首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The structure of human pancreatic alpha-amylase has been determined to 1.8 A resolution using X-ray diffraction techniques. This enzyme is found to be composed of three structural domains. The largest is Domain A (residues 1-99, 169-404), which forms a central eight-stranded parallel beta-barrel, to one end of which are located the active site residues Asp 197, Glu 233, and Asp 300. Also found in this vicinity is a bound chloride ion that forms ligand interactions to Arg 195, Asn 298, and Arg 337. Domain B is the smallest (residues 100-168) and serves to form a calcium binding site against the wall of the beta-barrel of Domain A. Protein groups making ligand interactions to this calcium include Asn 100, Arg 158, Asp 167, and His 201. Domain C (residues 405-496) is made up of anti-parallel beta-structure and is only loosely associated with Domains A and B. It is notable that the N-terminal glutamine residue of human pancreatic alpha-amylase undergoes a posttranslational modification to form a stable pyrrolidone derivative that may provide protection against other digestive enzymes. Structure-based comparisons of human pancreatic alpha-amylase with functionally related enzymes serve to emphasize three points. Firstly, despite this approach facilitating primary sequence alignments with respect to the numerous insertions and deletions present, overall there is only approximately 15% sequence homology between the mammalian and fungal alpha-amylases. Secondly, in contrast, these same studies indicate that significant structural homology is present and of the order of approximately 70%. Thirdly, the positioning of Domain C can vary considerably between alpha-amylases. In terms of the more closely related porcine enzyme, there are four regions of polypeptide chain (residues 237-250, 304-310, 346-354, and 458-461) with significantly different conformations from those in human pancreatic alpha-amylase. At least two of these could play a role in observed differential substrate and cleavage pattern specificities between these enzymes. Similarly, amino acid differences between human pancreatic and salivary alpha-amylases have been localized and a number of these occur in the vicinity of the active site.  相似文献   

2.
Glycoside hydrolase family 77 (GH77) belongs to the alpha-amylase superfamily (Clan H) together with GH13 and GH70. GH77 enzymes are amylomaltases or 4-alpha-glucanotransferases, involved in maltose metabolism in microorganisms and in starch biosynthesis in plants. Here we characterized the amylomaltase from the hyperthermophilic bacterium Thermus thermophilus HB8 (Tt AMase). Site-directed mutagenesis of the active site residues (Asp293, nucleophile; Glu340, general acid/base catalyst; Asp395, transition state stabilizer) shows that GH77 Tt AMase and GH13 enzymes share the same catalytic machinery. Quantification of the enzyme's transglycosylation and hydrolytic activities revealed that Tt AMase is among the most efficient 4-alpha-glucanotransferases in the alpha-amylase superfamily. The active site contains at least seven substrate binding sites, subsites -2 and +3 favoring substrate binding and subsites -3 and +2 not, in contrast to several GH13 enzymes in which subsite +2 contributes to oligosaccharide binding. A model of a maltoheptaose (G7) substrate bound to the enzyme was used to probe the details of the interactions of the substrate with the protein at acceptor subsites +2 and +3 by site-directed mutagenesis. Substitution of the fully conserved Asp249 with a Ser in subsite +2 reduced the activity 23-fold (for G7 as a substrate) to 385-fold (for maltotriose). Similar mutations reduced the activity of alpha-amylases only up to 10-fold. Thus, the characteristics of acceptor subsite +2 represent a main difference between GH13 amylases and GH77 amylomaltases.  相似文献   

