首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Interactions of membrane-associated proteins play important roles in many cellular processes. The yeast two-hybrid assay is of limited utility for the analysis of such interactions, due to the need for soluble protein partners, whose interaction is assessed in the nucleus. The advent of the Ras-recruitment system (RRS) has enabled the study of membrane-associated proteins interacting with cytoplasmic proteins fused to Ras. Constitutive membrane association of the Ras fusion protein is expected to complement the growth defect of the yeast strain CDC25-2, assayed in the RRS, independent from the interaction with a membrane-bound partner. We describe the adaptation of the RRS to the analysis of interactions between two membrane-associated proteins using a model system. These results may facilitate the study of protein–protein interactions between membrane-bound proteins and further increase the utility of the RRS.  相似文献   

2.
Ras nanoclusters: molecular structure and assembly   总被引:2,自引:0,他引:2  
H-, N- and K-ras4B are lipid-anchored, peripheral membrane guanine nucleotide binding proteins. Recent work has shown that Ras proteins are laterally segregated into non-overlapping, dynamic domains of the plasma membrane called nanoclusters. This lateral segregation is important to specify Ras interactions with membrane-associated proteins, effectors and scaffolding proteins and is critical for Ras signal transduction. Here we review biological, in vitro and structural data that provide insight into the molecular basis of how palmitoylated Ras proteins are anchored to the plasma membrane. We explore possible mechanisms for how the interactions of H-ras with a lipid bilayer may drive nanocluster formation.  相似文献   

3.
Polarized cellular responses, for example, cell migration, require the co-ordinated assembly of signalling complexes at a particular subcellular location, such as the leading edge of cells. Small GTPases of the Ras superfamily play central roles in many (polarized) responses to growth factors, chemokines or integrin ligands. These small GTPases are functionally distinct, yet remarkably homologous in their primary sequence and especially in their effector domains. Therefore it has long been unclear how GTPase signalling specificity is regulated. Small GTPases carry a lipid anchor, in the context of a hypervariable region, which mediates membrane association. However, whereas the lipid has long been proposed to be the critical regulator of subcellular GTPase targeting, there is now increasing evidence that specific protein-protein interactions are important as well. This review discusses recent findings on GTPase targeting and proposes a revised model for GTPase signalling. In this model, the hypervariable domain acts in conjunction with the lipid tail to target the GTPase to specific membrane-associated protein complexes. Here, local GTPase activation occurs, leading to subsequent exposure of the effector domain, binding to effector proteins and the initiation of downstream signalling.  相似文献   

4.
Membrane anchorage of Ras proteins is important for their signaling and oncogenic potential. K-Ras4B (K-Ras), the Ras isoform most often mutated in human cancers, is the only Ras isoform where a polybasic motif contributes essential electrostatic interactions with the negatively charged cytoplasmic leaflet. Here we studied the effects of the cationic amphiphilic drug chlorpromazine (CPZ) on the membrane association of oncogenic K-Ras(G12V), cell proliferation, and apoptosis. Combining live cell microscopy, FRAP beam size analysis, and cell fractionation studies, we show that CPZ reduces the association of GFP-K-Ras(G12V) with the plasma membrane and increases its exchange between plasma membrane and cytoplasmic pools. These effects appear to depend on electrostatic interactions because the membrane association of another related protein that has a membrane-interacting polybasic cluster (Rac1(G12V)) was also affected, whereas that of H-Ras was not. The weakened association with the plasma membrane led to a higher fraction of GFP-K-Ras(G12V) in the cytoplasm and in internal membranes, accompanied by either cell cycle arrest (PANC-1 cells) or apoptosis (Rat-1 fibroblasts), the latter being in correlation with the targeting of K-Ras(G12V) to mitochondria. In accord with these results, CPZ compromised the transformed phenotype of PANC-1 cells, as indicated by inhibition of cell migration and growth in soft agar.  相似文献   

