首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Drosophila wing exhibits a well-ordered cell pattern, especially along the posterior margin, where hair cells are arranged in a zigzag pattern in the lateral view. Based on an experimental result observed during metamorphosis of Drosophila, we considered that a pattern of initial cells autonomously develops to the zigzag pattern through cell differentiation, intercellular communication, and cell death (apoptosis) and performed computer simulations of a cell-based model of vertex dynamics for tissues. The model describes the epithelial tissue as a monolayer cell sheet of polyhedral cells. Their vertices move according to equations of motion, minimizing the sum total of the interfacial and elastic energies of cells. The interfacial energy densities between cells are introduced consistently with an ideal zigzag cell pattern, extracted from the experimental result. The apoptosis of cells is modeled by gradually reducing their equilibrium volume to zero and by assuming that the hair cells prohibit neighboring cells from undergoing apoptosis. Based on experimental observations, we also assumed wing elongation along the proximal-distal axis. Starting with an initial cell pattern similar to the micrograph experimentally obtained just before apoptosis, we carried out the simulations according to the model mentioned above and successfully reproduced the ideal zigzag cell pattern. This elucidates a physical mechanism of patterning triggered by cell apoptosis theoretically and exemplifies, to our knowledge, a new framework to study apoptosis-induced patterning. We conclude that the zigzag cell pattern is formed by an autonomous communicative process among the participant cells.  相似文献   

2.
In this study, we compared the dorsal and ventral patterns of three vein joint types and three types of resilin patches in the wings of the dragonfly Epiophlebia superstes. The joint types were classified according to their general structure and the resilin patch types according to their arrangement at joints and in the adjacent wing membrane. Resilin patches are found in both dorsal and ventral pleat valleys of the corrugated wings of E. superstes, which results in different patterns of resilin distribution on the dorsal and ventral sides of the wing. In addition to its probable function in conferring flexibility to stressed joints, resilin may also have a damping function. Our results suggest that resilin patches in the leading edge may be loaded in compression, whereas in the trailing area, they may be involved in angle widening and thus loaded in tension. Possible adaptations to the deformability of different areas of the wing, e.g. during the process of camber formation, are discussed.  相似文献   

3.
At least 13 genes control the establishment of dorsoventral polarity in the Drosophila embryo and more than 30 genes control the anteroposterior pattern of body segments. Each group of genes is thought to control pattern formation along one body axis, independently of the other group. We have used the expression of the fushi tarazu (ftz) segmentation gene as a positional marker to investigate the relationship between the dorsoventral and anteroposterior axes. The ftz gene is normally expressed in seven transverse stripes. Changes in the striped pattern in embryos mutant for other genes (or progeny of females homozygous for maternal-effect mutations) can reveal alterations of cell fate resulting from such mutations. We show that in the absence of any of ten maternal-effect dorsoventral polarity gene functions, the characteristic stripes of ftz protein are altered. Normally there is a difference between ftz stripe spacing on the dorsal and ventral sides of the embryo; in dorsalized mutant embryos the ftz stripes appear to be altered so that dorsal-type spacing occurs on all sides of the embryo. These results indicate that cells respond to dorsoventral positional information in establishing early patterns of gene expression along the anteroposterior axis and that there may be more significant interactions between the different axes of positional information than previously determined.  相似文献   

4.
Distribution of the enzyme aldehyde oxidase (AO) within the pouch of the mature wing disc is precise and differential. General locations of compartmental boundaries have been identified by fate mapping and studies of AO distribution. The suspected locations of the boundaries were verified by analyzing the distribution of AO-negative cells within an AO-stained background in gynandromorphs and in X-ray-induced clones of AO-negative cells. The anterior/posterior border appeared slightly anterior to the junction of the AO+ anterior presumptive wing surfaces and AO? posterior wing surfaces. A narrow band of AO+ cells extending proximodistally on both presumptive wing surfaces belongs to the posterior compartment. Two dorsal/ventral (dor./vent.) restrictions were found. The dor./vent. restriction equivalent to the dor./vent. border found in the adult wing was located at the ventral most edge of the AO-stained presumptive wing margin. A second restriction which was less strictly obeyed was found on the dorsal edge of the wing margin. We conclude that the whole presumptive wing margin is part of the dorsal compartment. Within the anterior wing margin an intensively stained oval was also found to be clonally restrictive. Therefore, territories were found within the prospective wing margin for which no such features have been identified in the adult Drosophila melanogaster wing.  相似文献   