3.
D'Amico S  Gerday C  Feller G 《Gene》2000,253(1):95-105
The alpha-amylase sequences contained in databanks were screened for the presence of amino acid residues Arg195, Asn298 and Arg/Lys337 forming the chloride-binding site of several specialized alpha-amylases allosterically activated by this anion. This search provides 38 alpha-amylases potentially binding a chloride ion. All belong to animals, including mammals, birds, insects, acari, nematodes, molluscs, crustaceans and are also found in three extremophilic Gram-negative bacteria. An evolutionary distance tree based on complete amino acid sequences was constructed, revealing four distinct clusters of species. On the basis of multiple sequence alignment and homology modeling, invariable structural elements were defined, corresponding to the active site, the substrate binding site, the accessory binding sites, the Ca(2+) and Cl(-) binding sites, a protease-like catalytic triad and disulfide bonds. The sequence variations within functional elements allowed engineering strategies to be proposed, aimed at identifying and modifying the specificity, activity and stability of chloride-dependent alpha-amylases.  相似文献   

4.
5.
Chloride-activated alpha-amylases contain a noncatalytic triad, independent of the glycosidic active site, perfectly mimicking the catalytic triad of serine-proteases and of other active serine hydrolytic enzymes. Mutagenesis of Glu, His, and Ser residues in various alpha-amylases shows that this pattern is a structural determinant of the enzyme conformation that cannot be altered without losing the intrinsic stability of the protein. (1)H-(15)N NMR spectra of a bacterial alpha-amylase reveal proton signals that are identical with the NMR signature of catalytic triads and especially a deshielded proton involving a protonated histidine and displaying properties similar to that of a low barrier hydrogen bond. It is proposed that the H-bond between His and Glu of the noncatalytic triad is an unusually strong interaction, responsible for the observed NMR signal and for the weak stability of the triad mutants. Furthermore, a stringent template-based search of the Protein Data Bank demonstrated that this motif is not restricted to alpha-amylases, but is also found in 80 structures from 33 different proteins, amongst which SH2 domain-containing proteins are the best representatives.  相似文献   

6.
The structure of amylosucrase from Neisseria polysaccharea in complex with beta-D-glucose has been determined by X-ray crystallography at a resolution of 1.66 A. Additionally, the structure of the inactive active site mutant Glu328Gln in complex with sucrose has been determined to a resolution of 2.0 A. The D-glucose complex shows two well-defined D-glucose molecules, one that binds very strongly in the bottom of a pocket that contains the proposed catalytic residues (at the subsite -1), in a nonstrained (4)C(1) conformation, and one that binds in the packing interface to a symmetry-related molecule. A third weaker D-glucose-binding site is located at the surface near the active site pocket entrance. The orientation of the D-glucose in the active site emphasizes the Glu328 role as the general acid/base. The binary sucrose complex shows one molecule bound in the active site, where the glucosyl moiety is located at the alpha-amylase -1 position and the fructosyl ring occupies subsite +1. Sucrose effectively blocks the only visible access channel to the active site. From analysis of the complex it appears that sucrose binding is primarily obtained through enzyme interactions with the glucosyl ring and that an important part of the enzyme function is a precise alignment of a lone pair of the linking O1 oxygen for hydrogen bond interaction with Glu328. The sucrose specificity appears to be determined primarily by residues Asp144, Asp394, Arg446, and Arg509. Both Asp394 and Arg446 are located in an insert connecting beta-strand 7 and alpha-helix 7 that is much longer in amylosucrase compared to other enzymes from the alpha-amylase family (family 13 of the glycoside hydrolases).  相似文献   

7.
8.
9.
The gene for a novel alpha-amylase, designated AmyC, from the hyperthermophilic bacterium Thermotoga maritima was cloned and heterologously overexpressed in Escherichia coli. The putative intracellular enzyme had no amino acid sequence similarity to glycoside hydrolase family (GHF) 13 alpha-amylases, yet the range of substrate hydrolysis and the product profile clearly define the protein as an alpha-amylase. Based on sequence similarity AmyC belongs to a subgroup within GHF 57. On the basis of amino acid sequence similarity, Glu185 and Asp349 could be identified as the catalytic residues of AmyC. Using a 60-min assay, the maximum hydrolytic activity of the purified enzyme, which was dithiothreitol dependent, was found to be at 90 degrees C. AmyC displayed a remarkably high pH optimum of pH 8.5 and an unusual sensitivity towards both ATP and EDTA.  相似文献   

