首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X. K. Yuan 《Photosynthetica》2016,54(3):475-477
In order to investigate the effect of day/night temperature difference (DIF) on photosynthetic characteristics of tomato plants (Solanum lycopersicum, cv. Jinguan 5) at fruit stage, an experiment was carried out in climate chambers. Five day/night temperature regimes (16/34, 19/31, 25/25, 31/19, and 34/16°C) with respective DIFs of -18, -12, 0, +12, and +18 were used and measured at mean daily temperature of 25°C. The results showed that chlorophyll (Chl) a, Chl b, net photosynthetic rate (PN), stomatal conductance (gs), maximum quantum yield of PSII photochemistry (Fv/Fm), effective quantum yield of PSII photochemistry (?PSII), and photochemical quenching (qp) significantly increased under positive DIF, while they decreased with negative DIF. In contrast, the Chl a/b ratio and nonphotochemical quenching (NPQ) decreased under positive DIF, while increased with negative DIF. Chl a, Chl b, PN, gs, Fv/Fm, ?PSII, and qp were larger under +12 DIF than those at +18 DIF, while Chl a/b and NPQ showed an opposite trend.  相似文献   

2.
Arbuscular mycorrhizal fungi (AMF) can promote plant growth performance, but their effectiveness varies depending on soil nitrogen (N) availability. To clarify the effectiveness of exogenous AMF along an N-fertilization gradient (0, 2, 10, 20, and 30 mM), the impacts of exogenous Rhizophagus irregularis and N on the growth, photochemical activity, and nutritional status of Populus?×?canadensis ‘Neva’ in natural soil were evaluated in a pot experiment. The results showed that the 10 mM N level was the optimal fertilization regime with the highest promotion effect on plant growth and the maximum quantum yield of photosystem II (PSII) (Fv/Fm). Excess N (20 and 30 mM) fertilization reduced the actual quantum yield of PSII (ФPSII) and the Fv/Fm of the plants. Regardless of the N availability, inoculated plants exhibited greater Fv/Fm values than did non-inoculated plants. The biomass of inoculated plants was significantly higher compared with the control under low N levels (0 and 2 mM). Under high N levels, inoculated plants showed significant increases in ФPSII. Moreover, the nutrient imbalance of plants inoculated with exogenous R. irregularis was eased by increasing P, Fe, Mn and Cu uptake in roots and higher P, Ca, Mg, Fe, Mn and Zn concentrations in leaves. Moreover, the Fv/Fm and ФPSII exhibited positive correlations with P, Ca, Mg and Zn concentrations in leaves. In conclusion, inoculation with exogenous R. irregularis can benefit plant fitness by improving the photochemical capacity and nutrient composition of poplar under different N levels.  相似文献   

3.
Heat stress is one of the main abiotic stresses that limit plant growth. The effects of high temperature on oxidative damage, PSII activity and D1 protein turnover were studied in three wheat varieties with different heat susceptibility (CS, YN949 and AK58). The results showed that heat stress induced lower lipid peroxidation in AK58 and YN949 than CS, which was related to different changes of SOD, CAT, POD and H2O2. Similarly, AK58 and YN949 performed better PSII photochemical efficiency (Fv/Fm, ΦPSII and ETR) under high temperature, which was attributed to rapid synthesis and degradation of D1 protein. Moreover, higher expression of D1 protein turnover-related genes (PsbA, STN8, PBCP, Deg1, Deg2, Deg5, Deg8, FtsH1/5 and FtsH2/8) and SOD activity in AK58 and YN949 under normal conditions also established a basis for acclimatizing high temperatures, thereby alleviating PSII photoinhibition and reducing oxidative damage when exposed to heat stress.  相似文献   