5.
The developing wing disc of Drosophila is divided into distinct lineage-restricted compartments along both the anterior/posterior (A/P) and dorsal/ventral (D/V) axes. At compartment boundaries, morphogenic signals pattern the disc epithelium and direct appropriate outgrowth and differentiation of adult wing structures. The mechanisms by which affinity boundaries are established and maintained, however, are not completely understood. Compartment-specific adhesive differences and inter-compartment signaling have both been implicated in this process. The selector gene apterous (ap) is expressed in dorsal cells of the wing disc and is essential for D/V compartmentalization, wing margin formation, wing outgrowth and dorsal-specific wing structures. To better understand the mechanisms of Ap function and compartment formation, we have rescued aspects of the ap mutant phenotype with genes known to be downstream of Ap. We show that Fringe (Fng), a secreted protein involved in modulation of Notch signaling, is sufficient to rescue D/V compartmentalization, margin formation and wing outgrowth when appropriately expressed in an ap mutant background. When Fng and alphaPS1, a dorsally expressed integrin subunit, are co-expressed, a nearly normal-looking wing is generated. However, these wings are entirely of ventral identity. Our results demonstrate that a number of wing development features, including D/V compartmentalization and wing vein formation, can occur independently of dorsal identity and that inter-compartmental signaling, refined by Fng, plays the crucial role in maintaining the D/V affinity boundary. In addition, it is clear that key functions of the ap selector gene are mediated by only a small number of downstream effectors.  相似文献   

6.
Summary The bristle pattern along the first longitudinal vein of the wing ofD. hydei differs from that ofD. melanogaster. Instead of a triple row,D. hydei and some allied species show a pattern of five parallel bristle rows of which the medial row (MR) is comparable to the medial triple row (MTR) ofD. melanogaster. Cells of the MR can be made homozygousyellow (y) by induction of mitotic recombination in heterozygousy/y + females. Until 70 h after egg laying (AEL), the MR clones inD. hydei overlap with one or more of the accompanying dorsal and ventral bristle rows. Between 70 and 120 h AEL the MR clones only overlap with dorsal bristle rows. Some time later they also become separated from both dorsal rows. The resulting MR clone pattern fits with the overall longitudinal clone pattern in the wing blade ofD. melanogaster described by Bryant (1970) and others. The MR clones inD. hydei, however, often show a fragmented appearance with many indentations of the surroundingy + tissue even when induced after fixation of the DV compartment boundary. This result contrasts with the commonly held notion, derived from work withD. melanogaster, that compartment boundaries are smooth lines.  相似文献   

7.
U. Thomas  F. Jonsson  S. A. Speicher    E. Knust 《Genetics》1995,139(1):203-213
The Drosophila gene Serrate (Ser) encodes a transmembrane protein with 14 epidermal growth factor--like repeats in its extracellular domain, which is required for the control of cell proliferation and pattern formation during wing development. Flies hetero- or homozygous for the dominant mutation Ser(D) exhibit scalloping of the wing margin due to cell death during pupal stages. Ser(D) is associated with an insertion of the transposable element Tirant in the 3' untranslated region of the gene, resulting in the truncation of the Ser RNA, thereby eliminating putative RNA degradation signals located further downstream. This leads to increased stability of Ser RNA and higher levels of Serrate protein. In wing discs of wild-type third instar larvae, the Serrate protein exhibits a complex expression pattern, including a strong stripe dorsal and a weaker stripe ventral to the prospective wing margin. Wing discs of Ser(D) third instar larvae exhibit additional Serrate protein expression in the edge zone of the future wing margin, where it is normally not detectable. In these cells expression of wing margin specific genes, such as cut and wingless, is repressed. By using the yeast Gal4 system to induce locally restricted ectopic expression of Serrate in the edge zone of the prospective wing margin, we can reproduce all aspects of the Ser(D) wing phenotype, that is, repression of wing margin--specific genes, scalloping of the wing margin and enhancement of the Notch haplo-insufficiency wing phenotype. This suggests that expression of the Serrate protein in the cells of the edge zone of the wing margin, where it is normally absent, interferes with the proper development of the margin.  相似文献   

