首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We have developed DNA microarrays containing stem–loop DNA probes with short single-stranded overhangs immobilized on a Packard HydroGel chip, a 3-dimensional porous gel substrate. Microarrays were fabricated by immobilizing self-complementary single-stranded oligonucleotides, which adopt a partially duplex structure upon denaturing and re-annealing. Hybridization of single-stranded DNA targets to such arrays is enhanced by contiguous stacking interactions with stem–loop probes and is highly sequence specific. Subsequent enzymatic ligation of the targets to the probes followed by stringent washing further enhances the mismatched base discrimination. We demonstrate here that these microarrays provide excellent specificity with signal-to-background ratios of from 10- to 300-fold. In a comparative study, we demonstrated that HydroGel arrays display 10–30 times higher hybridization signals than some solid surface DNA microarrays. Using Sanger sequencing reactions, we have also developed a method for preparing nested 3′-deletion sets from a target and evaluated the use of stem–loop DNA arrays for detecting p53 mutations in the deletion set. The stem–loop DNA array format is simple, robust and flexible in design, thus it is potentially useful in various DNA diagnostic tests.  相似文献   

2.
We have demonstrated that the dynamics of nucleic acid hybridization in microarrays depend on the physical structure of immobilized probes. We have immobilized oligonucleotide-3'-phosphates with and without stem-loop structure on epoxylated glass surface, followed by hybridization under different conditions, viz., hybridization buffer, pH condition, temperature and ionic strength. In a comparative study, we have established that array constructed using probes with stem-loop structure displayed approximately 2.2 times higher hybridization signals than the probes without it. The stem-loop DNA array format is simple and flexible in design and thus potentially useful in various DNA diagnostic tests.  相似文献   

3.
Hu Z  Troester M  Perou CM 《BioTechniques》2005,38(1):121-124
Recently, long oligonucleotide (60- to 70-mer) microarrays for two-color experiments have been developed and are gaining widespread use. In addition, when there is limited availability of mRNA from tissue sources, RNA amplification can and is being used to produce sufficient quantities of cRNA for microarray hybridization. Taking advantage of the selective degradation of RNA under alkaline conditions, we have developed a method to "strip" glass-based oligonucleotide microarrays that use fluorescent RNA in the hybridization, while leaving the DNA oligonucleotide probes intact and usable for a second experiment. Replicate microarray experiments conducted using stripped arrays showed high reproducibility, however, we found that arrays could only be stripped and reused once without compromising data quality. The intraclass correlation (ICC) between a virgin array and a stripped array hybridized with the same sample showed a range of 0.90-0.98, which is comparable to the ICC of two virgin arrays hybridized with the same sample. Using this method, once-stripped oligonucleotide microarrays are usable, reliable, and help to reduce costs.  相似文献   

4.
The effects of metal-enhanced fluorescence (MEF) have been measured for two dyes commonly used in DNA microarrays, Cy3 and Cy5. Silver island films (SIFs) grown on glass microscope slides were used as substrates for MEF DNA arrays. We examined MEF by spotting biotinylated, singly-labeled 23 bp DNAs onto avidin-coated SIF substrates. The fluorescence enhancement was found to be dependent on the DNA spotting concentration: below ~12.5 μM, MEF increased linearly, and at higher concentrations MEF remained at a constant maximum of 28-fold for Cy5 and 4-fold for Cy3, compared to avidin-coated glass substrates. Hybridization of singly-labeled oligonucleotides to arrayed single-stranded probes showed lower maximal MEF factors of 10-fold for Cy5 and 2.5-fold for Cy3, because of the smaller amount of immobilized fluorophores as a result of reduced surface hybridization efficiencies. We discuss how MEF can be used to increase the sensitivity of DNA arrays, especially for far red emitting fluorophores like Cy5, without significantly altering current microarray protocols.  相似文献   

5.
Loop-mediated isothermal amplification (LAMP), in which a specific DNA sequence can be directly amplified under isothermal conditions, yields DNA in large quantities of more than 500 microg/ml. We have developed a method to isolate single-stranded DNA fragments from LAMP products that are stem-loop DNAs with several inverted repeats of the target DNA. This method requires the TspRI restriction enzyme, a primer hybridized to the 3' overhanging sequence at its cleavage site, and a DNA polymerase with strand displacement activity. The LAMP products are digested with TspRI and are then extended using the primer, producing the strand-specific DNA fragments. All processes, from LAMP reaction to primer extension, can be carried out at the same temperature. The use of strand-specific DNA would be conducive for detection by hybridization technique such as DNA microarrays.  相似文献   