4.
In this study, we have compared the photosynthetic characteristics of two contrasting species of Tradescantia plants, T. fluminensis (shade-tolerant species), and T. sillamontana (light-resistant species), grown under the low light (LL, 50–125 µmol photons m?2 s?1) or high light (HL, 875–1000 µmol photons m?2 s?1) conditions during their entire growth period. For monitoring the functional state of photosynthetic apparatus (PSA), we measured chlorophyll (Chl) a emission fluorescence spectra and kinetics of light-induced changes in the heights of fluorescence peaks at 685 and 740 nm (F 685 and F 740). We also compared the light-induced oxidation of P700 and assayed the composition of carotenoids in Tradescantia leaves grown under the LL and HL conditions. The analyses of slow induction of Chl a fluorescence (SIF) uncovered different traits in the LL- and HL-grown plants of ecologically contrasting Tradescantia species, which may have potential ecophysiological significance with respect to their tolerance to HL stress. The fluorometry and EPR studies of induction events in chloroplasts in situ demonstrated that acclimation of both Tradescantia species to HL conditions promoted faster responses of their PSA as compared to LL-grown plants. Acclimation of both species to HL also caused marked changes in the leaf anatomy and carotenoid composition (an increase in Violaxanthin?+?Antheraxantin?+?Zeaxanthin and Lutein pools), suggesting enhanced photoprotective capacity of the carotenoids in the plants grown in nature under high irradiance. Collectively, the results of the present work suggest that the mechanisms of long-term PSA photoprotection in Tradescantia are based predominantly on the light-induced remodeling of pigment-protein complexes in chloroplasts.  相似文献   

5.
Nitrogen (N) is the key factor limiting photosynthetic processes and crop yield. Little is known about the response of leaf gas exchange of spring triticale (Triticosecale Wittm.) to N supply. The effect of N fertilizers on different gas exchange variables, i.e., photosynthetic rate (A), transpiration rate (E), stomatal conductance (g s), instantaneous water use efficiency (WUE) and maximum quantum yield of photosystem II (PSII) (F v/F m), chlorophyll index (SPAD, soil–plant analysis development), and the relationship of these variables with yield were studied in spring triticale grown under field conditions. Six treatments of N—0, 90, 180, 90 + 30, 90 + 30 + 30 kg ha?1 (applied as ammonium nitrate, AN) and one treatment of N 90 + 30 + 30 kg ha?1 (applied as urea ammonium nitrate solution, UAN) were compared. The analysis of variance showed that throughout the triticale growing season, N fertilization had significant effects on A, WUE, g s and SPAD. On average, N fertilizer application increased A values by 14–70%. E and F v/F m values were not influenced by N fertilization levels. The effect of growth stage and year on gas exchange variables and F v/F m and SPAD was found to be significant. At different growth stages, A values varied and maximum ones were reached at BBCH 31–33 (decimal code system of growth stages) and BBCH 59. With aging, values of A decreased independently of N fertilization level. The gas exchange variables were equally affected by both fertilizer forms. The interplay among grain yield, leaf gas exchange variables, F v/F m and SPAD of spring triticale was estimated. The statistical analysis showed that grain yield positively and significantly correlated with A and SPAD values throughout the growing season.  相似文献   

6.
The effects of exogenous applied proline (Pro), on photosystem II (PSII) photochemistry of drought stressed (DS) 4-week old Arabidopsis thaliana plants, was studied by using chlorophyll (chl) fluorescence imaging. The maximum quantum yield of PSII photochemistry (F v /F m) in DS plants decreased significantly to 77% of that of the control value, suggesting that DS plants could not maintain PSII function, possibly due to accelerated photoinhibition of PSII. Free Pro and total soluble sugars (SS) increased, in response to DS. Exogenous foliar application of Pro by spraying, led to a remarkable increase in the accumulation of Pro and surprisingly also of SS. Both of them served to scavenge reactive oxygen species (ROS), as it was evident by the decreased lipid peroxidation level measured as malondialdehyde (MDA). DS plants sprayed with Pro showed a tolerance to photoinhibition, this indicated by F v/F m being close to values typical of healthy leaves by maintaining more than 98% of PSII function. Also the higher quantum efficiency of PSII photochemistry (Φ PSΙΙ ) and the decreased excitation pressure (1 ? q p ) recorded for stressed leaves with Pro, lead us to conclude that Pro appears to be involved in the protection of chloroplast structures by quenching ROS. The enhanced dissipation of excess light energy of PSII, in part accounts for the observed increased resistance to DS in A. thaliana leaves with Pro. Our data pointed out that Pro signalling interacts with SS signaling pathway and provided a new insight in Pro metabolism.  相似文献   