5.
Receptor-induced targeting of exchange factors to specific cellular membranes is the predominant mechanism for initiating and compartmentalizing signal transduction by Ras GTPases. The exchange factor RasGRP1 has a C1 domain that binds the lipid diacylglycerol and thus can potentially mediate membrane localization in response to receptors that are coupled to diacylglycerol-generating phospholipase Cs. However, the C1 domain is insufficient for targeting RasGRP1 to the plasma membrane. We found that a basic/hydrophobic cluster of amino acids within the plasma membrane-targeting domain of RasGRP1 is instead responsible for plasma membrane targeting. This basic/hydrophobic cluster binds directly to phospholipid vesicles containing phosphoinositides via electrostatic interactions with polyanionic phosphoinositide headgroups and insertion of a tryptophan into the lipid bilayer. B cell antigen receptor ligation and other stimuli induce plasma membrane targeting of RasGRP1 by activating the phosphoinositide 3-kinase signaling pathway, which generates phosphoinositides within the plasma membrane. Direct detection of phosphoinositides by the basic/hydrophobic cluster of RasGRP1 provides a novel mechanism for coupling and co-compartmentalizing phosphoinositide 3-kinase and Ras signaling and, in coordination with diacylglycerol detection by the C1 domain, gives RasGRP1 the potential to serve as an integrator of converging signals from the phosphoinositide 3-kinase and phospholipase C pathways.  相似文献   

6.
Dynamic assembly of spatially separated signaling platforms enables a cell to tune cellular outputs in response to different input stimuli. Understanding how a vast diversity in signaling responses can be generated from a limited protein repertoire requires knowledge of how cells maintain the segregation of proteins and thereby orchestrate their local activities. Ras proteins are subject to this type of precise regulation of localization, and thus activity, in space and time. A model emerges where different lipid anchors dynamically shuttle Ras between specific membrane compartments, where differences in the accessibility of signaling environments and in the residence time of Ras therein account for isoform-specific signaling responses.  相似文献   

7.
Ras-membrane interactions play important roles in signaling and oncogenesis. H-Ras and K-Ras have nonidentical membrane anchoring moieties that can direct them to different membrane compartments. Ras-lipid raft interactions were reported, but recent studies suggest that activated K-Ras and H-Ras are not raft resident. However, specific interactions of activated Ras proteins with nonraft sites, which may underlie functional differences and phenotypic variation between different Ras isoforms, are unexplored. Here we used lateral mobility studies by FRAP to investigate the membrane interactions of green fluorescent protein-tagged H- and K-Ras in live cells. All Ras isoforms displayed stable membrane association, moving by lateral diffusion and not by exchange with a cytoplasmic pool. The lateral diffusion rates of constitutively active K- and H-Ras increased with their expression levels in a saturable manner, suggesting dynamic association with saturable sites or domains. These sites are distinct from lipid rafts, as the activated Ras mutants are not raft resident. Moreover, they appear to be different for H- and K-Ras. However, wild-type H-Ras, the only isoform preferentially localized in rafts, displayed cholesterol-sensitive interactions with rafts that were independent of its expression level. Our findings provide a mechanism for selective signaling by different Ras isoforms.  相似文献   

8.
Ras signaling to its downstream effectors appears to include combinations of extracellular-signal-regulated Ras activation at the plasma membrane (PM) and endomembranes, dynamic lateral segregation in the PM, and translocation of Ras from the PM to intracellular compartments. These processes are governed by the C-terminal polybasic farnesyl domain in K-Ras 4B and by the cysteine-palmitoylated C-terminal farnesyl domains in H-Ras and N-Ras. K-Ras 4B has no palmitoylated cysteines. Depalmitoylation/repalmitoylation of H-/N-Ras proteins promotes their cellular redistribution and signaling by mechanisms as yet unknown, possibly involving chaperones. Palmitoylation of H-/N-Ras also promotes their association with 'rasosomes', randomly diffusing nanoparticles that apparently provide a means by which multiple copies of activated Ras and its signal can spread rapidly. Ubiquitination of H-Ras evidently targets it to the endosomes. The polybasic farnesyl domain of K-Ras 4B was shown to act as a target for Ca++/calmodulin, which sequesters the active protein from the PM, thereby facilitating its trafficking to Golgi apparatus and early endosomes. Protein kinase C-dependent phosphorylation of S181 in K-Ras 4B was shown to provide a regulated farnesyl-electrostatic switch on K-Ras 4B, which promotes its translocation to the mitochondria. All these translocation events are characterized by nonconventional trafficking of the farnesyl-modified Ras proteins and seem to govern the selectivity and probably also the robustness of the Ras signal. In this review, we discuss the various modifications and interactions of the farnesylated C-terminus, the trafficking of Ras proteins in the PM and between the PM and the endomembranes, and the relevance of the subcellular localization of Ras for Ras function.  相似文献   

