首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mango (Mangifera indica L. cv. Tainong) fruits were harvested at the green-mature stage in Hainan and air-freighted to the laboratory at Peking. The fruits were treated with either 1 μl l−1 1-MCP or 5 μl l−1 ethylene for 24 h and stored at 20°C for up to 16 days. 1-MCP maintained fruit firmness, whereas exogenous ethylene decreased fruit firmness. Exogenous ethylene accelerated the increase in ethylene and 1-aminocyclopropane-1-carboxylate (ACC) oxidase, whereas 1-MCP reduced both. Exogenous ethylene stimulated and 1-MCP inhibited the production of H2O2 of mango fruit during storage. Ascorbic acid was maintained at a high concentration in 1-MCP-treated fruit but was low in ethylene-treated fruit. 1-MCP inhibited activities of antioxidant enzymes including catalase, superoxide dismutase and ascorbate peroxidase. These results suggest that 1-MCP could play a positive role in regulating the activated oxygen metabolism balance. Baogang Wang and Jianhui Wang contributed equally to this work.  相似文献   

2.
3.
Ethylene initiates the ripening and senescence of climacteric fruit, whereas polyamines have been considered as senescence inhibitors. Ethylene and polyamine biosynthetic pathways share S-adenosylmethionine as a common intermediate. The effects of 1-methylcyclopropene (1-MCP), an inhibitor of ethylene perception, on ethylene and polyamine metabolism and associated gene expression was investigated during ripening of the model climacteric fruit, tomato (Solanum lycopersicum L.), to determine whether its effect could be via polyamines as well as through a direct effect on ethylene. 1-MCP delayed ripening for 8 d compared with control fruit, similarly delaying ethylene production and the expression of 1-aminocyclopropane-1-carboxylic acid (ACC)-synthase and some ethylene receptor genes, but not that of ACC oxidase. The expression of ethylene receptor genes returned as ripening was reinitiated. Free putrescine contents remained low while ripening was inhibited by 1-MCP, but increased when the fruit started to ripen; bound putrescine contents were lower. The activity of the putrescine biosynthetic enzyme, arginine decarboxylase, was higher in 1-MCP-treated fruit. Activity of S-adenosylmethionine-decarboxylase peaked at the same time as putrescine levels in control and treated fruit. Gene expression for arginine decarboxylase peaked early in non-treated fruit and coincident with the delayed peak in putrescine in treated fruit. A coincident peak in the gene expression for arginase, S-adenosylmethionine-decarboxylase, and spermidine and spermine synthases was also seen in treated fruit. No effect of treatment on ornithine decarboxylase activity was detected. Polyamines are thus not directly associated with a delay in tomato fruit ripening, but may prolong the fully-ripe stage before the fruit tissues undergo senescence.  相似文献   

4.
Changes in the levels of ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC), 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC) and polyamines were simultaneously investigated during the early phases of alfalfa somatic embryogenesis. These included the period of induction and subculture of callus, and 3- and 7-day suspension cultures for the induction of somatic embryogenesis. The polyamines contained in the embryogenic callus were found to include putrescine (Put), spermidine (Spd) and spermine (Spm), but the level of Spm was much less than that of Put and Spd. There was a dramatic increase in MACC after induction of embryogenesis, and ACC levels were lower in somatic embryos than in embryogenic callus. Induction of embryogenesis for 3 days increased the levels of ACC and polyamines to a maximum level, and these then reduced as the embryogenesis proceeded. The ratios of Put/Spd and ACC/MACC were decreased during the induction. This indicated that both high levels of ACC and polyamines might be a prerequisite for early differentiation during the induction of the embryogenesis. Thus, there appears not to be competition between polyamine biosynthesis and ethylene biosynthesis at least during the induction of somatic embryogenesis, because both the polyamines and ACC were simultaneously increased during the induction period. Conversion of ACC into MACC and the maintenance of a relatively high level of polyamines, especially Spd, appear to be important for further development of the embryos.
When aminooxylvinylglycine (AOA) was added at the initiation of the callus subculture, it had no significant effect on the callus growth, the ethylene production and ACC level of the callus. However, AOA increased the numbers of the embryos accompanying an increase in Spd level and S-adenosylmethionine decarboxylase (SAMDC) activity. Thus, the AOA effect could be associated with Spd increase rather than with the effect of ethylene biosynthesis.  相似文献   

