首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Arabidopsis (ecotype Columbia-0) genes, AtDEF1 and AtDEF2, represent eukaryotic homologs of the essential prokaryotic gene encoding peptide deformylase. Both deduced proteins contain three conserved protein motifs found in the active site of all eubacterial peptide deformylases, and N-terminal extensions identifiable as chloroplast-targeting sequences. Radiolabeled full-length AtDEF1 was imported and processed by isolated pea (Pisum sativum L. Laxton's Progress No. 9) chloroplasts and AtDEF1 and 2 were immunologically detected in Arabidopsis leaf and chloroplast stromal protein extracts. The partial cDNAs encoding the processed forms of Arabidopsis peptide deformylase 1 and 2 (pAtDEF1 and 2, respectively) were expressed in Escherichia coli and purified using C-terminal hexahistidyl tags. Both recombinant Arabidopsis peptide deformylases had peptide deformylase activity with unique kinetic parameters that differed from those reported for the E. coli enzyme. Actinonin, a specific peptide deformylase inhibitor, was effective in vitro against Arabidopsis peptide deformylase 1 and 2 activity, respectively. Exposure of several plant species including Arabidopsis to actinonin resulted in chlorosis and severe reductions in plant growth and development. The results suggest an essential role for peptide deformylase in protein processing in all plant plastids.  相似文献   

2.
Enzyme IIImtl is part of the mannitol phosphotransferase system of Staphylococcus aureus and Staphylococcus carnosus and is phosphorylated by phosphoenolpyruvate in a reaction sequence requiring enzyme I (phosphoenolpyruvate-protein phosphotransferase) and the histidine-containing protein HPr. In this paper, we report the isolation of IIImtl from both S. aureus and S. carnosus and the characterization of the active center. After phosphorylation of IIImtl with [32P]PEP, enzyme I, and HPr, the phosphorylated protein was cleaved with endoproteinase Glu(C). The amino acid sequence of the S. aureus peptide carrying the phosphoryl group was found to be Gln-Val-Val-Ser-Thr-Phe-Met-Gly-Asn-Gly-Leu-Ala-Ile-Pro-His-Gly-Thr-Asp- Asp. The corresponding peptide from S. carnosus shows an equal sequence except that the first residue is Ala instead of Gln. These peptides both contain a single histidyl residue which we assume to carry the phosphoryl group. All proteins of the PTS so far investigated indeed carry the phosphoryl group attached to a histidyl residue. According to sodium dodecyl sulfate gels, the molecular weight of the IIImtl proteins was found to be 15,000. We have also determined the N-terminal sequence of both proteins. Comparison of the IIImtl peptide sequences and the C-terminal part of the enzyme IImtl of Escherichia coli reveals considerable sequence homology, which supports the suggestion that IImtl of E. coli is a fusion protein of a soluble III protein with a membrane-bound enzyme II. In particular, the homology of the active-center peptide of IIImtl of S. aureus and S. carnosus with the enzyme IImtl of E. coli allows one to predict the N-3 histidine phosphorylation site within the E. coli enzyme.  相似文献   

3.
Polypeptide deformylase (PDF) catalyzes the deformylation of polypeptide chains in bacteria. It is essential for bacterial cell viability and is a potential antibacterial drug target. Here, we report the crystal structures of polypeptide deformylase from four different species of bacteria: Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, and Escherichia coli. Comparison of these four structures reveals significant overall differences between the two Gram-negative species (E. coli and H. influenzae) and the two Gram-positive species (S. pneumoniae and S. aureus). Despite these differences and low overall sequence identity, the S1' pocket of PDF is well conserved among the four enzymes studied. We also describe the binding of nonpeptidic inhibitor molecules SB-485345, SB-543668, and SB-505684 to both S. pneumoniae and E. coli PDF. Comparison of these structures shows similar binding interactions with both Gram-negative and Gram-positive species. Understanding the similarities and subtle differences in active site structure between species will help to design broad-spectrum polypeptide deformylase inhibitor molecules.  相似文献   

