首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During somitogenesis an oscillatory mechanism termed the "segmentation" clock generates periodic waves of gene expression, which translate into the periodic spatial pattern manifest as somites. The dynamic expression of the clock genes shares the same periodicity as somitogenesis. Notch signaling is believed to play a role in the segmentation clock mechanism. The paper by Hirata et al.(1) identifies a biological clock in cultured cells that is dependent upon the Notch target gene Hes1, and which shows a periodicity similar to that of the segmentation clock. This finding opens the possibility that the same oscillator mechanism might also operate in other tissues or cell types.  相似文献   

2.
3.
Segmentation of the vertebrate body axis is initiated through somitogenesis, whereby epithelial somites bud off in pairs periodically from the rostral end of the unsegmented presomitic mesoderm (PSM). The periodicity of somitogenesis is governed by a molecular oscillator that drives periodic waves of clock gene expression caudo-rostrally through the PSM with a periodicity that matches somite formation. To date the clock genes comprise components of the Notch, Wnt, and FGF pathways. The literature contains controversial reports as to the absolute role(s) of Notch signalling during the process of somite formation. Recent data in the zebrafish have suggested that the only role of Notch signalling is to synchronise clock gene oscillations across the PSM and that somite formation can continue in the absence of Notch activity. However, it is not clear in the mouse if an FGF/Wnt-based oscillator is sufficient to generate segmented structures, such as the somites, in the absence of all Notch activity. We have investigated the requirement for Notch signalling in the mouse somitogenesis clock by analysing embryos carrying a mutation in different components of the Notch pathway, such as Lunatic fringe (Lfng), Hes7, Rbpj, and presenilin1/presenilin2 (Psen1/Psen2), and by pharmacological blocking of the Notch pathway. In contrast to the fish studies, we show that mouse embryos lacking all Notch activity do not show oscillatory activity, as evidenced by the absence of waves of clock gene expression across the PSM, and they do not develop somites. We propose that, at least in the mouse embryo, Notch activity is absolutely essential for the formation of a segmented body axis.  相似文献   

4.
BACKGROUND: The process of somitogenesis can be divided into three major events: the prepatterning of the mesoderm; the formation of boundaries between the prospective somites; and the cellular differentiation of the somites. Expression and functional studies have demonstrated the involvement of the murine Notch pathway in somitogenesis, although its precise role in this process is not yet well understood. We examined the effect of mutations in the Notch pathway elements Delta like 1 (Dll1), Notch1 and RBPJkappa on genes expressed in the presomitic mesoderm (PSM) and have defined the spatial relationships of Notch pathway gene expression in this region. RESULTS: We have shown that expression of Notch pathway genes in the PSM overlaps in the region where the boundary between the posterior and anterior halves of two consecutive somites will form. The Dll1, Notch1 and RBPJkappa mutations disrupt the expression of Lunatic fringe (L-fng), Jagged1, Mesp1, Mesp2 and Hes5 in the PSM. Furthermore, expression of EphA4, mCer 1 and uncx4.1, markers for the anterior-posterior subdivisions of the somites, is down-regulated to different extents in Notch pathway mutants, indicating a global alteration of pattern in the PSM. CONCLUSIONS: We propose a model for the mechanism of somite border formation in which the activity of Notch in the PSM is restricted by L-fng to a boundary-forming territory in the posterior half of the prospective somite. In this region, Notch function activates a set of genes that are involved in boundary formation and anterior-posterior somite identity.  相似文献   

5.
6.
Somitic segmentation provides the framework on which the segmental pattern of the vertebrae, some muscles and the peripheral nervous system is established. Recent evidence indicates that a molecular oscillator, the 'segmentation clock', operates in the presomitic mesoderm (PSM) to direct periodic expression of c-hairy1 and lunatic fringe (l-fng). Here, we report the identification and characterisation of a second avian hairy-related gene, c-hairy2, which also cycles in the PSM and whose sequence is closely related to the mammalian HES1 gene, a downstream target of Notch signalling in vertebrates. We show that HES1 mRNA is also expressed in a cyclic fashion in the mouse PSM, similar to that observed for c-hairy1 and c-hairy2 in the chick. In HES1 mutant mouse embryos, the periodic expression of l-fng is maintained, suggesting that HES1 is not a critical component of the oscillator mechanism. In contrast, dynamic HES1 expression is lost in mice mutant for Delta1, which are defective for Notch signalling. These results suggest that Notch signalling is required for hairy-like genes cyclic expression in the PSM.  相似文献   