5.
Polyamine and ethylene both play important roles in fruit ripening, whose biosynthetic pathways share a common substrate, S-adenosylmethionine (SAM). To unravel the interrelationship between polyamine and ethylene, their metabolism and expression of relevant genes were investigated in apple fruit (Malus domestica Borkh.) treated with methylglyoxal bis-(guanylhydrazone) (MGBG). The MGBG-treated fruit had higher ethylene production until 16 days after treatment (DAT) with preceding accumulation of 1-aminocyclopropane-1-carboxylic acid (ACC) than control fruit and then decreased to nearly the same level as control. Ethylene promotion at the early stage by MGBG was accompanied by increased expression of apple ACC synthase (Md-ACS1) and ACC oxidase (MdACO). The expression of apple SAM synthase (MdSAMS) in MGBG-treated fruit was slightly higher than that in control. On the other hand, significant changes in free polyamine titers were observed at some stages, but the changes did not show consistent trends. Based on these observations, possible relationship between polyamine and ethylene pathways was discussed.  相似文献   

6.
This study was to test the hypothesis that polyamines (PAs) and ethylene and their interactions may be involved in mediating the post-anthesis development of spikelets in rice (Oryza sativa L.). Six rice cultivars differing in grain filling rate were field-grown, and the changing patterns of PAs and ethylene levels in rice spikelets during the filling and their relations with grain filling rates were investigated. The results showed that inferior spikelets had much greater ethylene evolution rate and 1-aminocylopropane-1-carboxylic acid (ACC) concentration than superior spikelets. Opposite to ethylene production, superior spikelets showed much higher free-spermidine (Spd) and free-spermine (Spm) concentrations than inferior spikelets. Grain filling rate was very significantly and negatively correlated with ethylene evolution rate and ACC concentration, whereas positively correlated with free-Spd and free-Spm concentrations and with the ratio of free-Spd or free-Spm to ACC. Application of Spd, Spm, or aminoethoxyvinylglycine (an inhibitor of ethylene synthesis by inhibiting ACC synthesis) to panicles at the early grain filling stage significantly reduced ethylene evolution rate and ACC concentration, while significantly increased Spd and Spm concentrations, grain filling rate and grain weight of inferior spikelets. Application of ACC, ethephon (an ethylene-releasing agent), or methylglyoxal-bis (guanylhydrazone) (an inhibitor of Spd and Spm synthesis) showed the opposite effects. The results suggest that antagonistic interactions between PAs (Spd and Spm) and ethylene may be involved in mediating grain filling. A higher ratio of free-Spd or free-Spm to ethylene in rice spikelets could enhance grain filling.  相似文献   

7.
Polyamines and ethylene in the removal of embryonal dormancy in apple seeds   总被引:2,自引:0,他引:2  
Putrescine (Put), spermidine (Spd) and spermine (Spm) were found in seeds of apple ( Malus domestica Borkh. cv. Antonovka), in amounts that increased in the order given. The levels slowly decreased during 30 days of stratification. Exogenous polyamines (PAs) affected germination of isolated embryos in a way dependent on the type of polyamine, its concentration, and the state of the embryo dormancy. The effect of Put and Spd on germination was stimulatory, while that of Spm was inhibitory. Stimulation of germination was also observed when embryos were treated with arginine, ornithine and methionine. Canavanine inhibited germination, and this effect was reversed by arginine or Put. Ethephon, aminooxyacetic acid (AOA) and aminoethoxyvinylglycine (AVG) present during seed stratification had no effect on the levels of endogenous PAs. Put and Spd did not change ethylene production, neither during seed stratification nor during embryo germination, whereas Spm reduced ethylene evolution. The data suggest that Spm plays a role in the maintenance of dormancy by preventing ethylene production, while Put and Spd participate in dormancy removal, independently of ethylene.  相似文献   