10.
A new microcalorimetric method for recording the kinetic parameters k(cat), K(m) and K(i) of alpha-amylases using polysaccharides and oligosaccharides as substrates is described. This method is based on the heat released by glycosidic bond hydrolysis. The method has been developed to study the active site properties of the cold-active alpha-amylase produced by an Antarctic psychrophilic bacterium in comparison with its closest structural homolog from pig pancreas. It is shown that the psychrophilic alpha-amylase is more active on large macromolecular substrates and that the higher rate constants k(cat) are gained at the expense of a lower affinity for the substrate. The active site is able to accommodate larger inhibitory complexes, resulting in a mixed-type inhibition of starch hydrolysis by maltose. A method for recording the binding enthalpies by isothermal titration calorimetry in a low-affinity system has been developed, allowing analysis of the energetics of weak ligand binding using the allosteric activator chloride. It is shown that the low affinity of the psychrophilic alpha-amylase for chloride is entropically driven. The high enthalpic and entropic contributions of activator binding suggest large structural fluctuations between the free and the bound states of the cold-active enzyme. The kinetic and thermodynamic data for the psychrophilic alpha-amylase indicate that the strictly conserved side-chains involved in substrate binding and catalysis possess an improved mobility, responsible for activity in the cold, and resulting from the disappearance of stabilizing interactions far from the active site.  相似文献   

11.
12.
Three active site residues (Asp199, Glu255, Asp329) and two substrate-binding site residues (His103, His328) of oligo-1,6-glucosidase (EC 3.2.1.10) from Bacillus cereus ATCC7064 were identified by site-directed mutagenesis. These residues were deduced from the X-ray crystallographic analysis and the comparison of the primary structure of the oligo-1,6-glucosidase with those of Saccharomyces carlsbergensis alpha-glucosidase, Aspergillus oryzae alpha-amylase and pig pancreatic alpha-amylase which act on alpha-1,4-glucosidic linkages. The distances between these putative residues of B. cereus oligo-1,6-glucosidase calculated from the X-ray analysis data closely resemble those of A. oryzae alpha-amylase and pig pancreatic alpha-amylase. A single mutation of Asp199-->Asn, Glu255-->Gln, or Asp329-->Asn resulted in drastic reduction in activity, confirming that three residues are crucial for the reaction process of alpha-1,6-glucosidic bond cleavage. Thus, it is identified that the basic mechanism of oligo-1,6-glucosidase for the hydrolysis of alpha-1,6-glucosidic linkage is essentially the same as those of other amylolytic enzymes belonging to Family 13 (alpha-amylase family). On the other hand, mutations of histidine residues His103 and His328 resulted in pronounced dissimilarity in catalytic function. The mutation His328-->Asn caused the essential loss in activity, while the mutation His103-->Asn yielded a mutant enzyme that retained 59% of the k0/Km of that for the wild-type enzyme. Since mutants of other alpha-amylases acting on alpha-1,4-glucosidic bond linkage lost most of their activity by the site-directed mutagenesis at their equivalent residues to His103 and His328, the retaining of activity by His103-->Asn mutation in B. cereus oligo-1,6-glucosidase revealed the distinguished role of His103 for the hydrolysis of alpha-1,6-glucosidic bond linkage.  相似文献   

