首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Posttranslational modifications (PTMs) greatly expand the function and regulation of proteins, and glycosylation is the most abundant and diverse PTM. Of the many different types of protein glycosylation, one is quite unique; GalNAc-type (or mucin-type) O-glycosylation, where biosynthesis is initiated in the Golgi by up to twenty distinct UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts). These GalNAc-Ts are differentially expressed in cells and have different (although partly overlapping) substrate specificities, which provide for both unique functions and considerable redundancy. Recently we have begun to uncover human diseases associated with deficiencies in GalNAc-T genes (GALNTs). Thus deficiencies in individual GALNTs produce cell and protein specific effects and subtle distinct phenotypes such as hyperphosphatemia with hyperostosis (GALNT3) and dysregulated lipid metabolism (GALNT2). These phenotypes appear to be caused by deficient site-specific O-glycosylation that co-regulates proprotein convertase (PC) processing of FGF23 and ANGPTL3, respectively.

Scope of review

Here we summarize recent progress in uncovering the interplay between human O-glycosylation and protease regulated processing and describes other important functions of site-specific O-glycosylation in health and disease.

Major conclusions

Site-specific O-glycosylation modifies pro-protein processing and other proteolytic events such as ADAM processing and thus emerges as an important co-regulator of limited proteolytic processing events.

General significance

Our appreciation of this function may have been hampered by our sparse knowledge of the O-glycoproteome and in particular sites of O-glycosylation. New strategies for identification of O-glycoproteins have emerged and recently the concept of SimpleCells, i.e. human cell lines made deficient in O-glycan extension by zinc finger nuclease gene targeting, was introduced for broad O-glycoproteome analysis.  相似文献   

2.
Mucin-type O-glycosylation is an important post-translational modification that confers a variety of biological properties and functions to proteins. This post-translational modification has a particularly complex and differentially regulated biosynthesis rendering prediction and control of where O-glycans are attached to proteins, and which structures are formed, difficult. Because plants are devoid of GalNAc-type O-glycosylation, we have assessed requirements for establishing human GalNAc O-glycosylation de novo in plants with the aim of developing cell systems with custom-designed O-glycosylation capacity. Transient expression of a Pseudomonas aeruginosa Glc(NAc) C4-epimerase and a human polypeptide GalNAc-transferase in leaves of Nicotiana benthamiana resulted in GalNAc O-glycosylation of co-expressed human O-glycoprotein substrates. A chimeric YFP construct containing a 3.5 tandem repeat sequence of MUC1 was glycosylated with up to three and five GalNAc residues when co-expressed with GalNAc-T2 and a combination of GalNAc-T2 and GalNAc-T4, respectively, as determined by mass spectrometry. O-Glycosylation was furthermore demonstrated on a tandem repeat of MUC16 and interferon α2b. In plants, prolines in certain classes of proteins are hydroxylated and further substituted with plant-specific O-glycosylation; unsubstituted hydroxyprolines were identified in our MUC1 construct. In summary, this study demonstrates that mammalian type O-glycosylation can be established in plants and that plants may serve as a host cell for production of recombinant O-glycoproteins with custom-designed O-glycosylation. The observed hydroxyproline modifications, however, call for additional future engineering efforts.  相似文献   

3.
Mucin-type O-glycans are found on mucins as well as many other glycoproteins. The initiation step in synthesis is catalyzed by a large family of polypeptide GalNAc-transferases attaching the first carbohydrate residue, GalNAc, to selected serine and threonine residues in proteins. During the last decade an increasing number of GalNAc-transferase isoforms have been cloned and their substrate-specificities partly characterized. These differences in substrate specificities have been exploited for in vitro site-directed O-glycosylation. In GlycoPEGylation, polyehylene glycol (PEG) is transferred to recombinant therapeutics to specific acceptor sites directed by GalNAc-transferases. GalNAc-transferases have also been used to control density of glycosylation in the development of glycopeptide-based cancer vaccines. The membrane-associated mucin-1 (MUC1) has long been considered a target for immunotherapeutic and immunodiagnostic measures, since it is highly overexpressed and aberrantly O-glycosylated in most adenocarcinomas, including breast, ovarian, and pancreatic cancers. By using vaccines mimicking the glycosylation pattern of cancer-cells, it is possible to overcome tolerance in transgenic animals expressing the human MUC1 protein as a self-antigen providing important clues for an improved MUC1 vaccine design. The present review will highlight some of the potential applications of site-directed O-glycosylation.  相似文献   