9.
Src functions depend on its association with the plasma membrane and with specific membrane-associated assemblies. Many aspects of these interactions are unclear. We investigated the functions of kinase, SH2, and SH3 domains in Src membrane interactions. We used FRAP beam-size analysis in live cells expressing a series of c-Src-GFP proteins with targeted mutations in specific domains together with biochemical experiments to determine whether the mutants can generate and bind to phosphotyrosyl proteins. Wild-type Src displays lipid-like membrane association, whereas constitutively active Src-Y527F interacts transiently with slower-diffusing membrane-associated proteins. These interactions require Src kinase activity and SH2 binding, but not SH3 binding. Furthermore, overexpression of paxillin, an Src substrate with a high cytoplasmic population, competes with membrane phosphotyrosyl protein targets for binding to activated Src. Our observations indicate that the interactions of Src with lipid and protein targets are dynamic and that the kinase and SH2 domain cooperate in the membrane targeting of Src.  相似文献   

10.
J Goncalves  B Shi  X Yang    D Gabuzda 《Journal of virology》1995,69(11):7196-7204
Human immunodeficiency virus type 1 (HIV-1) encodes a Vif protein which is important for virus replication and infectivity. Vif is a cytoplasmic protein which exists in both membrane-associated and soluble forms. The membrane-associated form is an extrinsic membrane protein which is tightly associated with the cytoplasmic side of membranes. We have analyzed the mechanism of membrane targeting of Vif and its role in HIV-1 replication. Mutagenesis studies demonstrate that C-terminal basic domains are required for membrane association. Vif mutations which disrupt membrane association also inhibit HIV-1 replication, indicating that membrane localization of Vif is likely to be required for its biological activity in vivo. Membrane binding of Vif is almost completely abolished by trypsin treatment of membranes. These results demonstrate that membrane localization of Vif requires C-terminal basic domains and interaction with a membrane-associated protein(s). This interaction may serve to direct Vif to a specific cellular site, since immunofluorescence staining and plasma membrane fractionation studies show that Vif is localized predominantly to an internal cytoplasmic compartment rather than to the plasma membrane. The mechanism of membrane targeting of Vif is different in some respects from that of other extrinsic membrane proteins, such as Ras, Src, and MARCKS, which utilize a basic domain together with a lipid modification for membrane targeting. Membrane targeting of Vif is likely to play an important role in HIV-1 replication and thus may be a therapeutic target.  相似文献   

11.
Division site placement in Escherichia coli involves interactions of the MinD protein with MinC and MinE and with other MinD molecules to form membrane-associated polymeric structures. In this work, as part of a study of these interactions, we established that heterologous membrane-associated proteins such as MinD can be targeted to the yeast nuclear membrane, dependent only on the presence of a membrane-binding domain and a nuclear targeting sequence. Targeting to the nuclear membrane was equally effective using the intrinsic MinD membrane-targeting domain or the completely unrelated membrane-targeting domain of cytochrome b(5). The chimeric proteins differing in their membrane-targeting sequences were then used to establish the roles of membrane association and specificity of the membrane anchor in MinD interactions, using the yeast two-hybrid system. The chimeric proteins were also used to show that the membrane association of MinD and MinE in E. coli cells had no specificity for the membrane anchor, whereas formation of MinDE polar zones and MinE rings required the presence of the native MinD membrane-targeting sequence.  相似文献   

12.
Ras proteins regulate signaling pathways important for cell growth, differentiation, and survival. Oncogenic mutant Ras proteins are commonly expressed in human tumors, with mutations of the K-Ras isoform being most prevalent. To be active, K-Ras must undergo posttranslational processing and associate with the plasma membrane. We therefore devised a high-content screening assay to search for inhibitors of K-Ras plasma membrane association. Using this assay, we identified fendiline, an L-type calcium channel blocker, as a specific inhibitor of K-Ras plasma membrane targeting with no detectable effect on the localization of H- and N-Ras. Other classes of L-type calcium channel blockers did not mislocalize K-Ras, suggesting a mechanism that is unrelated to calcium channel blockade. Fendiline did not inhibit K-Ras posttranslational processing but significantly reduced nanoclustering of K-Ras and redistributed K-Ras from the plasma membrane to the endoplasmic reticulum (ER), Golgi apparatus, endosomes, and cytosol. Fendiline significantly inhibited signaling downstream of constitutively active K-Ras and endogenous K-Ras signaling in cells transformed by oncogenic H-Ras. Consistent with these effects, fendiline blocked the proliferation of pancreatic, colon, lung, and endometrial cancer cell lines expressing oncogenic mutant K-Ras. Taken together, these results suggest that inhibitors of K-Ras plasma membrane localization may have utility as novel K-Ras-specific anticancer therapeutics.  相似文献   