4.
Peptide deformylase catalyzes the deformylation reaction of the amino terminal fMet residue of newly synthesized proteins in bacteria, and most likely in Plasmodium falciparum, and has therefore been identified as a potential antibacterial and antimalarial drug target. The structure of P. falciparum peptide deformylase, determined at 2.8 A resolution with ten subunits per asymmetric unit, is similar to the bacterial enzyme with the residues involved in catalysis, the position of the bound metal ion, and a catalytically important water structurally conserved between the two enzymes. However, critical differences in the substrate binding region explain the poor affinity of E. coli deformylase inhibitors and substrates toward the Plasmodium enzyme. The Plasmodium structure serves as a guide for designing novel antimalarials.  相似文献   

5.
A Staphylococcus aureus mutant conditionally defective in DNA ligase was identified by isolation of complementing plasmid clones that encode the S. aureus ligA gene. Orthologues of the putative S. aureus NAD(+)-dependent DNA ligase could be identified in the genomes of Bacillus stearothermophilus and other gram-positive bacteria and confirmed the presence of four conserved amino acid motifs, including motif I, KXDG with lysine 112, which is believed to be the proposed site of adenylation. DNA sequence comparison of the ligA genes from wild type and temperature-sensitive S. aureus strain NT64 identified a single base alteration that is predicted to result in the amino acid substitution E46G. The S. aureus ligA gene was cloned and overexpressed in Escherichia coli, and the enzyme was purified to near homogeneity. NAD(+)-dependent DNA ligase activity was demonstrated with the purified enzyme by measuring ligation of (32)P-labeled 30-mer and 29-mer oligonucleotides annealed to a complementary strand of DNA. Limited proteolysis of purified S. aureus DNA ligase by thermolysin produced products with apparent molecular masses of 40, 22, and 21 kDa. The fragments were purified and characterized by N-terminal sequencing and mass analysis. The N-terminal fragment (40 kDa) was found to be fully adenylated. A fragment from residues 1 to 315 was expressed as a His-tagged fusion in E. coli and purified for functional analysis. Following deadenylation with nicotinamide mononucleotide, the purified fragment could self-adenylate but lacked detectable DNA binding activity. The 21- and 22-kDa C-terminal fragments, which lacked the last 76 amino acids of the DNA ligase, had no adenylation activity or DNA binding activity. The intact 30-kDa C terminus of the S. aureus LigA protein expressed in E. coli did demonstrate DNA binding activity. These observations suggest that, as in the case with the NAD(+)-dependent DNA ligase from B. stearothermophilus, two independent functional domains exist in S. aureus DNA ligase, consisting of separate adenylation and DNA binding activities. They also demonstrate a role for the extreme C terminus of the ligase in DNA binding. As there is much evidence to suggest that DNA ligase is essential for bacterial survival, its discovery in the important human pathogen S. aureus indicates its potential as a broad-spectrum antibacterial target for the identification of novel antibiotics.  相似文献   

6.
An O6-methylguanine-DNA methyltransferase has been partially purified from calf thymus by conventional biochemical techniques. The enzyme was specifically radioactively labelled at the cysteine residue of the active site and further purified by attachment to a solid support. Following digestion with trypsin, a radioactive peptide containing the active site region of the protein was purified by size fractionation, ion exchange chromatography and reverse phase HPLC. The technique yielded an essentially homogeneous oligopeptide which was subjected to amino acid sequencing. The sequence adjacent to the acceptor cysteine residue of the bovine protein exhibits striking homology to the C-terminal methyl acceptor site of the E. coli Ada protein and the proposed acceptor sites of the E. coli Ogt and the B. subtilis Dat1 proteins.  相似文献   

7.
Human dermcidin, an anionic antimicrobial peptide expressed in the pons of the brain and the sweat glands, displays antimicrobial activity against pathogenic microorganisms such as Staphylococcus aureus and Candida albicans. Here, we describe the recombinant production of a 48 amino acid dermcidin variant with C-terminal homoserine lactone (DCD-1Hsl). Dermcidin coding sequence was cloned downstream of a 125 amino acid ketosteroid isomerase gene and upstream of a His6Tag sequence in pET-31b(+) vector and transformed into Escherichia coli. The fusion protein was expressed in the form of inclusion bodies, purified on His Bind Resin, and cleaved by CNBr to release recombinant DCD-1Hsl. Purification of rDCD-1Hsl was achieved by solid-phase extraction that yielded milligram amounts of peptide with more than 95% purity. Recombinant peptide showed antimicrobial activities against E. coli ML-35p, Salmonella typhimurium 5156, Listeria monocytogenes 264, S. aureus 29/58 (clinical isolate), and C. albicans K2 (clinical strain). The application of this expression/purification approach represents a fast and efficient method to prepare milligram quantities of dermcidin in its biologically active form.  相似文献   