4.
Tarelli E 《Carbohydrate research》2007,342(15):2322-2325
Pools of O-glycopeptides (and their deglycosylated analogues) derived from trypsin-digested normal human serum IgA1 have been treated with ammonia under conditions reported to result in complete liberation of O-glycans linked to serine and threonine residues in glycopeptides and glycoproteins. MALDI-TOF MS analysis has revealed that only one of the six glycosylated sites is susceptible to beta-elimination under these conditions. It is likely that resistance to beta-elimination is due to very close proximity of proline to the glycosylated serine or threonine residues. Preliminary results using 0.1M NaOH (instead of ammonia) to perform beta-elimination indicated that there was also selective de-O-glycosylation with this reagent, however, these results were complicated by the concomitant hydrolysis of the peptide bonds. These findings may have implications for similarly O-glycosylated peptides and proteins and possibly for other chemical methods that are used to carry out beta-eliminations of O-glycans.  相似文献   

5.

Background

The assembly of Ser/Thr-linked O-glycans of mucins with core 2 structures is initiated by polypeptide GalNAc-transferase (ppGalNAc-T), followed by the action of core 1 β3-Gal-transferase (C1GalT) and core 2 β6-GlcNAc-transferase (C2GnT). β4-Gal-transferase (β4GalT) extends core 2 and forms the backbone structure for biologically important epitopes. O-glycan structures are often abnormal in chronic diseases. The goal of this work is to determine if the activity and specificity of these enzymes are directed by the sequences and glycosylation of substrates.

Methods

We studied the specificities of four enzymes that synthesize extended O-glycan core 2 using as acceptor substrates synthetic mucin derived peptides and glycopeptides, substituted with GalNAc or O-glycan core structures 1, 2, 3, 4 and 6.

Results

Specific Thr residues were found to be preferred sites for the addition of GalNAc, and Pro in the + 3 position was found to especially enhance primary glycosylation. An inverse relationship was found between the size of adjacent glycans and the rate of GalNAc addition. All four enzymes could distinguish between substrates having different amino acid sequences and O-glycosylated sites. A short glycopeptide Galβ1–3GalNAcα-TAGV was identified as an efficient C2GnT substrate.

Conclusions

The activities of four enzymes assembling the extended core 2 structure are affected by the amino acid sequence and presence of carbohydrates on nearby residues in acceptor glycopeptides. In particular, the sequences and O-glycosylation patterns direct the addition of the first and second sugar residues by ppGalNAc-T and C1GalT which act in a site directed fashion.

General significance

Knowledge of site directed processing enhances our understanding of the control of O-glycosylation in normal cells and in disease.  相似文献   

6.
The hinge region of human immunoglobulin A1 (*IgA1) possesses multiple O-glycans, of which synthesis is initiated by the addition of GalNAc to serine or threonine through the activity of UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferases (pp-GalNAc-Ts). We found that six pp-GalNAc-Ts, pp-GalNAc-T1, -T2, -T3, -T4, -T6, and -T9, were expressed in B cells, IgA-bearing B cells, and NCI-H929 IgA myeloma cells. pp-GalNAc-T activities of these six enzymes for a synthetic IgA hinge peptide, which has nine possible O-glycosylation sites, were examined using a reversed phase-high performance liquid chromatography, a matrix-assisted laser desorption ionization time of flight mass spectrometry, and peptide sequencing analysis. pp-GalNAc-T2 showed the strongest activity transferring GalNAc to a maximum of eight positions. Other pp-GalNAc-Ts exhibited different substrate specificities from pp-GalNAc-T2; however, their activities were extremely weak. It was reported that the IgA1 hinge region possesses a maximum of five O-glycans, and their amino acid positions have been determined. We found that pp-GalNAc-T2 selectively transferred GalNAc residues to the same five positions. These results strongly suggested that pp-GalNAc-T2 is an essential enzyme for initiation of O-linked glycosylation of the IgA1 hinge region.  相似文献   