8.
This study was to test the hypothesis that polyamines (PAs) and ethylene may be involved in mediating the effect of water deficit on grain filling. Two wheat cultivars, drought-tolerant Shannong16 (SN16) and drought-sensitive Jimai22 (JM22), were used and subjected to well-watered and severe water deficit (SD) during grain filling. SD reduced the weight of superior and inferior grains, by 7.38 and 23.54 % in JM22, 13.8 and 2.2 % in SN16, respectively. Higher free-spermidine (Spd) and free-spermine (Spm) concentration and lower free-putrescine (Put) concentration, ethylene evolution rate (EER) and 1-aminocylopropane-1-carboxylic acid (ACC) concentration were found in superior grains than those in inferior ones. Opposite to the variations of Spd and Spm concentration, ACC, Put concentration and EER were significantly increased under SD. The percentage variation of PAs and ACC differed with cultivars and grain types. ACC concentration of superior and inferior grains under SD increased significantly at 21 days post-anthesis, by 90 and 164 % in JM22, 65 and 13.2 % in SN16, respectively. The equivalent value of Put concentration was 1.04 and 7.9 % in JM22, 34.4 and 10.3 % in SN16. Spd concentration of superior grains showed a higher decrease than that of inferior ones in both cultivars, while Spm exhibited an opposite trend between both grain types. These percentage variations were highly consistent with the differed responses of weight of both grain types to SD in JM22 and SN16. Grain filling rate was negatively correlated with EER and ACC concentration, while positively correlated with Spd and Spm concentration as well as the ratio of Spd or Spm to ACC. Exogenous Spd or aminoethoxyvinylglycine (an inhibitor of ethylene synthesis by inhibiting ACC synthesis) obviously reduced ACC concentration and EER and increased Spd and Spm concentration, while exogenous ethephon (an ethylene-releasing agent) or methylglyoxal-bis (an inhibitor of Spd and Spm synthesis) showed the opposite effects. The results suggested that it would be good for wheat to have the physiological traits of higher Spd and Spm, as well as a higher Spd/ACC or Spm/ACC, under SD.  相似文献   

9.
10.
Plum is a highly perishable fruit and postharvest fruit softening limits its shelf life. The aim of this work was to study the specific effects of 1-methylcyclopropene (1-MCP) treatment on physiological changes in ‘Zaohong’ plums. Plums were treated with 500 nL L−1 1-MCP at 20°C for 18 h followed by 20°C storage. The results showed that 1-MCP treatment significantly reduced endogenous ethylene production and the activities of ethylene biosynthetic enzymes’ (1-aminocyclopropane-1-carboxylic acid synthase, ACS and 1-aminocyclopropane-1-carboxylic acid oxidase, ACO) in plum fruit during storage when compared with untreated fruit. Although 1-MCP treatment inhibited ethylene production and 1-aminocyclopropane-1-carboxylic acid (ACC) accumulation, it did not inhibit the accumulation of N-malonyl-ACC (MACC). Higher firmness was also found in 1-MCP-treated plums than in controls. During storage, superoxide anion (O2−·) and hydrogen peroxide (H2O2) levels decreased in 1-MCP-treated fruit. 1-MCP treatment also regulated superoxide dismutase (SOD) and catalase (CAT) activities during storage. Xylanase activity was upregulated while activities of polygalacturonase (PG), pectin methyl esterase (PME) and cellulase enzymes in the fruit were downregulated by 1-MCP treatment. In conclusion, 1-MCP might be a potent compound for extending both storage period and shelf life of ‘Zaohong’ plums by suppressing ethylene biosynthesis, regulating cell wall degradation enzymes and reducing fruit softening.  相似文献   

11.
Treatment with cyclohexylamine, an inhibitor of spermidine synthase, accelerated radicle emergence in chick-pea ( Cicer arietinum L. cv. Castellana) seeds. Stimulation in the growth of embryonic axis was correlated with: (a) a rise in putrescine (Put) and cadaverine (Cad); (b) a decrease in spermidine (Spd) and spermine (Spm), and (c) a concomitant acceleration of the transformation from S-adenosylmethionine (SAM) into ethylene with increases in the levels of l-aminocyclopropane-l-carboxylic acid (ACC), l-(malonylamino)cyclopropane-l-carboxylic acid (mACC) and ethylene and ACC synthase and ethylene-forming enzyme activities. Cyclohexylamine also stimulated the mitotic index in both apical and subapical zones of the radicle and the apical zone of the plumule. The sectional distribution of the ethylene pathway and polyamine content was studied in embryonic axes of seeds germinated for 65 h. Each axis was divided into 5 sections: radicle meristem, elongation zone, differentiation zone, hypocotyl and plumule. In the presence of cyclohexylamine, ACC synthase and ACC were strongly stimulated in both the differentiation and hypocotyl zones, whereas the mACC was stimulated in all sections of the embryonic axis. With respect to ethylene-forming enzyme activity and ethylene production, the hypocotyl and the zones of elongation and differentiation were affected most by cyclohexylamine. Cyclohexylamine also induced an accumulation of free Put and Spm in the differentiation, hypocotyl and radicle zones, whereas Put and Spm bound to small substances increased most in the hypocotyl and plumule. The Spd bound to small substances decreased in all sections in the presence of cyclohexylamine. With respect to polyamines bound to macromolecules, cyclohexylamine stimulated only the accumulation of Put since Spd and Spm were strongly inhibited in all sections.  相似文献   