8.
We determined the active site of penicillin-binding protein (PBP) 2 of Escherichia coli. A water-soluble form of PBP 2, which was constructed by site-directed mutagenesis, was purified by affinity chromatography, labeled with dansyl-penicillin, and then digested with a combination of proteases. The amino acid composition of the labeled chymotryptic peptide purified by HPLC was identical with that of the amino acid sequence, Ala-Thr-Gln-Gly-Val-Tyr-Pro-Pro-Ala-Ser330-Thr-Val-Lys-Pro (residues 321-334) of PBP 2, which was deduced from the nucleotide sequence of the pbpA gene encoding PBP 2. This amino acid sequence was verified by sequencing the labeled tryptic peptide containing the labeled chymotryptic peptide region. A mutant PBP 2 (thiol-PBP 2), constructed by site-directed mutagenesis to replace Ser330 with Cys, lacked the penicillin-binding activity. These findings provided evidence that Ser330 near the middle of the primary structure of PBP 2 is the penicillin-binding active-site residue, as predicted previously on the basis of the sequence homology. Around this active site, the sequence Ser-Xaa-Xaa-Lys was observed, which is conserved in the active-site regions of all E. coli PBPs so far studied, class A and class C beta-lactamases, and D-Ala carboxypeptidases. The COOH-terminal amino acid of PBP 2 was identified as His633.  相似文献   

9.
We report the characterization of the pyrimidine-specific ribonucleoside hydrolase from the hyperthermophilic archaeon Sulfolobus solfataricus (SsCU-NH). The gene SSO0505 encoding SsCU-NH was cloned and expressed in Escherichia coli and the recombinant protein was purified to homogeneity. SsCU-NH is a homotetramer of 140 kDa that recognizes uridine and cytidine as substrates. SsCU-NH shares 34% sequence identity with pyrimidine-specific nucleoside hydrolase from E. coli YeiK. The alignment of the amino acid sequences of SsCU-NH with nucleoside hydrolases whose 3D structures have been solved indicates that the amino acid residues involved in the calcium- and ribose-binding sites are preserved. SsCU-NH is highly thermophilic with an optimum temperature of 100 degrees C and is characterized by extreme thermodynamic stability (T(m) = 106 degrees C) and kinetic stability (100% residual activity after 1 h incubation at 90 degrees C). Limited proteolysis indicated that the only proteolytic cleavage site is localized in the C-terminal region and that the C-terminal peptide is necessary for the integrity of the active site. The structure of the enzyme determined by homology modeling provides insight into the proteolytic analyses as well as into mechanisms of thermal stability. This is the first nucleoside hydrolase from Archaea.  相似文献   

10.
Protein farnesyltransferase (FPT) is a 97 000 Da heterodimeric enzyme that catalyzes post-translational farnesylation of many cellular regulatory proteins including p21 Ras. To facilitate the construction of site-directed mutants, a novel translationally coupled, two-cistron Escherichia coli expression system for rat FPT has been developed. This expression system enabled yields of >5 mg of purified protein per liter of E.coli culture to be obtained. The E.coli-derived FPT demonstrated an activity comparable to that of protein isolated from other sources. The reported expression system was used to construct three beta-subunit C-terminal truncation mutants, Delta5, Delta10 and Delta14, which were designed to eliminate a lattice interaction between the beta-subunit C-terminus of one molecule and the active site of a symmetry-related molecule. Steady-state kinetic analyses of these mutants showed that deletion up to 14 residues at the C-terminus did not reduce the value of kcat; however, Km values for both peptide and FPP increased 2-3-fold. A new crystalline form of FPT was obtained for the Delta10 C-terminal mutant grown in the presence of the substrate analogs acetyl-Cys-Val-Ile-Met-COOH peptide and alpha-hydroxyfarnesylphosphonic acid. The crystals diffract to beyond 2.0 A resolution. The refined structure clearly shows that both substrate analogs adopt extended conformations within the FPT active site cavity.  相似文献   