7.
Water availability is an important factor for plant growth in arid environments. In recent decades, vermicompost (VC) fertilizer has been used in agriculture as a safe and effective fertilizer with high water-holding capacity. The aim of the present study was to characterize effects of VC fertilizer on photosynthetic activity of chickpea (Cicer arietinum L. cv. Karaj) under drought conditions at three different growth stages. Tests were carried out with four volumetric ratios of VC to soil, i.e., 0:100, 10:90, 20:80, and 30:70, and three levels of drought stress, i.e., no stress (NS), moderate drought (MS), and severe drought (SS) (100, 75, and 25% of field capacity, respectively). Evaluations were performed at the seedling, flowering, and podding stage. We found that the VC treatment under NS conditions significantly increased total chlorophyll content [Chl (a+b)], intercellular CO2 concentration (Ci), net photosynthetic rate (PN), transpiration rate (E), and maximal quantum yield of PSII photochemistry (Fv/Fm) at all three stages. The VC addition of 10 and 20% significantly enhanced the Chl content and Fv/Fm under MS and Fv/Fm, Ci, and PN under SS at the flowering stage. In conclusion, our results proved a positive effect of the VC fertilizer on photosynthesis of chickpea under NS conditions, but it was not found under MS and SS.  相似文献   

8.
The cadmium (Cd), being a widespread soils pollutant and one of the most toxic heavy metals in the environment, adversely affects sustainable crop production and food safety. Pot experiment was conducted to quantify and simulate the response of purslane (Portulaca oleracea L.) plants to Cd toxicity. The purslane germinated seeds were cultivated in twelve Cd concentrations (from 0 to 300 mg/kg of Cd in soil) for six weeks and then some growth characteristics, photosynthesis pigments, and chlorophyll a fluorescence parameters were measured. The influence of Cd gradients in the soil on all growth parameters, photosynthesis pigments and chlorophyll a fluorescence parameters (except Fm and carotenoid content) were described by a segmented model. Furthermore, Fm and carotenoid contents were fitted to a linear model. The growth characteristics, chlorophyll content, photosynthetic pigments and some parameters of chlorophyll a fluorescence such as Fv, Fv/Fm, Y(II) and ETR decreased when Cd concentration increased. In contrast, F0, Y(NPQ) and Y(NO) increased and Fm was not significantly affected. In general, most variations in the studied parameters were recorded with low concentrations of cadmium, which ranged from 0 to 125 mg/kg. Also, the growth characteristics (especially stem, leaf, and shoot dry weights) were more sensitive to Cd contamination than other parameters. Moreover, among chlorophyll fluorescence parameters, Y(NPQ) was the most sensitive to Cd concentration gradients in the soil that can be due to disturbances of antennae complex of PSII.  相似文献   

9.
Globally, water deficit is one of the major constraints in chickpea (Cicer arietinum L.) production due to substantial reduction in photosynthesis. Photorespiration often enhances under stress thereby protecting the photosynthetic apparatus from photoinhibition. Application of bioregulators is an alternative to counter adverse effects of water stress. Thus, in order to analyze the role of bioregulators in protecting the photosynthetic machinery under water stress, we performed an experiment with two contrasting chickpea varieties, i.e., Pusa 362 (Desi type) and Pusa 1108 (Kabuli type). Water deficit stress was imposed at the vegetative stage by withholding water. Just prior to exposure to water stress, plants were pretreated with thiourea (1,000 mg L?1), benzyladenine (40 mg L?1), and thidiazuron (10 mg L?1). Imposed water deficit decreased relative water content (RWC), photosynthetic rate (PN), quantum efficiency of PSII (Fv/Fm), and enhanced lipid peroxidation (LPO). However, bioregulator application maintained higher RWC, PN, Fv/Fm, and lowered LPO under water stress. Expression of Rubisco large subunit gene (RbcL) was low under water stress both in the Kabuli and Desi type. However, bioregulators strongly induced its expression. Although poor expression of two important photorespiratory genes, i.e., glycolate oxidase and glycine decarboxylase H subunit, was observed in Desi chickpea under imposed stress, bioregulators in general and cytokinins in particular strongly induced their expression. This depicts that the application of bioregulators protected the photosynthetic machinery by inducing the expression of RbcL and photorespiratory genes during water deficit stress.  相似文献   