13.
Möbitz H  Bruice TC 《Biochemistry》2004,43(30):9685-9694
Glutamate racemase (MurI) catalyzes the racemization of glutamate; two cysteine residues serve as catalytic acid and base. On the basis of the crystal structure of MurI from the hyperthermophilic bacterium Aquifex pyrophilus, we performed molecular dynamics (MD) simulations of six different systems to investigate stereochemistry, substrate ligation, and active site protonation state. The catalytic competence of individual systems was assessed by the abundance of reactive conformers. Only systems in which Cys70 is poised to deprotonate d-Glu were found to be catalytically competent (idem Cys178/l-Glu), in agreement with the experimentally observed stereochemistry of Lactobacillus fermentii MurI [Tanner, M. E. et al. (1993) Biochemistry 32, 3998-4006]. Only systems in which the alpha-amino group of l/d-Glu and the imidazole moiety of His are deprotonated are catalytically competent. The active site of MurI displays an unusual flexibility in substrate ligation, and several transitions between stable binding patterns were observed. In catalytically competent binding states, the conserved threonine residues 72, 114, and 117 ligate the alpha-carboxylate of Glu and the Asn71 amides ligate the alpha-amino group of Glu, whereas the delta-carboxylate of Glu is steered by electrostatic repulsion from the Asp7 and Glu147 side chain carboxylates. A network of hydrogen bonds controls the positioning of each thiol/thiolate. In what we term substrate flipping, Glu suddenly rotates into a binding pattern that resembles the post-racemization state of the other enantiomer, i.e., each enantiomer can be bound in two distinct states. Substrate flipping and unfavorable substrate binding successively trigger dissociation of the substrate, accompanied by an opening of the active site channel. We explain how the weak binding of Glu contributes to catalysis and suggest a mechanism by which binding mismatches are propagated into an opening of the active site.  相似文献   

14.
The X-ray structure analysis of a crystal of pig pancreatic alpha-amylase soaked with a rho-nitrophenyl-alpha-D-maltoside (pNPG2) substrate showed a pattern of electron density corresponding to the binding of a rho-nitrophenol unit at subsite -2 of the active site. Binding of the product to subsite -2 after hydrolysis of the pNPG2 molecules, may explain the low catalytic efficiency of the hydrolysis of pNPG2 by PPA. Except a small movement of the segment from residues 304-305 the typical conformational changes of the "flexible loop" (303-309), that constitutes the surface edge of the substrate binding cleft, were not observed in the present complex structure. This result supports the hypothesis that significant movement of the loop may depend on aglycone site being filled (Payan and Qian, J. Protein Chen. 22: 275, 2003). Structural analyses have shown that pancreatic alpha-amylases undergo an induced conformational change of the catalytic residue Asp300 upon substrate binding; in the present complex the catalytic residue is observed in its unliganded orientation. The results suggest that the induced reorientation is likely due to the presence of a sugar unit at subsite -1 and not linked to the closure of the flexible surface loop. The crystal structure was refined at 2.4 A resolution to an R factor of 17.55% (Rfree factor of 23.32%).  相似文献   

15.
The glucosyltransferase amylosucrase is structurally quite similar to the hydrolase alpha-amylase. How this switch in functionality is achieved is an important and fundamental question. The inactive E328Q amylosucrase variant has been co-crystallized with maltoheptaose, and the structure was determined by x-ray crystallography to 2.2 A resolution, revealing a maltoheptaose binding site in the B'-domain somewhat distant from the active site. Additional soaking of these crystals with maltoheptaose resulted in replacement of Tris in the active site with maltoheptaose, allowing the mapping of the -1 to +5 binding subsites. Crystals of amylosucrase were soaked with sucrose at different concentrations. The structures at approximately 2.1 A resolution revealed three new binding sites of different affinity. The highest affinity binding site is close to the active site but is not in the previously identified substrate access channel. Allosteric regulation seems necessary to facilitate access from this binding site. The structures show the pivotal role of the B'-domain in the transferase reaction. Based on these observations, an extension of the hydrolase reaction mechanism valid for this enzyme can be proposed. In this mechanism, the glycogen-like polymer is bound in the widest access channel to the active site. The polymer binding introduces structural changes that allow sucrose to migrate from its binding site into the active site and displace the polymer.  相似文献   