7.
Mucin type O-glycosylation begins with the transfer of GalNAc to serine and threonine residues on proteins by a family of UDP-GalNAc:polypeptide N-acetylgalactosaminlytransferases. These enzymes all contain a lectin-like (QXW)(3) repeat sequence at the C terminus that consists of three tandem repeats (alpha, beta, and gamma). The putative lectin domain of one of the most ubiquitous isozymes, GalNAc-T1, is reportedly not functional. In this report, we have reevaluated the role of the GalNAc-T1 lectin domain. Deletion of the lectin domain resulted in a complete loss of enzymatic activity. We also found that GalNAc-T1 has two activities distinguished by their sensitivities to inhibition with free GalNAc; one activity is sensitive, and the other is resistant. In our experiments, the former activity is represented by the O-glycosylation of apomucin, an acceptor that contains multiple glycosylation sites, and the latter is represented by synthetic peptides that contain a single glycosylation site. Site-directed mutagenesis of the lectin domain selectively reduced the former activity and identified Asp(444) in the alpha repeat as the most important site for GalNAc recognition. A further reduction of the GalNAc-inhibitable activity was observed when both Asp(444) and the corresponding aspartate residues in the beta and the gamma repeats were mutated. This suggests a cooperative involvement of each repeat unit in the glycosylation of polypeptides with multiple acceptor sites.  相似文献   

8.
Database analysis of O-glycosylation sites in proteins   总被引:3,自引:0,他引:3       下载免费PDF全文
Statistical analysis was carried out to study the sequential aspects of amino acids around the O-glycosylated Ser/Thr. 992 sequences containing O-glycosylated Ser/Thr were selected from the O-GLYCBASE database of O-glycosylated proteins. The frequency of occurrence of amino acid residues around the glycosylated Ser/Thr revealed that there is an increased number of proline residues around the O-glycosylation sites in comparison with the nonglycosylated serine and threonine residues. The deviation parameter calculated as a measure of preferential and nonpreferential occurrence of amino acid residues around the glycosylation site shows that Pro has the maximum preference around the O-glycosylation site. Pro at +3 and/or -1 positions strongly favors glycosylation irrespective of single and multiple glycosylation sites. In addition, serine and threonine are preferred around the multiple glycosylation sites due to the effect of clusters of closely spaced glycosylated Ser/Thr. The preference of amino acids around the sites of mucin-type glycosylation is found likely to be similar to that of the O-glycosylation sites when taken together, but the acidic amino acids are more preferred around Ser/Thr in mucin-type glycosylation when compared totally. Aromatic amino acids hinder O-glycosylation in contrast to N-glycosylation. Cysteine and amino acids with bulky side chains inhibit O-glycosylation. The preference of certain potential sequence motifs of glycosylation has been discussed.  相似文献   

9.
The specificities of the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases which link the carbohydrate GalNAc to the side-chain of certain serine and threonine residues in mucin type glycoproteins, are presently unknown. The specificity seems to be modulated by sequence context, secondary structure and surface accessibility. The sequence context of glycosylated threonines was found to differ from that of serine, and the sites were found to cluster. Non-clustered sites had a sequence context different from that of clustered sites. Charged residues were disfavoured at position – 1 and +3. A jury of artificial neural networks was trained to recognize the sequence context and surface accessibility of 299 known and verified mucin type O-glycosylation sites extracted from O-GLYCBASE. The cross-validated NetOglyc network system correctly found 83% of the glycosylated and 90% of the non-glycosylated serine and threonine residues in independent test sets, thus proving more accurate than matrix statistics and vector projection methods. Predictions of O-glycosylation sites in the envelope glycoprotein gp120 from the primate lentiviruses HIV-1, HIV-2 and SIV are presented. The most conserved O-glycosylation signals in these evolutionary-related glycoproteins were found in their first hypervariable loop, V1. However, the strain variation for HIV-1 gp120 was significant. A computer server, available through WWW or E-mail, has been developed for prediction of mucin type O-glycosylation sites in proteins based on the amino acid sequence. The server addresses are http://www.cbs.dtu.dk/services/NetOGlyc/ and netOglyc@cbs.dtu.dk.  相似文献   

