首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Na(+)/Ca(2+) exchanger (NCX) proteins mediate Ca(2+)-fluxes across the cell membrane to maintain Ca(2+) homeostasis in many cell types. Eukaryotic NCX contains Ca(2+)-binding regulatory domains, CBD1 and CBD2. Ca(2+) binding to a primary sensor (Ca3-Ca4 sites) on CBD1 activates mammalian NCXs, whereas CALX, a Drosophila NCX ortholog, displays an inhibitory response to regulatory Ca(2+). To further elucidate the underlying regulatory mechanisms, we determined the 2.7 ? crystal structure of mammalian CBD12-E454K, a two-domain construct that retains wild-type properties. In conjunction with stopped-flow kinetics and SAXS (small-angle X-ray scattering) analyses of CBD12 mutants, we show that Ca(2+) binding to Ca3-Ca4 sites tethers the domains via a network of interdomain salt-bridges. This Ca(2+)-driven interdomain switch controls slow dissociation of "occluded" Ca(2+) from the primary sensor and thus dictates Ca(2+) sensing dynamics. In the Ca(2+)-bound conformation, the interdomain angle of CBD12 is very similar in NCX and CALX, meaning that the interdomain distances cannot account for regulatory diversity in NCX and CALX. Since the two-domain interface is nearly identical among eukaryotic NCXs, including CALX, we suggest that the Ca(2+)-driven interdomain switch described here represents a general mechanism for initial conduction of regulatory signals in NCX variants.  相似文献   

2.
The plasma membrane Na+/Ca2+ exchanger (NCX) is almost certainly the major Ca2+ extrusion mechanism in cardiac myocytes. Binding of Na+ and Ca2+ ions to its large cytosolic loop regulates ion transport of the exchanger. We determined the solution structures of two Ca2+ binding domains (CBD1 and CBD2) that, together with an alpha-catenin-like domain (CLD), form the regulatory exchanger loop. CBD1 and CBD2 are very similar in the Ca2+ bound state and describe the Calx-beta motif. Strikingly, in the absence of Ca2+, the upper half of CBD1 unfolds while CBD2 maintains its structural integrity. Together with a 7-fold higher affinity for Ca2+, this suggests that CBD1 is the primary Ca2+ sensor. Specific point mutations in either domain largely allow the interchange of their functionality and uncover the mechanism underlying Ca2+ sensing in NCX.  相似文献   

3.
The cardiac Na(+)/Ca(2+) exchanger (NCX) regulates cellular [Ca(2+)](i) and plays a central role in health and disease, but its molecular regulation is poorly understood. Here we report on how protons affect this electrogenic transporter by modulating two critically important NCX C(2) regulatory domains, Ca(2+) binding domain-1 (CBD1) and CBD2. The NCX transport rate in intact cardiac ventricular myocytes was measured as a membrane current, I(NCX), whereas [H(+)](i) was varied using an ammonium chloride "rebound" method at constant extracellular pH 7.4. At pH(i) = 7.2 and [Ca(2+)](i) < 120 nM, I(NCX) was less than 4% that of its maximally Ca(2+)-activated value. I(NCX) increases steeply at [Ca(2+)](i) between 130-150 nM with a Hill coefficient (n(H)) of 8.0 ± 0.7 and K(0.5) = 310 ± 5 nM. At pH(i) = 6.87, the threshold of Ca(2+)-dependent activation of I(NCX) was shifted to much higher [Ca(2+)](i) (600-700 nM), and the relationship was similarly steep (n(H) = 8.0±0.8) with K(0.5) = 1042 ± 15 nM. The V(max) of Ca(2+)-dependent activation of I(NCX) was not significantly altered by low pH(i). The Ca(2+) affinities for CBD1 (0.39 ± 0.06 μM) and CBD2 (K(d) = 18.4 ± 6 μM) were exquisitely sensitive to [H(+)], decreasing 1.3-2.3-fold as pH(i) decreased from 7.2 to 6.9. This work reveals for the first time that NCX can be switched off by physiologically relevant intracellular acidification and that this depends on the competitive binding of protons to its C(2) regulatory domains CBD1 and CBD2.  相似文献   

4.
The Na(+)-Ca(2+) exchanger (NCX) mediated Ca(2+) fluxes are essential for handling Ca(2+) homeostasis in many cell-types. Eukaryotic NCX variants contain regulatory CBD1 and CBD2 domains, whereas in distinct variants the Ca(2+) binding to Ca3-Ca4 sites of CBD1 results either in sustained activation, inhibition or no effect. CBD2 contains an alternatively spliced segment, which is expressed in a tissue-specific manner although its impact on allosteric regulation remains unclear. Recent studies revealed that the Ca(2+) binding to Ca3-Ca4 sites results in interdomain tethering of CBDs, which rigidifies CBDs movements with accompanied slow dissociation of "occluded" Ca(2+). Here we investigate the effects of CBD2 variants on Ca(2+) occlusion in the two-domain construct (CBD12). Mutational studies revealed that both sites (Ca3 and Ca4) contribute to Ca(2+) occlusion, whereas after dissociation of the first Ca(2+) ion the second Ca(2+) ion becomes occluded. This mechanism is common for the brain, kidney and cardiac splice variants of CBD12, although the occluded Ca(2+) exhibits 20-50-fold difference in off-rates among the tested variants. Therefore, the spliced exons on CBD2 affect the rate-limiting step of the occluded Ca(2+) dissociation at the primary regulatory sensor to shape dynamic features of allosteric regulation in NCX variants.  相似文献   