13.
Protein palmitoylation is a reversible lipid modification that plays critical roles in protein sorting and targeting to specific cellular compartments. The neuronal microtubule-regulatory phosphoproteins of the stathmin family (SCG10/stathmin 2, SCLIP/stathmin 3, and RB3/stathmin 4) are peripheral proteins that fulfill specific and complementary roles in the formation and maturation of the nervous system. All neuronal stathmins are localized at the Golgi complex and at vesicles along axons and dendrites. Their membrane anchoring results from palmitoylation of two close cysteine residues present within their homologous N-terminal targeting domains. By preventing palmitoylation with 2-bromopalmitate or disrupting the integrity of the Golgi with brefeldin A, we were able to show that palmitoylation of stathmins 2 and 3 likely occurs at the Golgi and is crucial for their specific subcellular localization and trafficking. In addition, this membrane binding is promoted by a specific set of palmitoyl transferases that localize with stathmins 2 and 3 at the Golgi, directly interact with them, and enhance their membrane association. The subcellular membrane-associated microtubule-regulatory activity of stathmins might then be fine-tuned by extracellular stimuli controlling their reversible palmitoylation, which can be viewed as a crucial regulatory process for specific and local functions of stathmins in neurons.  相似文献   

14.
Phosphodiesterases (PDEs) play key roles in cAMP compartmentalization, which is required for intracellular signaling processes, through specific subcellular targeting. Previously, we showed that the long and short forms of Aplysia PDE4 (ApPDE4), which are localized to the membranes of distinct subcellular organelles, play key roles in 5-hydroxytryptamine-induced synaptic facilitation in Aplysia sensory and motor synapses. However, the molecular mechanism of the isoform-specific distinct membrane targeting was not clear. In this study, we further investigated the molecular mechanism of the membrane targeting of the ApPDE4 long and short forms. We found that the membrane targeting of the long form was mediated by hydrophobic interactions, mainly via 16 amino acids at the N-terminal region, whereas the short form was targeted solely to the plasma membrane, mainly by nonspecific electrostatic interactions between their N termini and the negatively charged lipids such as the phosphatidylinositol polyphosphates PI4P and PI(4,5)P2, which are embedded in the inner leaflet of the plasma membrane. Moreover, oligomerization of the long or short form by interaction of their respective upstream conserved region domains, UCR1 and UCR2, enhanced their plasma membrane targeting. These results suggest that the long and short forms of ApPDE4 are distinctly targeted to intracellular membranes through their direct association with the membranes via hydrophobic and electrostatic interactions, respectively.  相似文献   

15.
In mammalian cells, a complex network of signaling pathways tightly regulates a variety of cellular processes, such as proliferation and differentiation. New insights from one of the most-important signaling cascades involved in oncogenesis, the Ras-Raf-MAPK pathway, suggest that the subcellular localisation and assembly of signaling modules of this pathway is crucial to control the biological response. This commonly requires membrane targeting events that are mediated by adaptor/scaffold proteins. Of particular interest is the translocation and complex formation of GTPase-activating proteins (GAPs), such as p120GAP, at the plasma membrane to inactivate Ras. Recent studies indicate that one member of the annexin family, annexin A6 acts as a targeting protein for p120GAP. This review discusses how annexin A6 modulates the involvement of negative regulators of the Ras-Raf-MAPK pathway contributing to Ras inactivation.  相似文献   

16.
Ras GTPases regulate cellular growth and differentiation and are modulated by myriad stimuli including growth factors, cytokines, antigens, and UV irradiation. Ras GTPases are molecular switches that are active when GTP-bound and inactive when GDP-bound. The ability of these GTPases to signal requires that the GTP-bound form engage downstream effectors, interactions that occur only on the cytosolic surface of cellular membranes. Ras family proteins include H-Ras, N-Ras, K-Ras, and Rap1. Insight into the regulation and signaling properties of these molecules has come largely from in vitro studies relying on cellular extracts prepared following cellular stimulation. Since Ras GTPases are expressed on multiple cellular compartments that include the plasma membrane, vesicles derived from the plasma membrane, and other internal membranes such as the ER and Golgi complex, analysis of how their spatial distribution modulates signaling has remained unknown. We have developed fluorescent, GFP-based probes capable of selectively binding GTP-bound Ras or Rap1 in living cells. We have used these reporters to examine sites of cellular activation of Ras and Rap1 during growth factor stimulation. These studies have revealed new insights into the platforms from which these GTPases signal and have led to the hypothesis that GTPase signaling is modulated in a compartmentalized fashion. Here, we describe the design and implementation of fluorescent probes for Ras and Rap1.  相似文献   

