首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
The developing wings of butterflies and moths are composed of two epithelial monolayers. Each epithelial sheet is made up of two kinds of cells, diploid cells that make up the epidermal surface and body of the wing, and large polyploid cells that become the scale-building cells whose cytoplasmic projections develop into the scales that will cover the adult wing and bear the pigment pattern. We studied the development of polyploidization of the scale-building cells during the pupal stage of the tobacco hornworm moth, Manduca sexta. The endomitotic divisions of the presumptive scale-building cells and the mitotic divisions of the diploid epithelial cells begin on day 3 of the pupal stage and continue until day 7. We show that scales of different colors and positions on the wing differ in size, and that the size of the scale is proportional to the ploidy of the scale-building cell. Scale-building cells are arranged in irregular rows and within each row there is an alternation of ploidy levels, with the lower ploidy cells giving rise to the underscales and the higher ploidy cells giving rise to the cover scales that carry the color pattern. Along the wing there is a proximo-distal decreasing gradient of average ploidy and scale size. Scale-building cells of high ploidy are surrounded by fewer epidermal cells than those of low ploidy. This inverse relationship is known as Henke's compensation principle, which posits that the number of endomitoses of a pre-polyploid cell and the number of mitotic divisions of its diploid daughter cell add up to a constant. We show that the inverse relationship fits the predictions of the compensation principle and does not fit constraints imposed by packing density, and we discuss mechanisms that could give rise to the inverse relationship.  相似文献   

2.
It has been shown that microcautery on the prospective apical black region of the early pupal forewing of a butterfly, Pieris rapae , causes alteration of the scale color on the adult wing and a delay in histogenesis of the pupal wing. From these results, it has been assumed that the developmental delay of scale cells in the pupal wing alters their developmental fate and the hypothesis that different color fates of scales are determined by differences in the developmental timetables between scale cells is proposed. In this study, we attempted to find the developmental timetables of individual scales expressing specific color to test this hypothesis. It was found that the holes on the upper surface of a scale become larger as they develop and the hole sizes of scales in the white region are always larger than in the black region on the same wings either during pupal period or after eclosion. This suggests that the scale hole size is a good index that reflects developmental rate of the scale and a difference in the hole size between adult scales is attributed to a difference in the developmental timetables when their ancestral scale precursor cells were in the pupal period. A comparison of the hole sizes between adult scales in different color regions suggested that normal white scales were in a more advanced state than were the black ones but white scales induced by microcautery were in a less advanced state than black ones on the same wing. This supports our hypothesis.  相似文献   

3.
Experimental approaches to color pattern formation of lepidopteran insects have been made exclusively by analyzing pattern alterations in adult wings induced by operations. We microcauterized the presumptive black region of the dorsal forewing of the butterfly Pieris rapae and analyzed not only the resultant color pattern in the adult wing but also the cell behavior in the pupal wing epidermis around the injury. Cautery induced color alterations were as follows: (i) cautery up to 49.5 h after pupation resulted in white regions appearing within the black region while later cauteries induced larger white regions; (ii) cautery between 50 and 59.5 h resulted in the white regions induced by the cauteries being dramatically decreased; (iii) cautery after 60 h resulted in white regions that had almost disappeared. The examination of the cell behavior in the pupal wing epidermis after cauteries showed that the row formation of scale precursor cells was delayed. This delayed area varied with the time of cautery, in the same manner as that in the induced white area in the adult wing ((i) – (iii) above). The relationship between scale color alteration and the developmental delay of the scale row formation is discussed.  相似文献   