10.
Covalent attachment of polyethylene glycol, PEGylation, has been shown to prolong the half-life and enhance the pharmacodynamics of therapeutic proteins. Current methods for PEGylation, which rely on chemical conjugation through reactive groups on amino acids, often generate isoforms in which PEG is attached at sites that interfere with bioactivity. Here, we present a novel strategy for site-directed PEGylation using glycosyltransferases to attach PEG to O-glycans. The process involves enzymatic GalNAc glycosylation at specific serine and threonine residues in proteins expressed without glycosylation in Escherichia coli, followed by enzymatic transfer of sialic acid conjugated with PEG to the introduced GalNAc residues. The strategy was applied to three therapeutic polypeptides, granulocyte colony stimulating factor (G-CSF), interferon-alpha2b (IFN-alpha2b), and granulocyte/macrophage colony stimulating factor (GM-CSF), which are currently in clinical use.  相似文献   

11.
12.
Mucin-type linkages (GalNAcalpha1-O-Ser/Thr) are initiated by a family of glycosyltransferases known as the UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferases (ppGaNTases, EC 2.4.1.41). These enzymes transfer GalNAc from the sugar donor UDP-GalNAc to serine and threonine residues, forming an alpha anomeric linkage. Despite the seeming simplicity of ppGaNTase catalytic function, it is estimated on the basis of in silico analysis that there are 24 unique ppGaNTase human genes. ppGaNTase isoforms display tissue-specific expression in adult mammals as well as unique spatial and temporal patterns of expression during murine development. In vitro assays suggest that a subset of the ppGaNTases have overlapping substrate specificities, but at least two ppGaNTases (ppGaNTase-T7 and -T9 [now designated -T10]) appear to require the prior addition of GalNAc to a synthetic peptide before they can catalyze sugar transfer to this substrate. Site-specific O-glycosylation by several ppGaNTases is influenced by the position and structure of previously added O-glycans. Collectively, these observations argue in favor of a hierarchical addition of core GalNAc residues to the apomucin. Various forms of O-glycan pathobiology may be reexamined in light of the existence of an extensive ppGaNTase family of enzymes. Recent work has demonstrated that at least one ppGaNTase isoform is required for normal development in Drosophila melanogaster. Structural insights will no doubt lead to the development of isoform-specific inhibitors. Such tools will prove valuable to furthering our understanding of the functional roles played by O-glycans.  相似文献   

13.
Transforming growth factor-beta (TGFbeta) is a potent regulator of cell growth, differentiation, and apoptosis. TGFbeta binds to specific serine/threonine kinase receptors, which leads to activation of Smad-dependent and Smad-independent signaling pathways. O-Glycosylation is a dynamic PTM which has been observed in many regulatory proteins, but has not been studied in the context of TGFbeta signaling. To explore the effect of TGFbeta1 on protein O-glycosylation in human breast epithelial cells, we performed analyses of proteins which were affinity purified with Helix pomatia agglutinin (HPA). HPA lectin allowed enrichment of proteins containing GalNAc and GlcNAc linked to serine and threonine residues. Using 2-DE and MALDI-TOF-MS, we identified 21 HPA-precipitated proteins, which were affected by treatment of cells with TGFbeta1. Among these proteins, regulators of cell survival, apoptosis, trafficking, and RNA processing were identified. We found that TGFbeta1 inhibited the appearance of cell death-inducing DFF-like effector A (CIDE-A) in 2-D gels with HPA-precipitated proteins. CIDE-A is a cell death activator which promotes DNA fragmentation. We observed that TGFbeta1 did not affect expression of CIDE-A, but inhibited its glycosylation. We found that deglycosylation of CIDE-A correlated with enhanced nuclear export of the protein, and that high level of nonglycosylated CIDE-A inhibited TGFbeta1-dependent cell death. Thus, inhibition of the glycosylation of CIDE-A may be a mechanism to protect cells from apoptosis.  相似文献   