8.
Studies of morphogenesis in early Xenopus embryos have focused primarily on gastrulation and neurulation. Immediately following these stages is another period of intense morphogenetic activity, the neurula-to-tailbud transition. During this period the embryo is transformed from the spherical shape of the early stages into the long, thin shape of the tailbud stages. While gastrulation and neurulation depend largely on active cell rearrangement and cell shape changes in dorsal tissues, we find that the neurula-to-tailbud transition depends in part on activities of ventral cells. Ventral explants of neurula lengthen autonomously as much as the ventral sides of intact embryos, while dorsal explants lengthen less than the dorsal sides of intact embryos. Analyses of cell division, cell shapes, and cell rearrangement by transplantation of labeled cells and by time lapse recordings in live intact embryos concur that cell rearrangements in ventral mesoderm and ectoderm contribute to the autonomous anterior-posterior axis lengthening of ventral explants between neurula and tailbud stages.  相似文献   

9.
Biochemical investigations of retinotectal adhesive specificity   总被引:4,自引:1,他引:3       下载免费PDF全文
The preferential adhesion of chick neural retina cells to surfaces of intact optic tecta has been investigated biochemically. The study uses a collection assay in which single cells from either dorsal or ventral halves of neural retain adhere preferentially to ventral or dorsal halves of optic tecta respectively. The data presented support the following conclusions: (a) The adhesion of ventral retina to dorsal tecta seems to depend on proteins located on ventral retina and on terminal β-N-acetylgalactosamine residues on dorsal tecta. (b) The adhesion of dorsal retina to ventral tecta seems to depend on proteins located on ventral tecta and on terminal β- N-acetylgalactosamine residues on dorsal retina. (c) A double gradient model for retinotectal adhesion along the dorsoventral axis is consistent with the data presented. The model utilizes only two complementary molecules. The molecule suggested to be concentrated dorsally in both retina and tectum seems to require terminal β-N-acetylgalactosamine residues for adhesion. Its activity is not affected by protease. A molecule fitting these qualifications, the ganglioside GM(2), could not be detected in a gradient, but lecithin vesicles containing GM(2) adhered preferentially to ventral tectal surfaces. The second molecule, concentrated ventrally in both retina and tectum, is a protein and seems capable of binding terminal β-N- acetylgalactosamine residues. One enzyme, UDP-galactose:GM(2) galactosyltransferase, has been found to be more concentrated in ventral retina than dorsal, but only by 30 percent.  相似文献   

10.
11.
Butterflies and moths possess diverse patterns on their wings. Butterflies employ miscellaneous colour in the wings whereas moths use a combination of dull colours like white, grey, brown and black for the patterning of their wings. The exception is some of the toxic diurnal moths which possess bright wing colouration. Moths possess an obscure pattern in the dorsal part of the wings which may be a line, zigzag or swirl. Such patterns help in camouflage during resting period. Thus, the dorsal wing pattern of the moth is used for both intra- as well as inter-specific signal communication. Chiasmia eleonora is a nocturnal moth of greyish black colouration. The dorsal hindwing possesses yellow and black colour patches. A white-coloured oblique line crosses both left and right fore- and hindwings to form a V-shaped pattern across the dorsal wing. This V-shaped pattern possesses a UV signal. Closer to the body, the colour appears darker, which fades towards the margin. The fine nanostructural variation is observed throughout the wings. This study elucidates the wing pattern of the geometrid moth C. eleonora using high-resolution microscopy techniques that has not been described in previous studies.  相似文献   