16.
R Schinzel  D Palm 《Biochemistry》1990,29(42):9956-9962
The role of Escherichia coli maltodextrin phosphorylase (EC 2.4.1.1) active site residues Glu637 and Tyr538 which line the sugar-phosphate contact region of the enzyme was investigated by site-directed mutagenesis. Substitution of Glu637 by an Asp or Gln residue reduced kcat to approximately 0.2% of wild-type activity, while the Km values were affected to a minor extent. This indicated participation of Glu637 in transition-state binding rather than in ground-state binding. 31P NMR analysis of the ionization state of enzyme-bound pyridoxal phosphate suggested that Glu637 is also involved in modulation of the protonation state of the coenzyme phosphate observed during catalysis. Despite loss of proposed hydrogen-bonded substrate contacts, the Tyr538Phe mutant enzyme retained more than 10% activity; the apparent affinity of all substrates was slightly decreased. Mutations at either site affected the error rate of the enzyme (ratio of hydrolysis/phosphorolysis). Besides a role in substrate binding, the hydrogen-bond network of Tyr538 supports the exclusion of water from the active site.  相似文献   

17.
Several chimeric alpha-amylases genes were constructed by an in vivo recombination technique from the Bacillus amyloliquefaciens and Bacillus licheniformis genes. One of the fusion amylases (hereafter BA2), consisting of residues 1-300 from B. amyloliquefaciens and 301-483 from B. licheniformis, has been extensively studied by X-ray crystallography at resolutions between 2.2 and 1.7 A. The 3-dimensional structure of the native enzyme was solved by multiple isomorphous replacement, and refined at a resolution of 1.7 A. It consists of 483 amino acids, organized similarly to the known B. lichiniformis alpha-amylase structure [Machius et al. (1995) J. Mol. Biol. 246, 545-559], but features 4 bound calcium ions. Two of these form part of a linear cluster of three ions, the central ion being attributed to sodium. This cluster lies at the junction of the A and B domains with one calcium of the cluster structurally equivalent to the major Ca(2+) binding site of fungal alpha-amylases. The third calcium ion is found at the interface of the A and C domains. BA2 contains a fourth calcium site, not observed in the B. licheniformis alpha-amylase structure. It is found on the C domain where it bridges the two beta-sheets. Three acid residues (Glu261, Asp328, and Asp231) form an active site similar to that seen in other amylases. In the presence of TRIS buffer, a single molecule of TRIS occupies the -1 subsite of the enzyme where it is coordinated by the three active-center carboxylates. Kinetic data reveal that BA2 displays properties intermediate to those of its parents. Data for crystals soaked in maltooligosaccharides reveal the presence of a maltotriose binding site on the N-terminal face of the (beta/alpha)(8) barrel of the molecule, not previously described for any alpha-amylase structure, the biological function of which is unclear. Data for a complex soaked with the tetrasaccharide inhibitor acarbose, at 1.9 A, reveal a decasaccharide moiety, spanning the -7 to +3 subsites of the enzyme. The unambiguous presence of three unsaturated rings in the (2)H(3) half-chair/(2)E envelope conformation, adjacent to three 6-deoxypyranose units, clearly demonstrates synthesis of this acarbose-derived decasaccharide by a two-step transglycosylation mechanism.  相似文献   

