首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
【目的】黄酒酵母菌种是影响大罐黄酒生产效率的关键因素之一,高发酵性能黄酒酵母的选育对于提升黄酒生产效率具有重要的实用意义。【方法】以一种药物抗性为基础设计快速初筛方法,对黄酒酿酒酵母XY进行诱变筛选得到克霉唑(CTZ)抗性的黄酒酵母突变株,进一步以酵母发酵性参数为指标筛选得到发酵速率提高的黄酒酵母新菌株XY-3。【结果】比较突变菌株与原始菌株酿造性能发现,XY-3菌株最大发酵速率较原始菌株提高5.21%。黄酒酿造小试结果显示发酵前4天XY-3菌株乙醇生成速率明显高于原始菌株,其最大乙醇生成速率从XY菌株的14.77 g/d提高到15.30 g/d。XY-3酵母菌株发酵速率的提高能够缩短黄酒发酵周期1-2天,有助于提高发酵设备的利用效率。进一步研究发现XY-3发酵速率的提升可能与XY-3菌株多药物抗性(PDR)有关。【结论】联合使用传统诱变和药物抗性筛选策略选育得到高效黄酒酵母新菌株,这种筛选策略也为发酵食品行业优良菌株的选育提供了一种新的思路。  相似文献   

2.
木糖的乙醇发酵一直被视为木质纤维原料生物转化产生乙醇的关键因素,休哈塔假丝酵母(Candidashehatae)是木糖发酵性能较好的天然酵母之一。对Candida shehatae HDYXHT-01进行了氦氖激光诱变和NTG诱变,力求选育出发酵木糖产乙醇能力强的菌株。氦氖激光诱变得到的突变株HN-3乙醇产量为17.03g/L,乙醇得率达到0.3393g/g,相比原始菌株提高20.36%。再对HN-3进行NTG诱变,得到的突变株NTG-2乙醇产量为24.20g/L,相比HN-3提高42.10%。进而对NTG-2菌株进行了摇瓶48h连续发酵试验,测得其乙醇产量、木糖利用率、乙醇得率和乙醇产率分别达到24.16g/L,69.26%,0.4360g/g和0.7075g/(L·h)。  相似文献   

3.
高效发酵木糖生产乙醇酵母菌株的构建   总被引:3,自引:0,他引:3  
获得高效发酵木糖生产乙醇的酵母菌株是木质纤维素生物转化生产燃料乙醇的重要前提。在4%乙醇驯化的基础上,选择了乙醇耐性提高的休哈塔假丝酵母(Candida shehatae)CICC1766菌株进一步进行紫外诱变,得到了木糖发酵性能较强的呼吸缺陷型突变体,并与乙醇发酵性能良好的酿酒酵母(Saccharomyces cerevisiae)ATCC4126进行原生质体融合。采用单亲灭活法对休哈塔假丝酵母原生质体进行紫外灭活,在聚乙二醇(PEG)诱导下融合,对得到的融合子进行木糖发酵能力测定,选择到了一株能够更好地利用木糖产乙醇,并且木糖发酵性能比亲本得到明显提高的融合子F6,此融合子发酵50 g/L木糖,最高乙醇浓度达到18.75g/L,乙醇得率为0.375,达到理论转化值0.511的73.4%。与原始出发菌株CICC1766相比,乙醇产量提高了28%。  相似文献   

4.
王灏  王航  孟春  郭养浩 《微生物学通报》2007,34(4):0705-0708
当以f4、f5、f6作为出发菌株,用酵母菌原生质体紫外诱变的方法,在不同温度下,用含有不同浓度乙醇的平板筛选,分别获得了在耐高温和耐乙醇性状有较大提高的f4.2、f5.1、f6.2、f4.5等正突变菌株。以这些菌株作为出发菌株,进一步用硫酸二乙酯诱变,获得了f5.1.1、f4.2.1两个乙醇耐受性能较高的菌株。在建立了上述不同突变株后,通过基因组改组(genome shuffling)的方法,将上述不同特性的菌株经过两轮genome shuffling,获得了耐高温性能和耐乙醇性能都较好的酵母菌株。经过摇瓶发酵后证明,R24株在35℃发酵过程中,发酵液中的最高乙醇浓度12.93%(W/V),比原始出发菌株f4在35℃的发酵液中最高乙醇浓度8.11%提高了近5%。  相似文献   