4.
The expression of cell surface protein 2F5 changes dynamically in space and time during morphogenesis of the Manduca wing pattern. Two cell types (generalized epithelial cells and scale precursors) rearrange within each of the two epithelial monolayers of the wing to form periodic rows of scale cells. These two monolayers also interact with each other during a brief period of adult development. Each cell type shows a different pattern of protein 2F5 expression during cell rearrangement and during interaction of the two wing monolayers. Before and after these morphogenetic movements of epithelial cells, the protein is expressed on only a small population of wing cells. In abdominal epithelia where scale cells are also present but are not arranged in periodic rows, the expression pattern of the surface protein is temporally and spatially very different. An earlier study (Nardi and Magee-Adams, Dev. Biol., 116, 278-290, 1986) had shown that basal processes only extend from epithelial cells during their period of rearrangement within a monolayer and during the transient apposition of the wing's upper and lower monolayers. The differential distribution of protein 2F5 on lateral surfaces and basal processes of scale precursor cells and generalized epithelial cells may account in part for their orderly segregation into alternating rows as well as for the transient interaction of the two wing monolayers.  相似文献   

5.
Animal body size and tissue size depend on genetic and environmental factors, but the precise mechanisms of how tissue size is determined in proportion to body size remain unknown. Here we focused on wings from three nymphalid butterflies, Junonia orithya (Linnaeus), Vanessa cardui (Linnaeus) and Danaus chrysippus (Linnaeus) (Lepidoptera: Nymphalidae), to examine the contributions of the number and size of scales to macroscopic structures, represented by wing compartments, and to investigate the positional dependence of scale size, density and arrangement. The whole wing area and wing compartment area exhibited a high correlation in all three species. Similarly, the wing compartment area and the blue or orange area showed a high correlation in three species, indicating isometric relationships among wings of different sizes. However, only in J. orithya, the blue area was highly correlated with the number of constituent scales and, to a lesser extent, with scale size. In contrast, reasonable correlations were obtained between the blue or orange area and the number of rows in all three species. These results suggest that variations of the background area accompany changes in the number of scales through changes in the number of rows. In a background region of the compartment, scale size gradually decreased and scale density increased from the proximal to the distal side in all three species. Our findings suggest that butterfly wing tissue size is determined primarily by the number of scale cells and secondarily by the size change of scale cells before or during the period of row arrangement.  相似文献   

6.
Programmed cell death is an integral and ubiquitous phenomenon of development that is responsible for the reduction of wing size in female moths of Orgyia leucostigma (Lymantriidae). Throughout larval and pupal life, cells of the wing epithelium proliferate and interact to form normal imaginal discs and pupal wings in both sexes. But at the onset of adult development, most cells in female O. leucostigma wings degenerate over a brief, 2-day period. Lysosomes and autophagic vacuoles appear in cells of the wing epithelium shortly after it retracts from the pupal cuticle. Hemocytes actively participate in removing the resulting cellular debris. By contrast, epithelial cells in wings of developing adult males of O. leucostigma do not undergo massive cell death. Wing epithelium of female pupae transferred to male pupal hosts behaves autonomously in this foreign environment. By pupation, cells of the female wing apparently are committed to self-destruct even in a male pupal environment. Normal interactions among epithelial cells within the plane of a wing monolayer as well as between the upper and lower monolayers of the wing are disrupted in female O. leucostigma by massive cell degeneration. Despite this disruption, the remaining cells of the wing contribute to the formation of a diminutive, but reasonably proportioned, adult wing with scales and veins.  相似文献   

7.
We present a model for the formation of parallel rows of scale cells in the developing adult wing of moths and butterflies. Precursors of scale cells differentiate throughout each epithelial monolayer and migrate into rows that are roughly parallel to the body axis. Grafting experiments have revealed what appears to be a gradient of adhesivity along the wing. What is more, cell adhesivity character is maintained after grafting. Thus we suggest that it is a cell’s location prior to migration that determines its interactions during migration. We use nonlinear bifurcation analysis to show that differential origin-dependent cell adhesion can result in the stabilization of rows over spots.  相似文献   