6.
The specific structural features of stem-loop (hairpin) DNA constructs provide increased specificity of target recognition. Recently, several robust assays have been developed that exploit the potential of structurally constrained oligonucleotides to hybridize with their cognate targets. Here, I review new diagnostic approaches based on the formation of stem-loop DNA oligonucleotides: molecular beacon methodology, suppression PCR approaches and the use of hairpin probes in DNA microarrays. The advantages of these techniques over existing ones for sequence-specific DNA detection, amplification and manipulation are discussed.  相似文献   

7.
Specificity and sensitivity are important factors affecting DNA microarrays. Stem-loop DNA probes (SLPs) can be more specific in their recognition of target sequences than linear DNA probes, but unless they are carefully designed, surface interactions can disrupt the native stem-loop structure. In this study, we show how dendron-modified surfaces with well-defined, uniform spacing of aldehyde chemical functionalities offer an ideal substrate to immobilize SLPs and use them to detect nucleic acid targets. The mesospacing provided by the dendron-modified surfaces produces a solution-like environment that allows the SLPs to detect target nucleic acids at concentrations as low as 1pM in concentration.  相似文献   

8.
We have fabricated double-stranded DNA (dsDNA) microarrays containing unimolecular hairpin dsDNA probes immobilized on glass slides. The unimolecular hairpin dsDNA microarrays were manufactured by four steps: Firstly, synthesizing single-stranded DNA (ssDNA) oligonucleotides with two reverse-complementary sequences at 3' hydroxyl end and an overhang sequence at 5' amino end. Secondly, microspotting ssDNA on glutaraldehyde-derived glass slide to form ssDNA microarrays. Thirdly, annealing two reverse-complementary sequences to form hairpin primer at 3' end of immobilized ssDNA and thus to create partial-dsDNA microarray. Fourthly, enzymatically extending hairpin primer to convert partial-dsDNA microarrays into complete-dsDNA microarray. The excellent efficiency and high accuracy of the enzymatic synthesis were demonstrated by incorporation of fluorescently labeled dUTPs in Klenow extension and digestion of dsDNA microarrays with restriction endonuclease. The accessibility and specificity of the DNA-binding proteins binding to dsDNA microarrays were verified by binding Cy3-labeled NF-kappaB to dsDNA microarrays. The dsDNA microarrays have great potential to provide a high-throughput platform for investigation of sequence-specific DNA/protein interactions involved in gene expression regulation, restriction and so on.  相似文献   

9.
Successful use and reliability of microarray technology is highly dependent on several factors, including surface chemistry parameters and accessibility of cDNA targets to the DNA probes fixed onto the surface. Here, we show that functionalisation of glass slides with homemade dendrimers allow production of more sensitive and reliable DNA microarrays. The dendrimers are nanometric structures of size-controlled diameter with aldehyde function at their periphery. Covalent attachment of these spherical reactive chemical structures on amino-silanised glass slides generates a reactive ~100 Å layer onto which amino-modified DNA probes are covalently bound. This new grafting chemistry leads to the formation of uniform and homogenous spots. More over, probe concentration before spotting could be reduced from 0.2 to 0.02 mg/ml with PCR products and from 20 to 5 µM with 70mer oligonucleotides without affecting signal intensities after hybridisation with Cy3- and Cy5-labelled targets. More interestingly, while the binding capacity of captured probes on dendrimer-activated glass surface (named dendrislides) is roughly similar to other functionalised glass slides from commercial sources, detection sensitivity was 2-fold higher than with other available DNA microarrays. This detection limit was estimated to 0.1 pM of cDNA targets. Altogether, these features make dendrimer-activated slides ideal for manufacturing cost-effective DNA arrays applicable for gene expression and detection of mutations.  相似文献   

10.
11.
In the course of exploring the hybridization properties of glass DNA microarrays, multi-stranded DNA structures were observed that could not be accounted for by classical Watson-Crick base pairing. Non-denatured double-stranded DNA array elements were shown to hybridize to single-stranded (ss)DNA probes. Similarly, ssDNA array elements were shown to bind duplex DNA probes. This led to a series of experiments demonstrating the formation of multi-stranded DNA structures on the surface of microarrays. These structures were observed with a number of heterogeneous sequences, including both purine and pyrimidine bases, with shared sequence identity between the ssDNA and one of the duplex strands. Furthermore, we observed a strong binding preference near the ends of duplexes containing a 3'-homologous strand. We suggest that such binding interactions on cationic solid surfaces could serve as a model for a number of biological processes mediated through multi-stranded DNA.  相似文献   