5.
嗜鞣管囊酵母(Pachysolen tannophilus)是可以同时发酵葡萄糖和木糖为酒精的菌种,在其生长和发酵培养基中分别添加不同浓度((0~200mg/L)的肌醇以及不同起始浓度的酒精,以考察外加肌醇对嗜鞣管囊酵母生长、产酒精能力和耐酒精能力的影响.结果 表明,添加肌醇前后,嗜鞣管囊酵母的生物量及发酵的酒精产量均有所增加.外加肌醇对嗜鞣管囊酵母生长有轻微的刺激作用,酵母生长最适肌醇浓度为150mg/L;而对酵母生长的耐酒精能力却有明显的影响, 并且,菌种在YEPD培养基中的耐酒精能力高于在YEPX培养基中的耐酒精能力.经实验测定,肌醇对嗜鞣管囊酵母产酒精能力及发酵的耐酒精能力均有显著的影响.发酵培养基中未添加起始浓度的酒精时,菌种发酵的最适肌醇浓度为100mg/L,此时生成的酒精产量为45.20g/L.当分别添加起始酒精浓度为10%和12%时,随着肌醇浓度的增加,菌种发酵生成的酒精浓度均呈上升趋势;肌醇浓度为200mg/L时,两种起始酒精浓度下,酒精的净生成量均达到最大,分别为17.18g/L和16.68g/L.  相似文献   

6.
以C.shehataeTZ8为出发茵株,利用1%溶壁酶和1%蜗牛酶酶解1.5h,制备成C.shehataeTZ8原生质体,并对原生质体进行紫外诱变,以含不同浓度乙醇的木糖液体培养基培养进行初筛和复筛,获得一株遗传性能稳定、耐乙醇能力达5.5%(v/v)的蕾株C.shehataeTZ8-4,比初始菌株耐乙醇能力提高了2%。对突变株C.shehataeTZ8-4发酵性能的研究结果表明:C.shehataeTZ8-4发酵糖能力从80g/L(葡糖糖和木糖比为2:1)提高到120g/L,最大乙醇产量从27.41g/L提高到43.12g/L。  相似文献   

7.
黄玉玲  隆小华  刘兆普  王琳  王博 《生态学杂志》2012,31(12):3187-3192
为获得菌株发酵菊芋生产燃料乙醇的最佳方案,首先选取实验室保存的重组菌株R32对其产酶条件进行优化,其最高产菊粉酶活性为298.8 U· mL-1,此时的最佳培养基配方为:YPG培养基为酵母粉1% (w/v),蛋白胨2% (w/v),甘油0.5% (v/v);YPM培养基为酵母粉1% (w/v),蛋白胨2% (w/v),甲醇1%(v/v);培养基pH为自然初始pH.然后选取酿酒酵母S.c和克鲁维酵母Klu,比较是否在添加重组菌株R32粗酶液条件下,两株酵母菌分别进行单独发酵和混合发酵时的产乙醇能力,以获得最佳的发酵组合.结果表明,酿酒酵母S.c和克鲁维酵母Klu在未添加重组菌株R32粗酶液时,混合一步发酵获得的乙醇含量较高,发酵84 h时乙醇含量为11.37%.添加重组菌株R32粗酶液进行两步发酵时,2株酵母菌混合发酵72 h时,乙醇含量为11.43%.2种发酵组合的最高乙醇含量以及各个发酵参数基本相同,虽然一步法发酵时间延长,但节省成本,操作简单,更适宜工业生产应用.最后对其进行正交试验优化,培养条件为菊粉浓度225 g· L-1,脲素浓度40 g·L-1,接种量15%,pH为5时,酿酒酵母菌S.c和克鲁维酵母Klu混合一步发酵法的最高乙醇体积比达11.82%.  相似文献   

8.
建立筛选利用木糖为碳源产乙醇酵母模型,获得一株适合利用木质纤维素为原料产乙醇的酵母菌株。样品经麦芽汁培养基培养后,以木糖为唯一碳源的筛选培养基初筛,再以重铬酸钾显色法复筛。通过生理生化和26D1/D2区对筛选得到的菌株进行分析和鉴定,该菌初步鉴定为Pichia caribbica。经过筛选得到的菌株Y2-3以木糖(40g/L)为唯一碳源发酵时:生物量为23.5g/L,木糖利用率为94.7 %,乙醇终产量为4.57 g/L;以混合糖(葡萄糖40 g/L,木糖20 g/L)发酵时:生物量为28.6 g/L,木糖利用率为94.2 %,葡萄糖利用率为95.6%,乙醇终产量为20.6 g/L。Pichia caribbica是可以转化木糖及木糖-葡萄糖混合糖为乙醇的酵母菌株,为利用木质纤维素发酵乙醇的进一步研究奠定了基础。  相似文献   