12.
Dorsoventral axis formation in the Drosophila wing depends on the activity of the selector gene apterous. Although selector genes are usually thought of as binary developmental switches, we find that Apterous activity is negatively regulated during wing development by its target gene dLMO. Apterous-dependent expression of Serrate and fringe in dorsal cells leads to the restricted activation of Notch along the dorsoventral compartment boundary. We present evidence that the ability of cells to participate in this Apterous-dependent cell-interaction is under spatial and temporal control. Apterous-dependent expression of dLMO causes downregulation of Serrate and fringe and allows expression of delta in dorsal cells. This limits the time window during which dorsoventral cell interactions can lead to localized activation of Notch and induction of the dorsoventral organizer. Overactivation of Apterous in the absence of dLMO leads to overexpression of Serrate, reduced expression of delta and concomitant defects in differentiation and cell survival in the wing primordium. Thus, downregulation of Apterous activity is needed to allow normal wing development.  相似文献   

13.
The Drosophila eye and the wing display specific planar cell polarity. Although Frizzled (Fz) signaling has been implicated in the establishment of ommatidial and wing hair polarity, evidence for the Wnt gene function has been limited. Here we examined the function of a Drosophila homolog of Wnt4 (DWnt4) in the control of planar polarity. We show that DWnt4 mRNA and protein are preferentially expressed in the ventral region of eye disc. DWnt4 mutant eyes show polarity reversals mostly in the ventral domain, consistent with the ventral expression of DWnt4. Ectopic expression of DWnt4 in the dorsoventral (DV) polar margins is insufficient to induce ommatidial polarity but becomes inductive when coexpressed with Four-jointed (Fj). Similarly, DWnt4 and Fj result in synergistic induction of hair polarity toward the source of expression in the wing. Consistent with genetic interaction, we provide evidence for direct interaction of DWnt4 and Fj transmembrane protein. The extracellular domain of Fj is required for direct binding to DWnt4 and for the induction of hair polarity. In contrast to the synergy between DWnt4 and Fj, DWnt4 antagonizes the polarizing effect of Fz. Our results suggest that DWnt4 is involved in ommatidial polarity signaling in the ventral region of the eye and its function is mediated by interacting with Fj.  相似文献   

14.
The establishment of dorsoventral polarity in amphibian development begins prior to the first cleavage with the formation of the gray crescent. It has been suggested that quantitative differences exist in the metabolic activity of dorsal and ventral regions at these stages and that this metabolic activity gradient is involved in the maintenance of dorsoventral polarity. In this study regional metabolism has been examined by the microinjection of various radioactive compounds into dorsal or ventral cells of the four-celled Xenopus laevis embryo. The activities of the Embden-Meyerhof pathway, the pentose shunt, and the Krebs cycle and phosphate metabolism have been measured. No difference was detected in the rate or pattern of metabolism between dorsal and ventral regions, suggesting that metabolic activity gradients do not exist in these pathways during early Xenopus embryogenesis.  相似文献   

15.
In the direct-developing sea urchin Heliocidaris erythrogramma the first cleavage division bisects the dorsoventral axis of the developing embryo along a frontal plane. In the two-celled embryo one of the blastomeres, the ventral cell (V), gives rise to all pigmented mesenchyme, as well as to the vestibule of the echinus rudiment. Upon isolation, however, the dorsal blastomere (D) displays some regulation, and is able to form a small number of pigmented mesenchyme cells and even a vestibule. We have examined the spatial and temporal determination of cell fates along the dorsoventral axis during subsequent development. We demonstrate that the dorsoventral axis is resident within both cells of the two-celled embryo, but only the ventral pole of this axis has a rigidly fixed identity this early in development. The polarity of this axis remains the same in half-embryos developing from isolated ventral (V) blastomeres, but it can flip 180° in half-embryos developing from isolated dorsal (D) blastomeres. We find that cell fates are progressively determined along the dorsoventral axis up to the time of gastrulation. The ability of dorsal half-embryos to differentiate ventral cell fates diminishes as they are isolated at progressively later stages of development. These results suggest that the determination of cell fates along the dorsoventral axis in H. erythrogramma is regulated via inductive interactions organized by cells within the ventral half of the embryo.  相似文献   