14.
Two series of glycopeptides with mono- and disaccharides, [GalNAc and Galbeta (1-3)GalNAc] O-linked to serine and threonine at one, two or three contiguous sites were synthesized and characterized by 1H NMR. The conformational effects governed by O-glycosylation were studied and compared with the corresponding non-glycosylated counterparts using NMR, CD and molecular modelling. These model peptides encompassing the aa sequence, PAPPSSSAPPE (series I) and APPETTAAPPT (series II) were essentially derived from a 23-aa tandem repeat sequence of low molecular weight human salivary mucin (MUC7). NOEs, chemical shift perturbations and temperature coefficients of amide protons in aqueous and nonaqueous media suggest that carbohydrate moiety in threonine glycosylated peptides (series II) is in close proximity to the peptide backbone. An intramolecular hydrogen bonding between the amide proton of GalNAc or Galbeta (1-3)GalNAc and the carbonyl oxygen of the O-linked threonine residue is found to be the key structure stabilizing element. The carbohydrates in serine glycosylated peptides (series I), on the other hand, lack such intramolecular hydrogen bonding and assume a more apical position, thus allowing more rotational freedom around the O-glycosidic bond. The effect of O-glycosylation on peptide backbone is clearly reflected from the observed overall differences in sequential NOEs and CD band intensities among the various glycosylated and non-glycosylated analogues. Delineation of solution structure of these (glyco)peptides by NMR and CD revealed largely a poly L-proline type II and/or random coil conformation for the peptide core. Typical peptide fragments of tandem repeat sequence of mucin (MUC7) showing profound glycosylation effects and distinct differences between serine and threonine glycosylation as observed in the present investigation could serve as template for further studies to understand the multifunctional role played by mucin glycoproteins.  相似文献   

15.
The biosynthesis, structures, and functions of O-glycosylation, as a complex posttranslational event, is reviewed and compared for the various types of O-glycans. Mucin-type O-glycosylation is initiated by tissue-specific addition of a GalNAc-residue to a serine or a threonine of the fully folded protein. This event is dependent on the primary, secondary, and tertiary structure of the glycoprotein. Further elongation and termination by specific transferases is highly regulated. We also describe some of the physical and biological properties that O-glycosylation confers on the protein to which the sugars are attached. These include providing the basis for rigid conformations and for protein stability. Clustering of O-glycans in Ser/Thr(/Pro)-rich domains allows glycan determinants such as sialyl Lewis X to be presented as multivalent ligands, essential for functional recognition. An additional level of regulation, imposed by exon shuffling and alternative splicing of mRNA, results in the expression of proteins that differ only by the presence or absence of Ser/Thr(/Pro)-rich domains. These domains may serve as protease-resistant spacers in cell surface glycoproteins. Further biological roles for O-glycosylation discussed include the role of isolated mucin-type O-glycans in recognition events (e.g., during fertilization and in the immune response) and in the modulation of the activity of enzymes and signaling molecules. In some cases, the O-linked oligosac-charides are necessary for glycoprotein expression and processing. In contrast to the more common mucin-type O-glycosylation, some specific types of O-glycosylation, such as the O-linked attachment of fucose and glucose, are sequon dependent. The reversible attachment of O-linked GlcNAc to cytoplasmic and nuclear proteins is thought to play a regulatory role in protein function. The recent development of novel technologies for glycan analysis promises to yield new insights in the factors that determine site occupancy, structure-function relationship, and the contribution of O-linked sugars to physiological and pathological processes. These include diseases where one or more of the O-glycan processing enzymes are aberrantly regulated or deficient, such as HEMPAS and cancer.  相似文献   

16.
The site-specific modification of proteins is expected to be an important capability for the synthesis of bioconjugates in the future. However, the traditional repertoire of reactions available for the direct modification of proteins suffers from lack of specificity, necessitating costly downstream processing to isolate the specific species of interest. (1) Here, we use a well-established, glycan-specific chemistry to PEGylate model glycoproteins, each containing a unique reactive GalNAc attached to a specifically engineered threonine residue. By engineering E. coli to execute the initial steps of human, mucin-type O-glycosylation, we were able to obtain homogeneous site-specifically modified glycoproteins with fully human glycan linkages. Two mucin-based reporters as well as several fusion proteins containing eight-amino-acid GalNAc-T recognition sequences were glycosylated in this engineered glycocompetent strain of E. coli. The use of one sequence in particular, PPPTSGPT, resulted in site-specific glycan occupancy of approximately 69% at the engineered threonine. The GalNAc present on the purified glycoprotein was oxidized by galactose oxidase and then coupled to hydroxylamine functionalized 20 kDa PEG in the presence of aniline. The glycoprotein could be converted to the PEGylated product at approximately 85% yield and >98% purity as determined by comparison to the products of control reactions.  相似文献   