8.
Butterfly wing color-patterns are determined in the prospective wing tissues during the late larval and early pupal stages. To study the cellular differentiation process of wings, morphological knowledge on pupal wings is prerequisite. Here we systematically examined morphological patterns of the pupal wing cuticular surface in a wide variety of nymphalid butterflies in relation to adult color-patterns. Several kinds of pupal wing patterns corresponding to particular adult color-pattern elements were widely observed in many species. Especially noteworthy were the pupal "focal" spots corresponding to the adult border ocelli system, which were detected in many species of Nymphalinae, Apaturinae, Argynninae, Satyrinae, and Danainae. Striped patterns on the pupal wing cuticle seen in some species of Limenitinae, Ariadnae, and Marpesiinae directly corresponded to those of the adult wings. In Vanessa cardui, eyespot-like pattern elements were tentatively produced during development in the wing tissue underneath the pupal spots and subsequently erased, suggesting a mechanism for producing novel color-patterns in the course of development and evolution. The pupal focal spots reasonably correlated with the adult eyespots in size in Precis orithya and Ypthima argus. We physically damaged the pupal focal spots and their corresponding cells underneath in these species, which abolished or inhibited the formation of the adult eyespots. Taken together, our results clarified that pupal cuticle patterns were often indicative of the adult color-patterns and apparently reflect molecular activity of organizing centers for the adult color-pattern formation at least in nymphalid butterflies.  相似文献   

9.
Cellular pattern formations of some epithelia are believed to be governed by the direct lateral inhibition rule of cell differentiation. That is, initially equivalent cells are all competent to differentiate, but once a cell has differentiated, the cell inhibits its immediate neighbors from following this pathway. Such a differentiation repeats until all non-inhibited cells have differentiated. The cellular polygonal patterns can be characterized by the numbers of undifferentiated cells and differentiated ones. When the differentiated cells become large in size, the polygonal pattern is deformed since more cells are needed to enclose the large cell. An actual example of such a cellular pattern was examined. The pupal wing epidermis of a butterfly Pieris rapae shows a transition of the equivalent-size cell pattern to the pattern involving large cells. The process of the transition was analyzed by using the method of weighted Voronoi tessellation that is useful for treatment of irregularly sized polygons. The analysis supported that the pattern transition of the early stage of the pupal wing epidermis is governed by the lateral inhibition rule. The differentiation takes place in order of largeness, but not smallness, of the apical polygonal area in the differentiating region of the pupal wing.  相似文献   

10.
Animal tissues and organs are comprised of several types of cells, which are often arranged in a well-ordered pattern. The posterior part of the Drosophila wing margin is covered with a double row of long hairs, which are equally and alternately derived from the dorsal and ventral sides of the wing, exhibiting a zigzag pattern in the lateral view. How this geometrically regular pattern is formed has not been fully understood. In this study, we show that this zigzag pattern is created by rearrangement of wing margin cells along the dorsoventral boundary flanked by the double row of hair cells during metamorphosis. This cell rearrangement is induced by selective apoptosis of wing margin cells that are spatially separated from hair cells. As a result of apoptosis, the remaining wing margin cells are rearranged in a well-ordered manner, which shapes corrugated lateral sides of both dorsal and ventral edges to interlock them for zigzag patterning. We further show that the corrugated topology of the wing edges is achieved by cell-type specific expression and localization of four kinds of NEPH1/nephrin family proteins through heterophilic adhesion between wing margin cells and hair cells. Homophilic E-cadherin adhesion is also required for attachment of the corrugated dorsoventral edges. Taken together, our results demonstrate that sequential coordination of apoptosis and epithelial architecture with selective adhesion creates the zigzag hair alignment. This may be a common mechanism for geometrically ordered repetitive packing of several types of cells in similarly patterned developmental fields such as the mammalian organ of Corti.  相似文献   

11.
The wing margin of adult wings of Lepidoptera is defined by the position of a "bordering lacuna"(BL). During adult wing development, cell proliferation and scale formation proximal to this lacuna and programmed cell death distal to the lacuna are generally observed. To determine the effect of 20-hydroxyecdysone (20E) on these events, we cultured the silkworm pupal wings with or without 20E and analyzed regional specificity for cell death by the TUNEL method and cell proliferation by 5-bromodeoxyuridine labeling. Programmed cell death was induced by 20E after 5 days of culture and was detected only in the region distal to BL. Cell proliferation after 1 day of culture and scale formation after 5 days of culture were also inducible by 20E and detected in the region proximal to BL. These results suggest that two types of pupal wing cells, which are divided by the position of the BL, respond to ecdysteroid in different manners. Higher concentrations of 20E (more than 1,000 ng/ml) repressed the scale formation, while such repression could not be observed in the peripheral cell death even with 5,000 ng/ml 20E. The ecdysteroid may work both as a trigger to make the wing margin and scales and as a developmental timer to arrange these cellular responses.  相似文献   