16.
The spatial and temporal pattern of mitoses during the fourteenth nuclear cycle in a Drosophila embryo reflects differences in cell identities. We have analysed the domains of mitotic division in zygotic mutants that exhibit defects in larval cuticular pattern along the dorsoventral axis. This is a powerful means of fate mapping mutant embryos, as the altered position of mitotic domains in the dorsoventral pattern mutants correlate with their late cuticular phenotypes. In the mutants twist and snail, which fail to differentiate the ventrally derived mesoderm, mitoses specific to the mesoderm are absent. The lateral mesectodermal domain shows a partial ventral shift in twist mutants but a proportion of ventral cells do not behave characteristically, suggesting that twist has a positive role in the establishment of the mesoderm. In contrast, snail is required to repress mesectodermal fates in cells of the presumptive mesoderm. In the absence of both genes, the mesodermal and the mesectodermal anlage are deleted. Mutations at five loci delete specific pattern elements in the dorsal half of the embryo and cause partial ventralization. Mutations in the genes zerknüllt and shrew affect cell division only in the dorsalmost cells corresponding to the amnioserosa, while the genes tolloid, screw and decapentaplegic (dpp) affect divisions in both the prospective amnioserosa and the dorsal epidermis. We demonstrate that in each of these mutants dorsally placed mitotic domains are absent and this effect is correlated with an expansion and dorsal shift in the position of more ventral domains. The loss of activity in each of the five genes results in qualitatively similar alterations in the mitotic pattern; mutations with stronger ventralizing phenotypes affect increasingly greater subsets of the dorsal cells. Double mutant analysis indicates that these genes act in a concerted manner to specify dorsal fates. The correlation between phenotypic strength and the progressive loss of dorsal pattern elements in the ventralized mutants, suggests that one of these gene products, perhaps dpp, may provide positional information in a graded manner.  相似文献   

17.
One pattern of cell-cell adhesion within the chick embryo neural retina follows a dorsoventral gradient in which cells at either end show maximal affinity for each other. Developmental and biochemical approaches have been applied to analyze the basis of this adhesive pattern. When retinal cells were prepared from eyes that had been inverted 180° in situ prior to retinal differentiation, an inverted pattern of adhesive preference resulted. These data suggest that adhesive preference is determined early in embryogenesis. Trypsinization of either dorsal or ventral retinal cells destroyed their adhesive preference. Treatment with neuraminidase resulted in a differential loss of adhesive preference by dorsal retinal cells. This effect could be mimicked by mild oxidation with NaIO4. Since periodate inactivation of adhesive preference could be reversed by subsequent borohydride treatment, borotritiate was used to label those cell surface molecules crucial to the reactivation of adhesive preference. Fluorographs prepared after polyacrylamide gel electrophoresis revealed that periodate stimulated the appearance of a small number of radioactively labeled bands. These data suggest that adhesive preference is mediated by glycoconjugates, possibly sialoglycoproteins, on the dorsal cell surface.  相似文献   

18.
Summary Intracellular recordings were obtained from primary and secondary sensory hair cells in the anterior transverse crista segment of the squid (Alloteuthis subulata) statocyst during imposed displacements of the overlying cupula. The secondary sensory hair cells were depolarized by ventral movements of the cupula and hyperpolarized by dorsal cupula movements. The displacement/response curve was asymmetric around the zero position and sigmoidal in shape, similar to that already described for vertebrate hair cells. The cells are estimated to have a sensitivity of at least 0.5 mV per degree angle of cilia displacement. The responses showed pronounced adaptation and could be blocked by bath applied alcohols, such as heptanol or octanol, or by high concentrations of aminoglycosides.The primary sensory hair cells were depolarized by dorsal movements of the cupula, usually responding with a burst of action potentials. The displacement/response curve was also sigmoidal in shape and the firing pattern showed strong adaptation to maintained displacements of the cupula.The cupula itself appeared to be irregular in shape, extending much further into the statocyst cavity in its central part than at its edges. This is likely to result in differences in the responses of the underlying hair cells along the length of the crista ridge.  相似文献   