9.
木糖的高效发酵是制约纤维素燃料乙醇生产的技术瓶颈之一,高性能发酵菌种的开发是本领域研究的重点。以木糖发酵的典型菌株休哈塔假丝酵母为材料,研究氮源配比、葡萄糖和木糖初始浓度、葡萄糖添加及典型抑制物等因素对其木糖利用和乙醇发酵性能的影响规律。结果表明,硫酸铵更适宜于木糖和葡萄糖发酵产乙醇。在摇瓶振荡发酵条件下,该酵母可发酵164.0 g/L葡萄糖生成61.9 g/L乙醇,糖利用率和乙醇得率分别为99.8%和74.0%;受酵母细胞膜上转运体系的限制,对木糖的最高发酵浓度为120.0 g/L,可生成45.7 g/L乙醇,糖利用率和乙醇得率分别达到94.8%和87.0%。休哈塔假丝酵母发酵木糖的主要产物为乙醇,仅生成微量的木糖醇;添加葡萄糖可促进木糖的利用;休哈塔假丝酵母在葡萄糖发酵时的乙酸和甲酸的耐受浓度分别为8.32和2.55 g/L,木糖发酵时的乙酸和甲酸的耐受浓度分别为6.28和1.15 g/L。  相似文献   

10.
耐高温酵母菌株的分离、鉴定及其酒精发酵初步研究   总被引:7,自引:0,他引:7  
从 38 1个自然样品中筛选得到 2株耐高温酵母THFY 4和THFY 1 6。THFY 4能够在51℃ ,含 30 %葡萄糖的培养基中生长 ;THFY 1 6能够在 45℃ ,30 %葡萄糖的培养基中生长。经初步鉴定 ,THFY 4为克鲁维属酵母 ,THFY 1 6为酵母属酵母。进一步的 37℃发酵实验证明 ,THFY 4在静置条件下的发酵性能很差 ,发酵 60h只能从 2 0 %的葡萄糖产生 4 88% (v v)的酒精 ;而THFY 1 6在相同的条件下从 2 0 %的葡萄糖中产生 1 1 44%  相似文献   

11.
12.
13.
14.
通过对6种藓类植物,即褶叶青藓(Brachythecium salebrosum(Web.et Mohr.)B.S.G.)、湿地匐灯藓(Plagiomnium acutum(Lindb.)Kop.)、侧枝匐灯藓(Plagiomnium maximoviczii(Lindb.)Kop.)、大凤尾藓(Fissidensnobilis Griff.)、大羽藓(Thuidium cymbifolium(Doz.et Molk.)B.S.G.)和大灰藓(Hypnum plumaeforme Wils.)嫩茎和老茎的石蜡切片和显微观察发现,同一藓类植株的嫩茎和老茎,茎结构稳定,不同种藓类植物茎横切面具有不同特征.植物体茎横切面形状、表层细胞的层数、细胞大小和细胞壁厚薄、皮层细胞大小和形状、中轴的有无以及比例等特征可以作为藓类植物的分科分类依据之一.  相似文献   

15.
16.
17.
18.
In experiments on Black Sea skates (Raja clavata), the potential of the receptor epithelium of the ampullae of Lorenzini and spike activity of single nerve fibers connected to them were investigated during electrical and temperature stimulation. Usually the potential within the canal was between 0 and –2 mV, and the input resistance of the ampulla 250–400 k. Heating of the region of the receptor epithelium was accompanied by a negative wave of potential, an increase in input resistance, and inhibition of spike activity. With worsening of the animal's condition the transepithelial potential became positive (up to +10 mV) but the input resistance of the ampulla during stimulation with a positive current was nonlinear in some cases: a regenerative spike of positive polarity appeared in the channel. During heating, the spike response was sometimes reversed in sign. It is suggested that fluctuations of the transepithelial potential and spike responses to temperature stimulation reflect changes in the potential difference on the basal membrane of the receptor cells, which is described by a relationship of the Nernst's or Goldman's equation type.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. I. M. Sechenov, Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Pacific Institute of Oceanology, Far Eastern Scientific Center, Academy of Sciences of the USSR, Vladivostok. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 67–74, January–February, 1980.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号