10.
The response of effective quantum yield of photosystem 2 (ΔF/Fm’) to temperature was investigated under field conditions (1 950 m a.s.l.) in three alpine plant species with contrasting leaf temperature climates. The in situ temperature response did not follow an optimum curve but under saturating irradiances [PPFD >800 µìmol(photon) m?2s?1] highest ΔF/Fm’ occurred at leaf temperatures below 10°C. This was comparable to the temperature response of antarctic vascular plants. Leaf temperatures between 0 and 15°C were the most frequently (41 to 56%) experienced by the investigated species. At these temperatures, ΔF/Fm’ was highest in all species (data from all irradiation classes included) but the species differed in the temperature at which ΔF/Fm’ dropped below 50% (Soldanella pusilla >20°C, Loiseleuria procumbens >25°C, and Saxifraga paniculata >40°C). The in situ response of ΔF/Fm’ showed significantly higher ΔF/Fm’ values at saturating PPFD for the species growing in full sunlight (S. paniculata and L. procumbens) than for S. pusilla growing under more moderate PPFD. The effect of increasing PPFD on ΔF/Fm’, for a given leaf temperature, was most pronounced in S. pusilla. Despite the broad diurnal leaf temperature amplitude of alpine environments, only in S. paniculata did saturating PPFD occur over a broad range of leaf temperatures (43 K). In the other two species it was half of that (around 20 K). This indicates that the setting of environmental scenarios (leaf temperature×PPFD) in laboratory experiments often likely exceeds the actual environmental demand in the field.  相似文献   

11.
Frequently asked questions about chlorophyll fluorescence,the sequel   总被引:2,自引:0,他引:2  
Using chlorophyll (Chl) a fluorescence many aspects of the photosynthetic apparatus can be studied, both in vitro and, noninvasively, in vivo. Complementary techniques can help to interpret changes in the Chl a fluorescence kinetics. Kalaji et al. (Photosynth Res 122:121–158, 2014a) addressed several questions about instruments, methods and applications based on Chl a fluorescence. Here, additional Chl a fluorescence-related topics are discussed again in a question and answer format. Examples are the effect of connectivity on photochemical quenching, the correction of F V /F M values for PSI fluorescence, the energy partitioning concept, the interpretation of the complementary area, probing the donor side of PSII, the assignment of bands of 77 K fluorescence emission spectra to fluorescence emitters, the relationship between prompt and delayed fluorescence, potential problems when sampling tree canopies, the use of fluorescence parameters in QTL studies, the use of Chl a fluorescence in biosensor applications and the application of neural network approaches for the analysis of fluorescence measurements. The answers draw on knowledge from different Chl a fluorescence analysis domains, yielding in several cases new insights.  相似文献   

12.
Photoacclimation by strains of Haslea “blue” diatom species H. ostrearia and H. silbo sp. nov. ined. was investigated with rapid light curves and induction–recovery curves using fast repetition rate fluorescence. Cultures were grown to exponential phase under 50 µmol m?2 s?1 photosynthetic available radiation (PAR) and then exposed to non-sequential rapid light curves where, once electron transport rate (ETR) had reached saturation, light intensity was decreased and then further increased prior to returning to near growth light intensity. The non-sequential rapid light curve revealed that ETR was not proportional to the instantaneously applied light intensity, due to rapid photoacclimation. Changes in the effective absorption cross sections for open PSII reaction centres (σPSII′) or reaction centre connectivity (ρ) did not account for the observed increases in ETR under extended high light. σPSII′ in fact decreased as a function of a time-dependent induction of regulated excitation dissipation Y(NPQ), once cells were at or above a PAR coinciding with saturation of ETR. Instead, the observed increases in ETR under extended high light were explained by an increase in the rate of PSII reopening, i.e. QA? oxidation. This acceleration of electron transport was strictly light dependent and relaxed within seconds after a return to low light or darkness. The time-dependent nature of ETR upregulation and regulated NPQ induction was verified using induction–recovery curves. Our findings show a time-dependent induction of excitation dissipation, in parallel with very rapid photoacclimation of electron transport, which combine to make ETR independent of short-term changes in PAR. This supports a selective advantage for these diatoms when exposed to fluctuating light in their environment.  相似文献   