19.
Summary The development of the adult abdomen ofDrosophila melanogaster was analyzed by histology, microcautery, and genetic strategies. Eight nests of diploid histoblasts were identified in the newly hatched larva among the polytene epidermal cells of each abdominal segment: pairs of anterior dorsal, posterior dorsal, and ventral histoblast nests and a pair of spiracular anlagen. The histoblasts do not divide during larval life but begin dividing rapidly 3 h after pupariation, doubling every 3.6 h. Initially they remain confined to their original area, but 15 h after pupariation the nests enlarge, and histoblasts replace adjacent epidermis cell by cell. The histoblasts cover half the abdomen by 28 h after pupariation and the rest by 36 h. Polytene epidermal cells of the intersegmental margin are replaced last. Cautery of the anterior dorsal nest caused deletion of the whole corresponding hemitergite, whereas cautery of the posterior dorsal nest caused the deletion of the macrochaetae of the posterior of the hemitergite. Cautery of the ventral nest deleted the hemisternite and the pleura, whereas cautery of the spiracular anlagen deleted the spiracle. Results of cautery also revealed that no macrochaetae formed on the tergite in the absence of adjacent microchaetae. Clonal analysis revealed that there were no clonal restrictions within a hemitergite at pupariation. Cautery of polytene epidermal cells other than those of the intersegmental margin failed to affect tergite development. However, cautery of polytene epidermal cells of the intersegmental margin adjacent to either dorsal histoblast nest caused mirror-image duplications of the anterior or posterior of the hemitergite in 10% of the hemitergites. Forty percent of the damaged presumptive hemitergites formed complete hemitergites, indicating extensive pattern regulation and regeneration. Pattern duplication and regeneration were accounted for in terms of intercalation and a model of epimorphic pattern regulation (French et al., 1976). Histoblasts in adjacent segments normally develop independently, but if they are enabled to interact by deleting the polytene epidermal cells of the intersegmental margin, they undergo intercalation which results in duplication or regeneration. The possible role of the intersegmental margin cells of insects in development was analyzed.  相似文献   

20.
Many members of the animal kingdom display coat or skin color differences along their dorsoventral axis. To determine the mechanisms that control regional differences in pigmentation, we have studied how a classical mouse mutation, droopy ear (de(H)), affects dorsoventral skin characteristics, especially those under control of the Agouti gene. Mice carrying the Agouti allele black-and-tan (a(t)) normally have a sharp boundary between dorsal black hair and yellow ventral hair; the de(H) mutation raises the pigmentation boundary, producing an apparent dorsal-to-ventral transformation. We identify a 216 kb deletion in de(H) that removes all but the first exon of the Tbx15 gene, whose embryonic expression in developing mesenchyme correlates with pigmentary and skeletal malformations observed in de(H)/de(H) animals. Construction of a targeted allele of Tbx15 confirmed that the de(H) phenotype was caused by Tbx15 loss of function. Early embryonic expression of Tbx15 in dorsal mesenchyme is complementary to Agouti expression in ventral mesenchyme; in the absence of Tbx15, expression of Agouti in both embryos and postnatal animals is displaced dorsally. Transplantation experiments demonstrate that positional identity of the skin with regard to dorsoventral pigmentation differences is acquired by E12.5, which is shortly after early embryonic expression of Tbx15. Fate-mapping studies show that the dorsoventral pigmentation boundary is not in register with a previously identified dermal cell lineage boundary, but rather with the limb dorsoventral boundary. Embryonic expression of Tbx15 in dorsolateral mesenchyme provides an instructional cue required to establish the future positional identity of dorsal dermis. These findings represent a novel role for T-box gene action in embryonic development, identify a previously unappreciated aspect of dorsoventral patterning that is widely represented in furred mammals, and provide insight into the mechanisms that underlie region-specific differences in body morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号