11.
Hao B  Gong W  Rajagopalan PT  Zhou Y  Pei D  Chan MK 《Biochemistry》1999,38(15):4712-4719
While protein synthesis in bacteria begins with a formylated methionine, the formyl group of the nascent polypeptide is removed by peptide deformylase. Since eukaryotic protein synthesis does not involve formylation and deformylation at the N-terminus, there has been increasing interest in peptide deformylase as a potential target for antibacterial chemotherapy. Toward this end and to aid in the design of effective antibiotics targeting peptide deformylase, the structures of the protein-inhibitor complexes of both the cobalt and the zinc containing Escherichia coli peptide deformylase bound to the transition-state analogue, (S)-2-O-(H-phosphonoxy)-L-caproyl-L-leucyl-p-nitroanilide (PCLNA), have been determined. The proteins for both deformylase-inhibitor complexes show basically the same fold as for the native enzyme. The PCLNA inhibitor adopts an extended conformation and fits nicely into a hydrophobic cavity located near the metal site. On the basis of these structures, guidelines for the design of high-affinity deformylase inhibitors are suggested. As our results show that the protein residues which interact with the PCLNA inhibitor are conserved over a wide variety of species, we suggest that antibiotics targeting deformylase could have wide applicability.  相似文献   

12.
The sequence of the deoC gene of Escherichia coli K12 and the amino acid sequence of the corresponding protein, deoxyriboaldolase, has been established. The protein consists of 259 amino acids with a molecular weight of 27 737. The purified enzyme may exist both as a monomer and as a dimer. On the basis of amino acid composition, molecular weight and catalytic properties, the enzymes from E. coli and Salmonella typhimurium seem to be almost similar. They belong to the class I aldolases, which form Schiff base intermediates. Using data for the S. typhimurium enzyme, the lysine residue involved in the active site in the E. coli enzyme was tentatively identified.  相似文献   

13.
The cel-3 gene cloned from Fibrobacter succinogenes into Escherichia coli coded for the enzyme EG3, which exhibited both endoglucanase and cellobiosidase activities. The gene had an open reading frame of 1,974 base pairs, coding for a protein of 73.4 kilodaltons (kDa). However, the enzyme purified from the osmotic shock fluid of E. coli was 43 kDa. The amino terminus of the 43-kDa protein matched amino acid residue 266 of the protein coded for by the open reading frame, indicating proteolysis in E. coli. In addition to the 43-kDa protein, Western immunoblotting revealed a 94-kDa membranous form of the enzyme in E. coli and a single protein of 118 kDa in F. succinogenes. Thus, the purified protein appears to be a proteolytic degradation product of a native protein which was 94 kDa in E. coli and 118 kDa in F. succinogenes. The discrepancy between the molecular weight expected on the basis of the DNA sequence and the in vivo form may be due to anomalous migration during electrophoresis, to glycosylation of the native enzyme, or to fatty acyl substitution at the N terminus. One of two putative signal peptide cleavage sites bore a strong resemblance to known lipoprotein leader sequences. The purified 43-kDa peptide exhibited a high Km (53 mg/ml) for carboxymethyl cellulose but a low Km (3 to 4 mg/ml) for lichenan and barley beta-glucan. The enzyme hydrolyzed amorphous cellulose, and cellobiose and cellotriose were the major products of hydrolysis. Cellotriose, but not cellobiose, was cleaved by the enzyme. EG3 exhibited significant amino acid sequence homology with endoglucanase CelC from Clostridium thermocellum, and as with both CelA and CelC of C. thermocellum, it had a putative active site which could be aligned with the active site of hen egg white lysozyme at the highly conserved amino acid residues Asn-44 and Asp-52.  相似文献   