13.
Transport of electrons in spinach photosystem II (PSII) whose oxygen-evolving complex (OEC) contains heterogeneous metal clusters 2Mn2Fe and 3Mn1Fe was studied by measuring the fluorescence induction kinetics (FIK). PSII(2Mn,2Fe) and PSII(3Mn,1Fe) preparations were produced using Cadepleted PSII membranes (PSII(–Ca)). It was found that FIK in PSII(2Mn,2Fe) membranes is similar in form to FIK in PSII(–Ca) samples, but the fluorescence yield is lower in PSII(2Mn,2Fe). The results demonstrate that, just as in PSII(–Ca) preparations, there is electron transfer from the metal cluster in the OEC to the primary plastoquinone electron acceptor QA. They also show that partial substitution of Mn cations with Fe has no effect on the electron transport on the acceptor side of PSII. Thus, these data demonstrate the possibility of water oxidation either by the heterogeneous metal cluster or just by the manganese dimer. We established that FIK in PSII(3Mn,1Fe) preparations are similar in form to FIK in PSII(2Mn,2Fe) membranes but PSII(3Mn,1Fe) is characterized by a slightly higher maximal fluorescence yield, Fmax. The electron transfer rate in PSII(3Mn,1Fe) preparations significantly (by a factor of two) increases in the presence of Ca2+, whereas Ca2+ has hardly any effect on the electron transport in PSII(2Mn,2Fe) membranes. In Mndepleted PSII membranes, FIK reaches its maximum (the so-called peak K), after which the fluorescence yield starts to decrease as the result of two factors: the oxidation of reduced primary plastoquinone Q A ? and the absence of electron influx from the donor side of PSII. The replacement of Mn cations by Fe in PSII(?Mn) preparations leads to fluorescence saturation and disappearance of the K peak. This is possibly due to the deceleration of the charge recombination process that takes place between reduced primary electron acceptor Q A ? and oxidized tyrosine Y Z +. which is an electron carrier between the OEC and the primary electron donor P680.  相似文献   

14.
The effect of composted municipal solid waste (MSW) and sewage sludge (SS) on photosynthetic activity of wheat (Triticum durum L.) was investigated. Chlorophyll fluorescence and gas exchange parameters were assessed following application of up to 300 t ha?1 of MSW compost or SS. 100 t ha?1 MSW compost was optimal for the plant growth, which showed 78% stimulation as compared to the control. This was associated with higher maximum quantum efficiency (F v /F m) of photosystem II (PSII) and the actual quantum efficiency of PSII open centers at light adapted state (ΔF/\(F_{\rm m}^{\prime}\)). Maximal values of net photosynthetic rate and stomatal conductance were recorded at 100 t ha?1 MSW compost (+40 and +116%, respectively). Ribulose bisphosphate carboxylase/oxygenase (RubisCO) activity was also significantly stimulated at 100 t ha?1, while less significant impact was found in SS treatment. A marked accumulation of Ni, Pb, Cu, and Zn in concomitance with membrane lipid peroxidation were observed at 200–300 t ha?1 MSW compost and SS, resulting in lower photosynthetic activity and altered PSII functional integrity. Altogether, these results suggest that the MSW compost at 100 t ha?1 would be suitable for wheat cultivation, within the critical limits of heavy metal accumulation. However, long-term field experiments seem necessary to more accurately evaluate the safety of MSW application.  相似文献   