12.
The ultrastructure of the dorsal forewing vestiture in exemplars of all family group taxa of non‐ditrysian Lepidoptera is examined, and the evolutionary implications at family level and above are discussed. Wing‐scale terminology is reviewed. Three different types of bilayer wing‐scale covering are recognized; only a few groups have a single‐layer wing‐scale covering. The general scale arrangement is random, but a few taxa have clustered scale arrangements and scattered heteroneurans have scales arranged in transverse rows. Cross ribs are present in all taxa, but only as vestiges in eriocraniid cover scales. Ridge dimorphism is widespread in Neolepidoptera. Surprisingly, ridges and cross ribs on the adwing scale surface are of general occurrence in Neopseustidae and Hepialidae, and are even found on parts of the ground scales of many other Neolepidoptera. Morphological evidence strongly indicates that the fused wing‐scale types found in non‐Coelolepidan Lepidoptera and Neolepidoptera are independently evolved, as evidenced from the presence of vestigial perforations. Absence of perforations is not infallible evidence that a scale is solid. Microtrichia are independently reduced in a number of taxa and probably re‐evolved in at least higher nepticulids. Wing vestiture and scale characters indicate that Tischerioidea may be the sister group of Ditrysia.  相似文献   

13.
14.
Male wing colors and wing scale morphology were examined for three species of lycaenid butterflies: Chrysozephyrus ataxus, Favonius cognatus and F. jezoensis. Measurement of spectral reflectance on the wing surface with a spectrophotometer revealed species‐specific reflection spectra, with one or two peaks in the ultraviolet and/or green ranges. Observations of wing scales using an optical microscope revealed that light was reflected from the inter‐ridge regions, where transmission electron microscopy revealed a multilayer structure. Based on the multilayer dimensions obtained, three models were devised and compared to explain the measured reflectance spectrum. The results showed that the best fit is a model in which thicknesses of thin films of the multilayer system are not constant and air spaces between cuticle layers are more or less packed with cuticle spacers. This suggests that the specific wing colors of the species examined are produced by the species‐specific arrangement of the multilayer structure of wing scales.  相似文献   

15.
The scaleless wings mutant in Bombyx mori (scaleless, sl) was previously reported morphologically. In the present study, we give data to clarify the mechanism of the mutation at the developmental level. Programmed cell death participates in the wing scale development during early pupal stage, and there are significant differences between that of sl and the wild type (WT) at each phase. Well-differentiated scale precursor cells do not form in sl when they have formed in WT. The peak of Caspase-3/7 activity in sl occurs 1 day later than and ten times as much as that in WT. Apoptotic bodies and DNA ladder studies also show that there is excessive apoptosis in sl early pupal wing. In addition, we have studied Bm-ASH1, an achaete–scute homolog in B.mori, which is thought to play a key role during the development of wing scales, and have found that the gene structure and expression levels of Bm-ASH1 in sl and WT are identical. All the data indicate that the wing scale precursor differentiation mechanism is abnormal in sl, which causes failing determination of scale cells and the downstream symptom of excessive apoptosis. But some of the elements to the scale differentiation circuit, such as Bm-ASH1, still operate in sl.  相似文献   

16.
In Drosophila, like most ectotherms, development at low temperature reduces growth rate but increases final adult size. Cultures were shifted from 25 degrees C to low (16.5 degrees C) or to high (29 degrees C) temperature at regular intervals through larval and pupal stages, and the flies of both sexes showed an increase or decrease, respectively, in the size of thorax, wing and abdominal tergite. Size changes in the wing blade resulted from changes in the size of the epidermal cells (with only a small increase in cell number in males reared at low temperature). The temperature-shifts became less effective as they were made at successively later developmental stages, demonstrating a cumulative effect of temperature on adult size. The thorax and wing develop from the same imaginal disc, with most cell division occurring in larval stages, but they differ in timing of temperature sensitivity, which extends only to pupariation or into the late pupal stage, respectively. Growth of the adult abdomen occurs largely after pupariation but its size is temperature-sensitive through both larval and pupal stages. We discuss growth control in Drosophila and the likely effects of temperature on food assimilation, growth efficiency and allocation of nutrients to the production of different tissues.  相似文献   