14.
S Y Wanda  R Curtiss  rd 《Journal of bacteriology》1994,176(13):3839-3850
The plasmid (pYA902) with the dextranase (dex) gene of Streptococcus sobrinus UAB66 (serotype g) produces a C-terminal truncated dextranase enzyme (Dex) with a multicomplex mass form which ranges from 80 to 130 kDa. The Escherichia coli-produced enzyme was purified and characterized, and antibodies were raised in rabbits. Purified dextranase has a native-form molecular mass of 160 to 260 kDa and specific activity of 4,000 U/mg of protein. Potential immunological cross-reactivity between dextranase and the SpaA protein specified by various recombinant clones was studied by using various antisera and Western blot (immunoblot) analysis. No cross-reactivity was observed. Optimal pH (5.3) and temperature (39 degrees C) and the isoelectric points (3.56, 3.6, and 3.7) were determined and found to be similar to those for dextranase purified from S. sobrinus. The dex DNA restriction map was determined, and several subclones were obtained. The nucleotide sequence of the dex gene was determined by using subclones pYA993 and pYA3009 and UAB66 chromosomal DNA. The open reading frame for dex was 4,011 bp, ending with a stop codon TAA. A ribosome-binding site and putative promoter preceding the start codon were identified. The deduced amino acid sequence of Dex revealed the presence of a signal peptide of 30 amino acids. The cleavage site for the signal sequence was determined by N-terminal amino acid sequence analysis for Dex produced in E. coli chi 2831(pYA902). The C terminus consists of a serine- and threonine-rich region followed by the peptide LPKTGD, 3 charged amino acids, 19 amino acids with a strongly hydrophobic character, and a charged pentapeptide tail, which are proposed to correspond to the cell wall-spanning region, the LPXTGX consensus sequence, and the membrane-anchoring domains of surface-associated proteins of gram-positive cocci.  相似文献   

15.
肽脱甲酰基酶 (peptidedeformylase ,PDF)存在于所有原核生物中是其生长、代谢、繁殖必不可少的关键酶 ,但不存在于人类与其他哺乳动物细胞内 ,因而被视为新一代广谱抗生素药物筛选的理想靶点。将肠球菌 (Enterococcusfaecium)肽脱甲酰基酶基因连接到高效蛋白表达载体pET 30 A( )中 ,并转入宿主大肠杆菌BL2 1 (DE3)中进行诱导表达。在该基因的诱导表达中 ,采用不同表达条件进行诱导表达 ,最终获得表达效率极高且可溶的肽脱甲酰基酶。从宿主细胞中提取分离该酶 ,并进行酶活性检测 ,诱导表达的肽脱甲酰基酶有很高的酶活性  相似文献   

16.
The mpd gene coding for a novel methyl parathion hydrolase (MPH) was previously reported and its putative open reading frame was also identified. To further confirm its coding region, the intact region encoding MPH was obtained by PCR and expressed in Escherichia coli as a hexa-His C-terminal fusion protein. The fusion protein was purified to homogeneity by metal-affinity chromatography. The enzyme activity and zymogram assay showed that the fusion protein was functional in degrading methyl parathion. The amino terminal sequencing of the purified recombinant MPH indicated that a signal peptide of the first 35 amino acids was cleaved from its precursor to form active MPH. A rat polyclonal antiserum was raised against the purified mature fusion protein. The results of Western blot and zymogram demonstrated that mature MPH in native Plesiomonas sp. strain M6 was also processed from its precursor by cleavage of a putative signal peptide at the amino terminus. The production of active MPH in E. coli was greatly improved after the coding region for the signal peptide was deleted. HPLC gel filtration of the purified mature recombinant MPH revealed that the MPH was a monomer.  相似文献   