15.
Solar ultraviolet B (UVB) irradiance at the Earth’s surface is increasing due to anthropogenic influences. To evaluate the effects of enhanced UVB radiation on photosynthetic characteristics of the marine diatom Phaeodactylum tricornutum, the species was exposed to four levels of UVB radiation, 0, 0.25, 0.75, and 1.50 KJ m?2 day?1 for 7 days. Effects of UVB stress on net photosynthetic rate, net respiration rate, variable chlorophyll (Chl) fluorescence parameters, Chl a and carotenoid contents, and UV-absorbing compounds (UVACs) were investigated. Results showed that there were no significant differences in terms of net respiration rate or maximal photochemical efficiency of photosystem II (Fv/Fm) between the treatments in the short or long term. However, enhanced UVB radiation at an intensity of 0.16 W m?2 had a negative effect on the net photosynthetic rate, electron transport rate, and on the pathway of excess energy dissipation over the short term (1 to 5 days). Carotenoid and UVACs content increased under UVB radiation. Photosynthetic parameters were unaffected by UVB radiation on the seventh day indicating that P. tricornutum can adapt to UVB radiation in the long term. Results of the present study indicate that there is a dynamic balance between damage and adaptation in microalgae that enables them to adapt to UVB-induced photosystem alterations during both short-term and long-term exposure.  相似文献   

16.
Pulse amplitude modulation fluorimetry was used to assess chlorophyll fluorescence parameters in Chlamydomonas reinhardtii cells during sulfur deprivation. A significant (fourfold) increase in the chlorophyll fluorescence yield (parameters F 0 and F m) normalized to the chlorophyll concentration was shown for deprived cells. The chlorophyll content did not change during the deprivation experiments. An analysis of nonphotochemical quenching of chlorophyll fluorescence indicated a considerable modification of the energy deactivation pathways in photosystem II (PSII) of sulfur-deprived cells. For example, starved cells exhibited a less pronounced pH-dependent quenching of excited states and a higher thermal dissipation of excess light energy in the reaction centers of PSII. It was also shown that the photosynthetic apparatus of starved cells is primarily in state 2 and that back transition to state 1 is suppressed. However, these changes cannot cause the discovered elevation of chlorophyll fluorescence intensity (F 0 and F m) in the cells under sulfur limitation. The observed increase in the chlorophyll fluorescence intensity under sulfur deprivation may be due to partial dissociation of peripheral light-harvesting complexes from the reaction centers of PSII or a malfunction of the dissipative cycle in PSII, involving cytochrome b 559.  相似文献   

17.
The native alpine plant Saussurea superba is widely distributed in Qinghai–Tibetan Plateau regions. The leaves of S. superba grow in whorled rosettes, and are horizontally oriented to maximize sunlight exposure. Experiments were conducted in an alpine Kobresia humilis meadow near Haibei Alpine Meadow Ecosystem Research Station (37°29′–37°45′N, 101°12′–101°33′E; alt. 3200 m). Leaf growth, photosynthetic pigments and chlorophyll fluorescence parameters were measured in expanding leaves of S. superba. The results indicate that leaf area increased progressively from inner younger leaves to outside fully expanded ones, and then slightly decreased in nearly senescent leaves, due to early unfavorable environmental conditions, deviating from the ordinary growth pattern. The specific leaf area decreased before leaves were fully expanded, and the leaf thickness was largest in mature leaves. There were no significant changes in the content of chlorophylls (Chl) and carotenoids (Car), but the ratios of Chl a/b and Car/Chl declined after full expansion of the leaves. The variation of Chl a/b coincided well with changes in photochemical quenching (q P) and the fraction of open PSII reaction centers (q L). The maximum quantum efficiency of PSII photochemistry after 5 min dark relaxation (F (v)/F (m)) continuously increased from younger leaves to fully mature leaves, suggesting that mature leaves could recover more quickly from photoinhibition than younger leaves. The light-harvesting capacity was relatively steady during leaf expansion, as indicated by the maximum quantum efficiency of open PSII centers (\(F_{\text{v}}^{{\prime }}\)/\(F_{\text{m}}^{{\prime }}\)). UV-absorbing compounds could effectively screen harmful solar radiation, and are a main protection way on the photosynthetic apparatus. The decline of q P and q L during maturation, together with limitation of quantum efficiency of PSII reaction centers (L (PFD)), shows a decrease of oxidation state of QA in PSII reaction centers under natural sunlight. Furthermore, light-induced (Φ NPQ) and non-light-induced quenching (Φ NO) were consistent with variation of L (PFD). It is concluded that the leaves of S. superba could be classified into four functional groups: young, fully expanded, mature, and senescent. Quick recovery from photoinhibition was correlated with protection by screening pigments, and high level of light energy trapping was correlated with preservation of photosynthetic pigments. Increasing of Φ NPQ and Φ NO during leaves maturation indicates that both thermal dissipation of excessive excitation energy in safety and potential threat to photosynthetic apparatus were strengthened due to the declination of q P and q L, and enhancement of L (PFD).  相似文献   