7.
While it is known that a large fraction of vertebrate genes are under the control of a gene regulatory network (GRN) forming a clock with circadian periodicity, shorter period oscillatory genes like the Hairy-enhancer-of split (Hes) genes are discussed mostly in connection with the embryonic process of somitogenesis. They form the core of the somitogenesis-clock, which orchestrates the periodic separation of somites from the presomitic mesoderm (PSM). The formation of sharp boundaries between the blocks of many cells works only when the oscillators in the cells forming the boundary are synchronized. It has been shown experimentally that Delta-Notch (D/N) signaling is responsible for this synchronization. This process has to happen rather fast as a cell experiences at most five oscillations from its ‘birth’ to its incorporation into a somite. Computer simulations describing synchronized oscillators with classical modes of D/N-interaction have difficulties to achieve synchronization in an appropriate time. One approach to solving this problem of modeling fast synchronization in the PSM was the consideration of cell movements. Here we show that fast synchronization of Hes-type oscillators can be achieved without cell movements by including D/N cis-inhibition, wherein the mutual interaction of DELTA and NOTCH in the same cell leads to a titration of ligand against receptor so that only one sort of molecule prevails. Consequently, the symmetry between sender and receiver is partially broken and one cell becomes preferentially sender or receiver at a given moment, which leads to faster entrainment of oscillators. Although not yet confirmed by experiment, the proposed mechanism of enhanced synchronization of mesenchymal cells in the PSM would be a new distinct developmental mechanism employing D/N cis-inhibition. Consequently, the way in which Delta-Notch signaling was modeled so far should be carefully reconsidered.  相似文献   

8.
9.
Vertebrate segmentation is regulated by the “segmentation clock”, which drives cyclic expression of several genes in the caudal presomitic mesoderm (PSM). One such gene is Lunatic fringe (Lfng), which encodes a modifier of Notch signalling, and which is also expressed in a stripe at the cranial end of the PSM, adjacent to the newly forming somite border. We have investigated the functional requirements for these modes of Lfng expression during somitogenesis by generating mice in which Lfng is expressed in the cranial stripe but strongly reduced in the caudal PSM, and find that requirements for Lfng activity alter during axial growth. Formation of cervical, thoracic and lumbar somites/vertebrae, but not sacral and adjacent tail somites/vertebrae, depends on caudal, cyclic Lfng expression. Indeed, the sacral region segments normally in the complete absence of Lfng and shows a reduced requirement for another oscillating gene, Hes7, indicating that the architecture of the clock alters as segmentation progresses. We present evidence that Lfng controls dorsal-ventral axis specification in the tail, and also suggest that Lfng controls the expression or activity of a long-range signal that regulates axial extension.  相似文献   

10.
11.
Somitogenesis is controlled by a genetic network consisting of an oscillator (clock) and a gradient (wavefront). The "hairy and Enhancer of Split"- related (her) genes act downstream of the Delta/Notch (D/N) signaling pathway, and are crucial components of the segmentation clock. Due to genome duplication events, the zebrafish genome, possesses two gene copies of the mouse Hes7 homologue: her1 and her7. To better understand the functional consequences of this gene duplication, and to determine possible independent roles for these two genes during segmentation, two zebrafish mutants her1(hu2124) and her7(hu2526) were analyzed. In the course of embryonic development, her1(hu2124) mutants exhibit disruption of the three anterior-most somite borders, whereas her7(hu2526) mutants display somite border defects restricted to somites 8 (+/-3) to 17 (+/-3) along the anterior-posterior axis. Analysis of the molecular defects in her1(hu2124) mutants reveals a her1 auto regulatory feedback loop during early somitogenesis that is crucial for correct patterning and independent of her7 oscillation. This feedback loop appears to be restricted to early segmentation, as cyclic her1 expression is restored in her1(hu2124) embryos at later stages of development. Moreover, only the anterior deltaC expression pattern is disrupted in the presomitic mesoderm of her1(hu2124) mutants, while the posterior expression pattern of deltaC remains unaltered. Together, this data indicates the existence of an independent and genetically separable anterior and posterior deltaC clock modules in the presomitic mesdorm (PSM).  相似文献   