18.
Feller G  d'Amico D  Gerday C 《Biochemistry》1999,38(14):4613-4619
The thermal stability of the cold-active alpha-amylase (AHA) secreted by the Antarctic bacterium Alteromonas haloplanctis has been investigated by intrinsic fluorescence, circular dichroism, and differential scanning calorimetry. It was found that this heat-labile enzyme is the largest known multidomain protein exhibiting a reversible two-state unfolding, as demonstrated by the recovery of DeltaHcal values after consecutive calorimetric transitions, a DeltaHcal/DeltaHeff ratio close to unity, and the independence of unfolding thermodynamic parameters of scan rates. By contrast, the mesophilic alpha-amylases investigated here (from porcine pancreas, human salivary glands, yellow meal beetle, Bacillus amyloliquefaciens, and Bacillus licheniformis) unfold irreversibly according to a non-two-state mechanism. Unlike mesophilic alpha-amylases, the melting point of AHA is independent of calcium and chloride binding while the allosteric and structural functions of these ions are conserved. The thermostability of AHA at optimal conditions is characterized by a Tm of 43.7 degrees C, a DeltaHcal of 238 kcal mol-1, and a DeltaCp of 8.47 kcal mol-1 K-1. These values were used to calculate the Gibbs free energy of unfolding over a wide range of temperatures. This stability curve shows that (a) the specific DeltaGmax of AHA [22 cal (mol of residue)-1] is 4 times lower than that of mesophilic alpha-amylases, (b) group hydration plays a crucial role in the enzyme flexibility at low temperatures, (c) the temperature of cold unfolding closely corresponds to the lower limit of bacterial growth, and (d) the recombinant heat-labile enzyme can be expressed in mesophilic hosts at moderate temperatures. It is also argued that the cold-active alpha-amylase has evolved toward the lowest possible conformational stability of its native state.  相似文献   

19.
Chitinases are known to hydrolyze chitin polymers into smaller chitooligosaccharides. Chitinase from bacterium Serratia proteamaculans (SpChiD) is found to exhibit both hydrolysis and transglycosylation activities. SpChiD belongs to family 18 of glycosyl hydrolases (GH-18). The recombinant SpChiD was crystallized and its three-dimensional structure was determined at 1.49 Å resolution. The structure was refined to an R-factor of 16.2%. SpChiD consists of 406 amino acid residues. The polypeptide chain of SpChiD adopts a (β/α)8 triosephosphate isomerase (TIM) barrel structure. SpChiD contains three acidic residues, Asp149, Asp151 and Glu153 as part of its catalytic scheme. While both Asp149 and Glu153 adopt single conformations, Asp151 is observed in two conformations. The substrate binding cleft is partially obstructed by a protruding loop, Asn30 - Asp42 causing a considerable reduction in the number of available subsites in the substrate binding site. The positioning of loop, Asn30 - Asp42 appears to be responsible for the transglycosylation activity. The structure determination indicated the presence of sulfone Met89 (SMet89). The sulfone methionine residue is located on the surface of the protein at a site where extra domain is attached in other chitinases. This is the first structure of a single domain chitinase with hydrolytic and transglycosylation activities.  相似文献   

20.
Chitinase A (ChiA) from the bacterium Serratia marcescens is a hydrolytic enzyme, which cleaves beta-1,4-glycosidic bonds of the natural biopolymer chitin to generate di-N-acetyl-chitobiose. The refined structure of ChiA at 1.55 A shows that residue Asp313, which is located near the catalytic proton donor residue Glu315, is found in two alternative conformations of equal occupancy. In addition, the structures of the cocrystallized mutant proteins D313A, E315Q, Y390F, and D391A with octa- or hexa-N-acetyl-glucosamine have been refined at high resolution and the interactions with the substrate have been characterized. The obtained results clearly show that the active site is a semiclosed tunnel. Upon binding, the enzyme bends and rotates the substrate in the vicinity of the scissile bond. Furthermore, the enzyme imposes a critical "chair" to "boat" conformational change on the sugar residue bound to the -1 subsite. According to our results, we suggest that residues Asp313 and Tyr390 along with Glu315 play a central role in the catalysis. We propose that after the protonation of the substrate glycosidic bond, Asp313 that interacts with Asp311 flips to its alternative position where it interacts with Glu315 thus forcing the substrate acetamido group of -1 sugar to rotate around the C2-N2 bond. As a result of these structural changes, the water molecule that is hydrogen-bonded to Tyr390 and the NH of the acetamido group is displaced to a position that allows the completion of hydrolysis. The presented results suggest a mechanism for ChiA that modifies the earlier proposed "substrate assisted" catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号