18.
Wild Arachis genotypes were analysed for chlorophyll a fluorescence, carbon isotope discrimination (ΔC), specific leaf area (SLA), and SPAD readings. Associations between different traits, i.e., SLA and SPAD readings (r =–0.76), SLA and ΔC (r = 0.42), and ΔC and SPAD readings (r = 0.30) were established. The ratio of maximal quantum yield of PSII photochemistry (Fv/Fm) showed a wider variability under water deficit (WD) than that after irrigation (IR). Genotypes were grouped according to the Fv/Fm ratio as: efficient, values between 0.80 and 0.85; moderately efficient, the values from 0.79 to 0.75; inefficient, the values < 0.74. Selected Selected genotypes were evaluated also for their green fodder yield: the efficient genotypes ranged between 3.0 and 3.8, the moderately efficient were 2.6 and 2.7, the inefficient genotypes were of 2.3 and 2.5 t ha?1 per year in 2008 and 2009, respectively. Leaf water-relation traits studied in WD and IR showed that the efficient genotypes were superior in maintenance of leaf water-relation traits, especially, under WD. Potential genotypes identified in this study may enhance biomass productivity in the semiarid tropic regions.  相似文献   

19.
We investigated the photosynthetic characteristics of Chorispora bungeana under conditions of drought stress caused by different concentrations of polyethylene glycol-6000 (PEG; 0, 5, 20, and 40%) and various concentrations of exogenous glycine (0, 5, 10, and 20 mM) with 20% PEG. We showed that moderate and severe drought stress of PEG reduced the chlorophyll (Chl) content (both Chl a and b), maximal quantum yield of PSII photochemistry (Fv/Fm), actual photochemical efficiency of PSII in light (YII), and quantum yield of regulated energy dissipation (YNPQ), while Chl a/b and quantum yield of nonregulated energy dissipation (YNO) increased. The low and moderate drought stress increased Mg2+ and Fe3+ contents, while a decrease in Mg2+ and Fe3+ was found under severe drought stress. Compared to sole PEG stress, the addition of exogenous 10 mM glycine increased Chl, Mg2+ and Fe3+ contents, Fv/Fm, YII, and YNPQ, and reduced YNO. On the contrary, 20 mM glycine showed an opposite effect, except for YNO. Our results proved that Chl contents and fluorescence parameters are reliable indicators for drought tolerance of C. bungeana. We suggest that a proper glycine content can relieve the effect of drought stress on C. bungeana.  相似文献   

20.
The aim of the present work was to explore physiological changes provoked by somaclonal variation in response to salinity. Two parental cultivars (La Candelaria and Yerua) and their derived somaclones were used as a source for breeding new rice lines with improved salt tolerance. We studied the effect of NaCl salt stress on chlorophyll fluorescence-related parameters, such as the maximum quantum yield of primary PSII photochemistry (F v/F m) and the performance index for energy conservation from photon absorbed by PSII antenna (PIABS). In addition malondialdehyde (MDA) content and leaf temperature (LT) responses were also measured. In somaclonal lines, F v/F m, PIABS, MDA and LT showed coefficients of variation of 13.7, 39.3, 25.5, and 3 %, respectively, for La Candelaria and 1.4, 17.6, 34.4 and 3 % for Yerua. However, the fragrant character did not differ in the aromatic somaclonal lines with respect to their parentals. Our results suggest that the F v/F m ratio would not be as good marker of PSII vitality as PIABS for salinized rice somaclones, unless they are highly susceptible to salinity. On other hand, the MDA content showed a strong negative correlation with the PIABS content in somaclones of both rice cultivars, suggesting that MDA levels could also be used as an oxidative damage index in rice somaclones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号