12.
The use of ordered, high-aspect ratio nanopillar arrays on the surface of silicon-based chips to enhance signal intensity in DNA microarrays is reported. These nanopillars consisting either of a single silicon dioxide substrate or a dual silicon/silicon dioxide substrate are fabricated using deep-UV lithography followed by reactive ion etching. These pillar type arrays provide a three-dimensional high surface-density platform that increases the immobilization capacity of captured probes, enhances target accessibility and reduces background noise interference in DNA microarrays, leading to improved signal-to-noise ratios, sensitivity and specificity. Consequently, it was found that the use of such nanopillars enhanced the hybridization signals by up to seven times as compared to silicon dioxide thin film substrates. In addition, hybridization of synthetic targets to capture probes that contained a single-base variation showed that the perfect matched duplex signals on dual-substrate nanopillars can be up to 23 times higher than the mismatched duplex signals, allowing the targets to be unambiguously identified. These results suggest that the nanopillars, particularly the dual-substrate pillars, are able to enhance the hybridization signals and discrimination power in nucleic acids-based detection, providing an alternative platform for improving the performance of DNA microarrays.  相似文献   

13.
Gamper HB  Arar K  Gewirtz A  Hou YM 《Biochemistry》2006,45(22):6978-6986
The existence of secondary structure in long single-stranded DNA and RNA is a serious obstacle to the practical use of short oligonucleotide probes (<20-mers). Here, we show that replication of a highly structured DNA in the presence of a unique set of dNTP analogues leads to synthesis of daughter DNA with a significantly reduced level of secondary structure. This replicated DNA, composed of 2-aminoadenine, 2-thiothymine, 7-deazaguanine, and cytosine bases, was readily accessible to tiled 8-mer LNA and 15-mer DNA probes, whereas an unmodified version of the same DNA was inaccessible. Importantly, while the base analogues enhanced probe-target stability, they did not significantly reduce the specificity of base pairing. The availability of structure-free DNA targets should facilitate the use of short oligonucleotide probes and promote development of generic oligonucleotide microarrays.  相似文献   

14.
15.
A simple and efficient PCR method was developed for generating dye- or radiolabeled single-stranded DNA targets or probes used for hybridization studies. The method involved the use of a pair of long primers with high annealing temperatures and a short, labeled primer with a low annealing temperature in a PCR consisting of two cycles at different temperatures. We used this method to generate dye Cy 5-labeled and [32P]-radiolabeled single-stranded DNA targets and probes. These labeled probes were used successfully for the microarray identification of point mutations in Mycobacterium tuberculosis genes and for the Northern blot detection of expression changes of the GATA-2 gene in Pneumocystis carinii-infected rat lungs.  相似文献   

16.
Visual DNA microarrays, based on gold label silver stain (GLSS) and coupled with multiplex asymmetrical PCR, were developed for simultaneous, sensitive and specific detection of Ureaplasma urealyticum and Chlamydia trachomatis. 5'-end-amino-modified oligonucleotides, which were immobilized on glass surface, acted as capturing probes that were designed to bind complementary biotinylated targets DNA. The gold-conjugated streptavidins were introduced to the microarray for specific binding to biotin. The black image of microarray spots, resulting from the precipitation of silver onto nanogold particles bound to streptavidins, were used to detect biotinylated targets DNA visually or with a visible light scanner. Multiplex asymmetrical PCR of U. urealyticum, C. trachomatis and Bacillus subtilis (used as positive control) was performed to prepare abundant biotinylated single-stranded targets DNA, which affected detection efficiency and sensitivity of hybridization on microarray. Plenty of clinical samples of U. urealyticum and C. trachomatis from infected patients were tested using home-made DNA microarrays. For its high sensitivity, good specificity, simplicity, cheapness and speed, the present visual gene-detecting technique has potential applications in clinical fields.  相似文献   