17.
18.
Remodelling of tissues depends on the coordinated regulation of multiple cellular processes, such as cell-cell communication, differential cell adhesion and programmed cell death. During pupal development, interommatidial cells (IOCs) of the Drosophila eye initially form two or three cell rows between individual ommatidia, but then rearrange into a single row of cells. The surplus cells are eliminated by programmed cell death, and the definitive hexagonal array of cells is formed, which is the basis for the regular pattern of ommatidia visible in the adult eye. Here, we show that this cell-sorting process depends on the presence of a continuous belt of the homophilic cell adhesion protein DE-cadherin at the apical end of the IOCs. Elimination of this adhesion belt by mutations in shotgun, which encodes DE-cadherin, or its disruption by overexpression of DE-cadherin, the intracellular domain of Crumbs, or by a dominant version of the monomeric GTPase Rho1 prevents localisation of the transmembrane protein IrreC-rst to the border between primary pigment cells and IOCs. As a consequence, the IOCs are not properly sorted and supernumerary cells survive. During the sorting process, Notch-mediated signalling in IOCs acts downstream of DE-cadherin to restrict IrreC-rst to this border. The data are discussed in relation to the roles of selective cell adhesion and cell signalling during tissue reorganisation.  相似文献   

19.
Harold  Fox 《Journal of Zoology》1983,199(2):223-248
The skin of the adult Ichthyophis spp. has been investigated using light microscopy and transmission electron microscopy, and the various epidermal and dermal integral cellular components of this genus, of the order Caecilia, are compared and contrasted with those of members of the Anura and Urodela among the Amphibia. In general the epidermis of Ichthyophis is typically amphibian in appearance, though in terms of size the cells are large and of urodelan dimensions. Apart from the epithelial cells, in addition the epidermis includes a number of specifically different cells, some doubtless arising in situ , possibly from the stratum germinativum, others entering the epidermis from elsewhere.
The dermis of caecilians is unique among living amphibians in possessing scales located in pockets, and for completeness their gross structure and arrangement are described and existing information on their ultrastructure is summarized. The cellular composition and arrangement of the dermal glands are described and the glandular components in the Amphibia are compared.  相似文献   

20.
Butterfly wing color patterns are determined during the late larval and early pupal stages. Characterization of wing epithelial cells at these stages is thus critical to understand how wing structures, including color patterns, are determined. Previously, we successfully recorded real-time in vivo images of developing butterfly wings over time at the tissue level. In this study, we employed similar in vivo fluorescent imaging techniques to visualize developing wing epithelial cells in the late larval and early pupal stages 1 hour post-pupation. Both larval and pupal epithelial cells were rich in mitochondria and intracellular networks of endoplasmic reticulum, suggesting high metabolic activities, likely in preparation for cellular division, polyploidization, and differentiation. Larval epithelial cells in the wing imaginal disk were relatively large horizontally and tightly packed, whereas pupal epithelial cells were smaller and relatively loosely packed. Furthermore, larval cells were flat, whereas pupal cells were vertically elongated as deep as 130 μm. In pupal cells, many endosome-like or autophagosome-like structures were present in the cellular periphery down to approximately 10 μm in depth, and extensive epidermal feet or filopodia-like processes were observed a few micrometers deep from the cellular surface. Cells were clustered or bundled from approximately 50 μm in depth to deeper levels. From 60 μm to 80 μm in depth, horizontal connections between these clusters were observed. The prospective eyespot and marginal focus areas were resistant to fluorescent dyes, likely because of their non-flat cone-like structures with a relatively thick cuticle. These in vivo images provide important information with which to understand processes of epithelial cell differentiation and color pattern determination in butterfly wings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号