12.
以成熟期不同的两个番茄品种同辉(早熟型)和霞光(晚熟型)为试材, 模拟兰州地区12%和20%臭氧层减薄时增强的UVB辐射(分别为T1=2.54 KJ.m-2.d-1和T2=4.25 KJ.m-2.d-1), 研究了大田条件下增强UV-B辐射对其花粉生活力的影响以及雄蕊中4种内源激素(IAA、GAs、ZR和ABA)和多胺(Put、Spm和Spd)及脯氨酸的变化。结果表明: 辐射抑制了同辉的花粉萌发和花粉管伸长, 但只降低了霞光的花粉萌发率; 两种辐射明显降低了两品种番茄雄蕊中的GAs含量, 同时造成同辉雄蕊中Put和Spd含量明显增加, Spm和Put/Spd+Spm比值显著降低; 霞光中3种多胺含量都显著减少, 导致高辐射时Put/Spd+Spm比值上升; 同辉番茄雄蕊的脯氨酸含量不受影响, 但高辐射使霞光番茄雄蕊的脯氨酸含量降低。实验表明, 两品种番茄花粉生活力的变化与增强UV-B 辐射下雄蕊中GAs水平、Spm含量以及脯氨酸含量的减少有关。雄蕊中多胺和脯氨酸含量变化对UVB辐射的响应说明霞光品种对UV-B辐射更敏感。  相似文献   

13.
The association of the level of ACC and the ethylene concentration in ripening apple fruit (Malus sylvestris Mill, var. Ben Davis) was studied. Preclimacteric apple contained small amounts of ACC and ethylene. With the onset of the climacteric and a concomitant decrease in flesh firmness, the level of ACC and ethylene concentration both increased markedly. During the postclimacteric period, ethylene concentration started to decline, but the level of ACC continued to increase. Ethylene production and loss of flesh firmness of fruits during ripening were greatly suppressed by treatments with low O2 (O2 1–3%, CO2 O%) or high CO2 (CO2 20–30%, O2 15–20%) at the preclimacteric stage. However, after 4 weeks an accumulation of ACC was observed in treated fruits when control fruit was at the postclimacteric stage. Treatment of fruit with either low O2 or high CO2 at the climacteric stage resulted in a decrease of ethylene production. However, the ACC level in fruit treated with low O2 was much higher than both control and high CO2 treated fruit; it appears that low O2 inhibits only the conversion of ACC to ethylene, resulting in an accumulation of ACC. Since CO2 inhibits ethylene production but does not result in an accumulation of ACC, it appears that high CO2 inhibits both the conversion of ACC to ethylene and the formation of ACC.  相似文献   

14.
Spring wheat plants (Triticum aestivum L. ) at 4-leaf stage were fumigated with 03 (0. 796± 0.04 mg/m3) in open-top chambes. The changes and regulation of stress ethylene production and polyamine metabolism in leaves were emphatically investigated. The results revealed that the stress ethylene production in leaves exposed to 03 increased at first and declined afterwards; and could be inhibited by COC12. During the initial stage of 03 stress, the activity of arginine decarboxylase (ADC) increased, but with the augment of leaf injury caused by 03, the ADC activity was correspondingly retarded. After leaves were sprayed with p-chloromercuri benzoie acid (PCMB), the ADC activity was inhibited and putamine content was reduced. However the Spd and Spm content rose slightly. After leaves were sprayed with CoC12, the ADC activity was not significantly altered, whereas the content of Spd and Spm accumulated greatly. Moreover, the high concentration of Spd and Spm maintained for a long time so as the leaf injury from 03 stress became less serious. These results indicate that the potyamine content can be accumulated by inhibiting stress ethylene production. The high concentration of Spd and Spm plays a major role in protection against 03 injury. Change of polyamine content in leaves is an adaptive regulatory mechanism against 03 stress.  相似文献   