17.
18.
Dangling ends and surface-proximal tails of gene targets influence probe-target duplex formation and affect the signal intensity of probes on diagnostic microarrays. This phenomenon was evaluated using an oligonucleotide microarray containing 18-mer probes corresponding to the 16S rRNA genes of 10 waterborne pathogens and a number of synthetic and PCR-amplified gene targets. Signal intensities for Klenow/random primer-labeled 16S rRNA gene targets were dissimilar from those for 45-mer synthetic targets for nearly 73% of the probes tested. Klenow/random primer-labeled targets resulted in an interaction with a complex mixture of 16S rRNA genes (used as the background) 3.7 times higher than the interaction of 45-mer targets with the same mixture. A 7-base-long dangling end sequence with perfect homology to another single-stranded background DNA sequence was sufficient to produce a cross-hybridization signal that was as strong as the signal obtained by the probe-target duplex itself. Gibbs free energy between the target and a well-defined background was found to be a better indicator of hybridization signal intensity than the sequence or length of the dangling end alone. The dangling end (Gibbs free energy of -7.6 kcal/mol) was found to be significantly more prone to target-background interaction than the surface-proximal tail (Gibbs free energy of -64.5 kcal/mol). This study underlines the need for careful target preparation and evaluation of signal intensities for diagnostic arrays using 16S rRNA and other gene targets due to the potential for target interaction with a complex background.  相似文献   

19.
Microarrays have rapidly become an indispensable tool for gene analysis. Microarray experiments can be cost prohibitive, however, largely due to the price of the arrays themselves. Whilst different methods for stripping filter arrays on membranes have been established, only very few protocols are published for thermal and chemical stripping of microarrays on glass. Most of these protocols for stripping microarrays on glass were developed in combination with specific surface chemistry and different coatings for covalently immobilizing presynthesized DNA in a deposition process. We have developed a method for stripping commercial in situ microarrays using a multi-step procedure. We present a method that uses mild chemical degradation complemented by enzymatic treatment. We took advantage of the differences in biochemical properties of covalently linked DNA oligonucleotides on in situ synthesized microarrays and the antisense cRNA hybridization probes. The success of stripping protocols for microarrays on glass was critically dependent on the type of arrays, the nature of sample used for hybridization, as well as hybridization and washing conditions. The protocol employs alkali hydrolysis of the cRNA, several enzymatic degradation steps using RNAses and Proteinase K, combined with appropriate washing steps. Stripped arrays were rehybridized using the same protocols as for new microarrays. The stripping method was validated with microarrays from different suppliers and rehybridization of stripped in situ arrays yielded comparable results to hybridizations done on unused, new arrays with no significant loss in precision or accuracy. We show that stripping of commercial in situ arrays is feasible and that reuse of stripped arrays gave similar results compared to unused ones. This was true even for biological samples that show only slight differences in their expression profiles. Our analyses indicate that the stripping procedure does not significantly influence data quality derived from post-primary hybridizations. The method is robust, easy to perform, inexpensive, and results after reuse are of comparable accuracy to new arrays.  相似文献   

20.
DNA microarrays have been widely adopted by the scientific community for a variety of applications. To improve the performance of microarrays there is a need for a fundamental understanding of the interplay between the various factors that affect microarray sensitivity and specificity. We use lattice Monte Carlo simulations to study the thermodynamics and kinetics of hybridization of single-stranded target genes in solution with complementary probe DNA molecules immobilized on a microarray surface. The target molecules in our system contain 48 segments and the probes tethered on a hard surface contain 8-24 segments. The segments on the probe and target are distinct and each segment represents a sequence of nucleotides ( approximately 11 nucleotides). Each probe segment interacts exclusively with its unique complementary target segment with a single hybridization energy; all other interactions are zero. We examine how the probe length, temperature, or hybridization energy, and the stretch along the target that the probe segments complement, affect the extent of hybridization. For systems containing single probe and single target molecules, we observe that as the probe length increases, the probability of binding all probe segments to the target decreases, implying that the specificity decreases. We observe that probes 12-16 segments ( approximately 132-176 nucleotides) long gave the highest specificity and sensitivity. This agrees with the experimental results obtained by another research group, who found an optimal probe length of 150 nucleotides. As the hybridization energy increases, the longer probes are able to bind all their segments to the target, thus improving their specificity. The hybridization kinetics reveals that the segments at the ends of the probe are most likely to start the hybridization. The segments toward the center of the probe remain bound to the target for a longer time than the segments at the ends of the probe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号