17.
BACKGROUND: Peptide methionine sulphoxide reductases catalyze the reduction of oxidized methionine residues in proteins. They are implicated in the defense of organisms against oxidative stress and in the regulation of processes involving peptide methionine oxidation/reduction. These enzymes are found in numerous organisms, from bacteria to mammals and plants. Their primary structure shows no significant similarity to any other known protein. RESULTS: The X-ray structure of the peptide methionine sulphoxide reductase from Escherichia coli was determined at 3 A resolution by the multiple wavelength anomalous dispersion method for the selenomethionine-substituted enzyme, and it was refined to 1.9 A resolution for the native enzyme. The 23 kDa protein is folded into an alpha/beta roll and contains a large proportion of coils. Among the three cysteine residues involved in the catalytic mechanism, Cys-51 is positioned at the N terminus of an alpha helix, in a solvent-exposed area composed of highly conserved amino acids. The two others, Cys-198 and Cys-206, are located in the C-terminal coil. CONCLUSIONS: Sequence alignments show that the overall fold of the peptide methionine sulphoxide reductase from E. coli is likely to be conserved in many species. The characteristics observed in the Cys-51 environment are in agreement with the expected accessibility of the active site of an enzyme that reduces methionine sulphoxides in various proteins. Cys-51 could be activated by the influence of an alpha helix dipole. The involvement of the two other cysteine residues in the catalytic mechanism requires a movement of the C-terminal coil. Several conserved amino acids and water molecules are discussed as potential participants in the reaction.  相似文献   

18.
Peptide deformylase (PDF) has received considerable attention during the last few years as a potential target for a new type of antibiotics. It is an essential enzyme in eubacteria for the removal of the formyl group from the N terminus of the nascent polypeptide chain. We have solved the X-ray structures of four members of this enzyme family, two from the Gram-positive pathogens Streptococcus pneumoniae and Staphylococcus aureus, and two from the Gram-negative bacteria Thermotoga maritima and Pseudomonas aeruginosa. Combined with the known structures from the Escherichia coli enzyme and the recently solved structure of the eukaryotic deformylase from Plasmodium falciparum, a complete picture of the peptide deformylase structure and function relationship is emerging. This understanding could help guide a more rational design of inhibitors. A structure-based comparison between PDFs reveals some conserved differences between type I and type II enzymes. Moreover, our structures provide insights into the known instability of PDF caused by oxidation of the metal-ligating cysteine residue.  相似文献   

19.
Che X  Hu J  Wang L  Zhu Z  Xu Q  Lv J  Fu Z  Sun Y  Sun J  Lin G  Lu R  Yao Z 《Molecular and cellular biochemistry》2011,357(1-2):47-54
Peptide deformylase (PDF) is considered an attractive target for screening novel antibiotics. The PDF from Escherichia coli and Staphylococcus aureus are representative of the gram-negative species type of PDF (type I PDF) and the gram-positive species type of PDF (type II PDF), respectively. They could be used for screening broad-spectrum antibiotics. Herein, we cloned the def gene by PCR, inserted it into plasmid pET-22b-def, and transformed the plasmid into E. coli BL21 (DE3) cells, then the cells were induced by IPTG to express PDF. E. coli Ni(2+)-PDF was extracted and purified by ion-exchange chromatography and gel filtration chromatography. S. aureus PDFs were extracted and purified using the MagExtractor kit. The nickel form of S. aureus PDF was obtained by adding NiCl(2) to all reagents used for purification. Iron-enriched S. aureus PDF was obtained by adding FeCl(3) to the growth medium for E. coli BL21 (DE3) cells and adding FeCl(3) and catalase to all reagents used for purification. The activities of PDFs were analyzed, compared, and grouped according to the experimental conditions that produced optimal activity, and we used actinonin as an inhibitor of PDF and calculated the IC(50) value. We obtained high expression of E. coli and S. aureus PDF with high activity and stability. The function of PDFs was inhibited by actinonin in a dose-dependent manner. Results may be helpful for future mechanistic investigations of PDF as well as high-throughput screening for other PDF inhibitors.  相似文献   

20.
Restriction fragments of DNA from bacteriophage S phi-C of Staphylococcus aureus which carries the gene for staphylokinase, one of the plasminogen activators, were cloned onto plasmid pBR322. Recombinant plasmids carrying the 2.5 kilobase pair segment of S phi-C DNA confer on Escherichia coli cells the capacity to synthesize staphylokinase. The enzyme is synthesized in amounts comparable to that found in S. aureus, and irrespective of the orientation of cloned fragments and their insertion site on pBR322. The active enzyme produced by E. coli cells is preferentially recovered from the periplasmic space and in part excreted into the culture medium. It is indistinguishable from the enzyme produced by S. aureus in molecular weight, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and in antigenicity, as determined by the micro-Ouchterlony precipitation test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号