17.
While only about ten percent of the databank entries are defined as glycoproteins, it has been estimated recently that more than half of all proteins are glycoproteins. Mucin-type O-glycosylation is a widespread post-translational modification of proteins found in the entire animal kingdom, but also in higher plants. The structural complexity of the chains initiated by O-linked GalNAc exceeds that of N-linked chains by far. The process during which serine and threonine residues of proteins become modified is confined to the cis to trans Golgi compartments. The initiation of this process by peptidyl GalNAc-transferases is ruled by the sequence context of putative O-glycosylation sites, but also by epigenetic regulatory mechanisms, which can be mediated by enzyme competition. The cellular repertoir of glycosyltransferases with their distinct donor sugar and acceptor sugar specificities, their sequential action at highly-ordered surfaces, and their localizations in subcompartments of the Golgi finally determine the cell-specific O-glycosylation profile. Dramatic alterations of the glycosylation machinery are observed in cancer cells, resulting in aberrantly O-glycosylated proteins that expose previously masked peptide motifs and new antigenic targets. The functional aspects of O-linked glycans, which comprise among many others their potential role in sorting and secretion of glycoproteins, their influence on protein conformation, and their multifarious involvement in cell adhesion and immunological processes, appear as complex as their structures.  相似文献   

18.
Murine sperm initiate fertilization by binding to the zona pellucida (mZP), the specialized extracellular matrix of their homologous eggs. O-Glycans occupying two highly conserved vicinal glycosylation sites (Ser-332 and Ser-334) on the mZP glycoprotein designated mZP3 were previously implicated in this interaction. However, recent biophysical analyses confirm that neither site is occupied, implying that an alternate O-glycosylation domain may be operational in native mZP3. Since human ZP3 (huZP3) can substitute for mZP3 in rescue mice to mediate sperm binding, the site specificity of O-glycosylation in both native mZP3 and huZP3 was analyzed using ultrasensitive mass spectrometric techniques. Two O-glycosylation sites in native mZP3, one at Thr-155 and the other within the glycopeptide at positions 161-168 (ATVSSEEK), are conserved in huZP3 derived from transgenic mice. Thus, there is a specific O-glycosylation domain within native mZP3 expressing two closely spaced O-glycans that is very well conserved in an evolutionarily related glycoprotein. In native mZP3, core 2 O-glycans predominate at both sites. However, in huZP3 derived from rescue mice, the O-glycans associated with Thr-156 (analogous to Thr-155 in mZP3) are exclusively core 1 and related Tn sequences, whereas core 2 O-glycans predominate at the other conserved site. This unique restriction of O-glycan expression suggests that sequence differences in the conserved O-glycosylation domains of mZP3 and huZP3 affect the ability of core 2 N-acetylglucosaminyltransferase(s) to extend the core 1 sequence. However, this difference in O-glycosylation at Thr-156 does not affect the fertility or the sperm binding phenotype of eggs derived from female huZP3 rescue mice.  相似文献   

19.
The influence of flanking sequences on O-glycosylation   总被引:4,自引:0,他引:4  
The influence of flanking sequences on O-glycosylation of serine and threonine residues was explored by comparison of known acceptor sites. Positions -6, -1 and +3 relative to the site were identified as particularly significant. To test the hypothesis that O-glycosylation could be affected by amino acid sequence, a series of test peptides was made containing substitutions at the sensitive positions. In vitro glycosylation of the peptides confirmed that the acceptor status of threonine was markedly influenced by the residues present at positions -6, -1 and +3. Circular dichroism indicated that peptides which had random structure were glycosylated, except when they contained a charged residue at position -1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号