17.
Ras super-family small GTPases regulate diverse cellular processes such as vesicular transport and signal transduction. Critical to these activities is the ability of these proteins to target to specific intracellular membranes. To allow association with membranes Ras-related GTPases are post-translationally modified by covalent attachment of prenyl groups to conserved cysteine residues at or near their C-terminus. Here we used the HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase (HMGCR) inhibitor mevastatin to develop a ‘prenylation block-and-release’ assay that allows membrane targeting of prenylated proteins to be visualized in living cells. Using this assay we investigated the cytosol to membrane targeting of several small GTPases to compartments of the secretory and endocytic pathways. We found that all Rabs tested were targeted directly to the membrane on which they reside at steady-state and not via an intermediate location as reported for Ras and Rho proteins. However, we observed that the kinetics of cytosol to membrane targeting differed for each Rab tested. Comparison of the mevastatin sensitivity and kinetics of membrane targeting of Rab23, Rab23 prenylation motif mutants and H-Ras revealed that these parameters are strongly dependent upon the prenyl transferase with Rab geranylgeranyl transferase substrates exhibiting higher sensitivity and requiring greater time to recover from mevastatin inhibition than farnesyl transferase substrates. We propose that this assay is a useful tool to investigate the kinetics, biological functions and the mechanisms of membrane targeting of prenylated proteins.  相似文献   

18.
Although specific proteins have been identified that regulate the membrane association and facilitate intracellular transport of prenylated Rho- and Rab-family proteins, it is not known whether cellular proteins fulfill similar roles for other prenylated species, such as Ras-family proteins. We used a previously described method to evaluate how several cellular proteins, previously identified as potential binding partners (but not effectors) of K-ras4B, influence the dynamics of K-ras association with the plasma membrane. Overexpression of either PDEδ or PRA1 enhances, whereas knockdown of either protein reduces, the rate of dissociation of K-ras from the plasma membrane. Inhibition of calmodulin likewise reduces the rate of K-ras dissociation from the plasma membrane, in this case in a manner specific for the activated form of K-ras. By contrast, galectin-3 specifically reduces the rate of plasma membrane dissociation of activated K-ras, an effect that is blocked by the K-ras antagonist farnesylthiosalicylic acid (salirasib). Multiple cellular proteins thus control the dynamics of membrane association and intercompartmental movement of K-ras to an important degree even under basal cellular conditions.  相似文献   

19.
20.
The HIV-1 pathogenicity factor Nef enhances viral replication by modulation of multiple host cell transport and signaling pathways. Nef associates with membranes via an N-terminal Src homology 4 (SH4) domain, and membrane association is believed to be essential for its biological functions. At which subcellular site(s) Nef exerts its different functions and how kinetics of membrane interactions contribute to its biological activity are unknown. To address how specific characteristics of Nef membrane association affect its biological properties, the SH4 domain of Nef was replaced by heterologous membrane targeting domains. The use of a panel of heterologous SH4 domains resulted in chimeric Nef proteins with distinct steady state subcellular localization, membrane association efficiency, and anterograde transport routes. Irrespective of these modifications, cardinal Nef functions affecting host cell vesicular transport and actin dynamics were fully preserved. In contrast, stable targeting of Nef to the surface of mitochondria, peroxisomes, or the Golgi apparatus, and thus prevention of plasma membrane delivery, caused potent and broad loss of Nef activity. These results support the concept that Nef adopts its active conformation in the membrane-associated state but exclude that membrane-associated Nef simply acts by recruiting soluble factors independently of its local microenvironment. Rather than its steady state subcellular localization or membrane affinity, the ability to undergo dynamic anterograde and internalization cycles appear to determine Nef function. These results reveal that functional membrane interactions of Nef underlie critical spatiotemporal regulation and suggest that delivery to distinct subcellular sites via such transport cycles provides the basis for the multifunctionality of Nef.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号