15.
16.
Harvista?, a sprayable formulation of 1-methylcyclopropene (1-MCP), has recently been developed for preharvest use on horticultural products, whereas SmartFresh? is a widely used 1-MCP treatment for products after harvest. The effects of Harvista? on apple fruit ripening when sprayed at different maturities and on expression patterns of ethylene biosynthesis and receptor genes during storage have been investigated. Harvista? applied to on-tree maturing apple fruit at an average starch pattern index of 2.5 resulted in a higher at-harvest firmness value compared with those treated at a starch pattern index of 1.5 and 3.5. This indicates that the timing of the Harvista? application is critical. An application of Harvista? led to better postharvest fruit firmness retention as well as reduced ethylene production. In addition, both preharvest and postharvest 1-MCP treatments resulted in contrasting responses in the expression patterns of two ethylene biosynthesis genes and in differentially suppressing effects on four ethylene receptor genes. Furthermore, the combined application of Harvista? + SmartFresh? resulted in greater fruit firmness retention and longer ethylene suppression. The expression profiles of these genes during on-tree fruit maturation prior to Harvista? application were also characterized. Different regulation patterns of receptor genes could contribute to differential effects by 1-MCP treatments. The potential roles of Harvista? to manipulate the ripening process as well as the molecular mechanism influencing 1-MCP treatment efficacy are discussed.  相似文献   

17.
18.
In legumes, the number of root nodules is controlled by a mechanism called autoregulation. Recently, we found that the foliar brassinosteroid (BR), a plant growth-regulating hormone, systemically regulates the nodule number in soybean plants. In the present study we report that such down-regulation of root nodule formation by a BR may occur through a change of the polyamine contents, with the experimental evidence as follows. The foliar contents of both spermidine (Spd) and spermine (Spm) in the super-nodulating soybean mutant, En6500, were always lower than those in its parent line, Enrei. This lower Spd and Spm content accompanied a striking accumulation of putrescine (Put) in the former plant. This finding indicates that Spd and Spm biosynthesis from their precursor Put is repressed in En6500. The foliar treatments with Spd or Spm of En6500 led to a reduction of both nodule number and root growth. On the other hand, foliar treatment with MDL74038, a specific inhibitor of Spd biosynthesis, apparently increased the root nodule number in Enrei. Foliar application of brassinolide (BL) of En6500 increased the leaf Spd level and reduced the nodule number. These results suggested that BL-induced Spd synthesis in shoots might suppress the root nodule formation.  相似文献   

19.
利用HPLC和GC分别测定了水稻细胞质雄性不育系及其保持系幼穗多胺( 腐胺,亚精胺和精胺) 含量和乙烯释放速率,并研究了外施多胺合成抑制剂MGBG 和乙烯前体ACC生成抑制剂AVG 对两系幼穗多胺含量和乙烯释放速率以及花粉育性的影响。结果表明, 不育系幼穗乙烯释放速率显著高于其保持系幼穗, 外施AVG 引起两系幼穗乙烯释放速率下降,并使不育系花粉育性得以部分恢复; 不育系幼穗多胺含量显著低于保持系幼穗, 外施MGBG 使两系幼穗Spd 和Spm 含量下降, 并使保持系花粉育性降低。外施AVG 抑制乙烯释放,促进多胺合成;而外施MGBG 抑制Spd和Spm 合成, 却促进乙烯的释放; 而且,乙烯释放速率与多胺(精胺和亚精胺) 含量呈显著负相关。提示在水稻CMS 系及其保持系幼穗发育过程中乙烯与多胺( 精胺和亚精胺) 的生物合成竞争SAM。  相似文献   

20.
This study tested the hypothesis that polyamines (PA) and ethylene (ETH) mediate the effects of soil drought on spikelet development in rice (Oryza sativa L.). Two rice cultivars, Yong You-2640 and Yang Dao-6, with vastly different panicle sizes were grown in pots under three soil moisture treatments: well-watered (WW), moderate soil drought (MD) and severe soil drought (SD), from the onset of panicle initiation to the pollen completion stage. MD treatment significantly increased spikelet differentiation, spikelet number per panicle, fully filled grain percentage and grain yield, decreasing the percentage of degenerated spikelets, sterile spikelets and partially filled grains compared to WW treatment. In contrast, SD treatment showed opposite effects. MD also increased the contents of free spermidine (Spd), free spermine (Spm) and the ratios of free putrescine, free-Spd and free-Spm to 1-aminocylopropane-1-carboxylic acid (ACC), decreasing the ETH evolution rate and ACC content in young panicles. In contrast, SD treatment showed opposite effects. Furthermore, free-Spd and free-Spm contents increased significantly, while ETH and ACC levels, and the percentage of degenerated and sterile spikelets decreased significantly under application of Spd or an inhibitor of ETH synthesis. The results were reversed when ACC or an inhibitor of Spd and Spm synthesis was applied. These findings suggest antagonistic interactions between free-PA (Spd and Spm) and ETH in response to soil drought, mediating spikelet development in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号