12.
In the last few years, the efforts to elucidate the mechanisms underlying the segmentation clock in various vertebrate species have multiplied. Early evidence suggested that oscillations are caused by one of the genes under the Notch signalling pathway (like those of the her or Hes families). Recently, Aulehla et al. [Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev. Cell 4, 395-406] discovered that Axin2 (a gene under the Wnt3a signalling pathway) also oscillates in the presomitic mesoderm (PSM) of mice embryos and proposed some mechanisms through which the Notch and Wnt3a pathways may interact. They further suggested that a decreasing concentration of Wnt3a along the PSM may be the gradient the segmentation clock interacts with to form somites. These results were reviewed by Rida et al. [A notch feeling of somite segmentation and beyond. Dev. Biol. 265, 2-22], who introduced a complex clockwork comprising genes Hes1, Lfng (under the Notch pathway), and Axin2, as well as their multiple interactions. In the present work we develop a mathematical model based on the Rida et al. review and use it to tackle some of the questions raided by the Aulehla et al. paper: can the Axin2 feedback loop constitute a clock? Could a decreasing Wnt3a signaling constitute the wavefront, where phase is recorded and the spatial pattern laid down? What is the master oscillator?  相似文献   

13.
During somitogenesis, oscillatory expression of genes in the notch and wnt signaling pathways plays a key role in regulating segmentation. These oscillations in expression levels are elements of a species-specific developmental mechanism. To date, the periodicity and components of the human clock remain unstudied. Here we show that a human mesenchymal stem/stromal cell (MSC) model can be induced to display oscillatory gene expression. We observed that the known cycling gene HES1 oscillated with a 5 h period consistent with available data on the rate of somitogenesis in humans. We also observed cycling of Hes1 expression in mouse C2C12 myoblasts with a period of 2 h, consistent with previous in vitro and embryonic studies. Furthermore, we used microarray and quantitative PCR (Q-PCR) analysis to identify additional genes that display oscillatory expression both in vitro and in mouse embryos. We confirmed oscillatory expression of the notch pathway gene Maml3 and the wnt pathway gene Nkd2 by whole mount in situ hybridization analysis and Q-PCR. Expression patterns of these genes were disrupted in Wnt3a(tm1Amc) mutants but not in Dll3(pu) mutants. Our results demonstrate that human and mouse in vitro models can recapitulate oscillatory expression observed in embryo and that a number of genes in multiple developmental pathways display dynamic expression in vitro.  相似文献   

14.
The discovery of periodic propagation of anteriorly moving pulses/stripes of gene expression in the presomitic mesoderm (PSM) of vertebrates has given new life to the clock and wavefront model, and other models of morphogenesis based on a molecular oscillator where the time periodicity is translated into spatial periodicity. Instead we suggest that segmentation, somitogenesis and metamerism in vertebrates and in invertebrates with a posterior growing region are based on a Turing-Child metabolic gradient that is progressively shifted posteriorly with the PSM as elongation, segmentation and somitogenesis proceed. This gradient corresponds to anteriorly propagating metabolic front in the PSM that drives the anteriorly propagating mRNA synthesis and which, together with mRNA degradation, explains stripe formation and spatial periodicity.The process of segmentation has been compared to zooid formation. We show that for annelids the metabolic profile behaves as a Turing field in the sense that an increase in the length of the system or a decrease of the Turing wavelength results in an additional peak in the posterior growing region as predicted by Turing theory. In particular, it is shown that the metabolic gradient that drives the segmentation is based on a Turing system.  相似文献   

15.
16.
The vertebral column derives from somites generated by segmentation of presomitic mesoderm (PSM). Somitogenesis involves a molecular oscillator, the segmentation clock, controlling periodic Notch signaling in the PSM. Here, we establish a novel link between Wnt/beta-catenin signaling and the segmentation clock. Axin2, a negative regulator of the Wnt pathway, is directly controlled by Wnt/beta-catenin and shows oscillating expression in the PSM, even when Notch signaling is impaired, alternating with Lfng expression. Moreover, Wnt3a is required for oscillating Notch signaling activity in the PSM. We propose that the segmentation clock is established by Wnt/beta-catenin signaling via a negative-feedback mechanism and that Wnt3a controls the segmentation process in vertebrates.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号