolyzed high DP xylooligomers to lower DP species and monomeric xylose, while β-xylosidase showed the strongest ability to degrade both high and low DP xylooligomers. However, about 10-30% of the higher DP xylooligomers were difficult to be breakdown by cellulase or xylanase and about 5% of low DP xylooligomers (mainly xylobiose) proved resistant to hydrolysis by cellulase or β-glucosidase, possibly due to low β-xylosidase activity in these enzymes and/or the precipitation of high DP xylooligomers.  相似文献   

18.
Biomass-derived sugars, such as glucose, xylose, and other minor sugars, can be readily fermented to fuel ethanol and commodity chemicals by the appropriate microbes. Due to the differences in the optimum conditions for the activity of the fungal cellulases that are required for depolymerization of cellulose to fermentable sugars and the growth and fermentation characteristics of the current industrial microbes, simultaneous saccharification and fermentation (SSF) of cellulose is envisioned at conditions that are not optimal for the fungal cellulase activity, leading to a higher-than-required cost of cellulase in SSF. We have isolated bacterial strains that grew and fermented both glucose and xylose, major components of cellulose and hemicellulose, respectively, to l(+)-lactic acid at 50 degrees C and pH 5.0, conditions that are also optimal for fungal cellulase activity. Xylose was metabolized by these new isolates through the pentose-phosphate pathway. As expected for the metabolism of xylose by the pentose-phosphate pathway, [(13)C]lactate accounted for more than 90% of the total (13)C-labeled products from [(13)C]xylose. Based on fatty acid profile and 16S rRNA sequence, these isolates cluster with Bacillus coagulans, although the B. coagulans type strain, ATCC 7050, failed to utilize xylose as a carbon source. These new B. coagulans isolates have the potential to reduce the cost of SSF by minimizing the amount of fungal cellulases, a significant cost component in the use of biomass as a renewable resource, for the production of fuels and chemicals.  相似文献   

19.
Aspenwood chips were pretreated by steam explosion. The various wood fractions obtained were assayed for their ability to act as substrates for growth and cellulase production of different Trichoderma and Clostridium thermocellum species. Steam exploded aspenwood was as efficiently utilized as solka floc and correspondingly high cellulase activities were detected in the various culture filtrates. When T. harzianum E58 was grown on increasing concentrations of solka floc, highest cellulase and xylanase activities were detected at 1% substrate concentrations while high substrate concentrations (10-20%) inhibited growth and enzyme production. When the cellulosic substrates were supplemented with increasing amounts of glucose, cellulase and xylanase production were inhibited when the glucose concentration exceeded 0.1%. Highest xylanase activities were detected after growth of T. reesei C30 and T. harianum E58 on xylan and solka floc respectively. All of the steam exploded fractions were at least partially hydrolyzed by the T. harzianum E58 cellulase system. The extent of the pretreatment also influenced the ability of Zymomonas mobilis and Saccharomyces cerevisiae to ferment the liberated sugars to ethanol. About 85% of the theoretical yield of ethanol from cellulose could be obtained from the combined hydrolysis and fermentation of pretreated aspenwood.  相似文献   

20.
The extremely thermophilic, Gram-positive bacteria Caldicellulosiruptor bescii and Caldicellulosiruptor obsidiansis efficiently degrade both cellulose and hemicellulose, which makes them relevant models for lignocellulosic biomass deconstruction to produce sustainable biofuels. To identify the shared and unique features of secreted cellulolytic apparatuses from C. bescii and C. obsidiansis, label-free quantitative proteomics was used to analyze protein abundance over the course of fermentative growth on crystalline cellulose. Both organisms' secretomes consisted of more than 400 proteins, of which the most abundant were multidomain glycosidases, extracellular solute-binding proteins, flagellin, putative pectate lyases, and uncharacterized proteins with predicted secretion signals. Among the identified proteins, 53 to 57 significantly changed in abundance during cellulose fermentation in favor of glycosidases and extracellular binding proteins. Mass spectrometric characterizations, together with cellulase activity measurements, revealed a substantial abundance increase of a few bifunctional multidomain glycosidases composed of glycosidase (GH) domain family 5, 9, 10, 44, or 48 and family 3 carbohydrate binding (CBM3) modules. In addition to their orthologous cellulases, the organisms expressed unique glycosidases with different domain organizations: C. obsidiansis expressed the COB47_1671 protein with GH10/5 domains, while C. bescii expressed the Athe_1857 (GH10/48) and Athe_1859 (GH5/44) proteins. Glycosidases containing CBM3 domains were selectively enriched via binding to amorphous cellulose. Preparations from both bacteria contained highly thermostable enzymes with optimal cellulase activities at 85°C and pH 5. The C. obsidiansis preparation, however, had higher cellulase specific activity and greater thermostability. The C. bescii culture produced more extracellular protein and additional SDS-PAGE bands that demonstrated glycosidase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号