5.
The Na(+)/Ca(2+) exchanger CALX promotes Ca(2+) efflux in Drosophila sensory neuronal cells to facilitate light-mediated Ca(2+) homeostasis. CALX activity is negatively regulated by specific Ca(2+) interaction within its two intracellular Ca(2+) regulatory domains CBD1 and CBD2, yet how the Ca(2+) binding is converted to molecular motion to operate the exchanger is unknown. Here, we report crystal structures of the entire Ca(2+) regulatory domain CBD12 from two alternative splicing isoforms, CALX 1.1 and 1.2, exhibiting distinct regulatory Ca(2+) dependency. The structures show an open V-shaped conformation with four Ca(2+) ions bound on the CBD domain interface, confirmed by LRET analysis. The structures together with Ca(2+)-binding analysis support that the Ca(2+) inhibition of CALX is achieved by interdomain conformational changes induced by Ca(2+) binding at CBD1. The conformational difference between the two isoforms also indicates that alternative splicing adjusts the interdomain orientation angle to modify the Ca(2+) regulatory property of the exchangers.  相似文献   

6.
Intracellular Ca2+ regulates the activity of the NCX (Na+/Ca2+ exchanger) through binding to the cytosolic CBD (Ca2+-binding domain) 1 and CBD2. In vitro studies of the structure and dynamics of CBD1 and CBD2, as well as studies of their kinetics and thermodynamics of Ca2+ binding, greatly enhanced our understanding of NCX regulation. We describe the fold of the CBDs in relation to other known structures and review Ca2+ binding of the different CBD variants from a structural perspective. We also report on new findings concerning Mg2+ binding to the CBDs and finally we discuss recent results on CBD1-CBD2 interdomain interactions.  相似文献   

7.
The binding of Ca(2+) to two adjacent Ca(2+)-binding domains, CBD1 and CBD2, regulates ion transport in the Na(+)/Ca(2+) exchanger. As sensors for intracellular Ca(2+), the CBDs form electrostatic switches that induce the conformational changes required to initiate and sustain Na(+)/Ca(2+) exchange. Depending on the presence of a few key residues in the Ca(2+)-binding sites, zero to four Ca(2+) ions can bind with affinities between 0.1 to 20 μm. Importantly, variability in CBD2 as a consequence of alternative splicing modulates not only the number and affinities of the Ca(2+)-binding sites in CBD2 but also the Ca(2+) affinities in CBD1.  相似文献   

8.
Phospholemman (PLM), a member of the FXYD family of small ion transport regulators, inhibits cardiac Na+/Ca2+ exchanger (NCX1). NCX1 is made up of N-terminal domain consisting of the first five transmembrane segments (residues 1-217), a large intracellular loop (residues 218-764), and a C-terminal domain comprising the last four transmembrane segments (residues 765-938). Using glutathione S-transferase (GST) pull-down assay, we demonstrated that the intracellular loop, but not the N- or C-terminal transmembrane domains of NCX1, was associated with PLM. Further analysis using protein constructs of GST fused to various segments of the intracellular loop of NCX1 suggest that PLM bound to residues 218-371 and 508-764 but not 371-508. Split Na+/Ca2+ exchangers consisting of N- or C-terminal domains with different lengths of the intracellular loop were co-expressed with PLM in HEK293 cells that are devoid of endogenous PLM and NCX1. Although expression of N-terminal but not C-terminal domain alone resulted in correct membrane targeting, co-expression of both N- and C-terminal domains was required for correct membrane targeting and functional exchange activity. NCX1 current measurements indicate that PLM decreased NCX1 current only when the split exchangers contained residues 218-358 of the intracellular loop. Co-immunoprecipitation experiments with PLM and split exchangers suggest that PLM associated with the N-terminal domain of NCX1 when it contained intracellular loop residues 218-358. TM43, a PLM mutant with its cytoplasmic tail truncated, did not co-immunoprecipitate with wild-type NCX1 when co-expressed in HEK293 cells, confirming little to no interaction between the transmembrane domains of PLM and NCX1. We conclude that PLM interacted with the intracellular loop of NCX1, most likely at residues 218-358.  相似文献   

9.
The Na(+)-Ca(2+) exchanger is a plasma membrane protein expressed at high levels in cardiomyocytes. It extrudes 1 Ca(2+) for 3 Na(+) ions entering the cell, regulating intracellular Ca(2+) levels and thereby contractility. Na(+)-Ca(2+) exchanger activity is regulated by intracellular Ca(2+), which binds to a region (amino acids 371-508) within the large cytoplasmic loop between transmembrane segments 5 and 6. Regulatory Ca(2+) activates the exchanger and removes Na(+)-dependent inactivation. The physiological role of intracellular Ca(2+) regulation of the exchanger is not yet established. Yellow (YFP) and cyan (CFP) fluorescent proteins were linked to the NH(2)- and CO(2)H-termini of the exchanger Ca(2+) binding domain (CBD) to generate a construct (YFP-CBD-CFP) capable of responding to changes in intracellular Ca(2+) concentrations by FRET efficiency measurements. The two fluorophores linked to the CBD are sufficiently close to generate FRET. FRET efficiency was reduced with increasing Ca(2+) concentrations. Titrations of Ca(2+) concentration versus FRET efficiency indicate a K(D) for Ca(2+) of approximately 140 nM, which increased to approximately 400 nM in the presence of 1 mM Mg(2+). Expression of YFP-CBD-CFP in myocytes, generated changes in FRET associated with contraction, suggesting that NCX is regulated by Ca(2+) on a beat-to-beat basis during excitation-contraction coupling.  相似文献   

10.
The Na+/Ca2+ exchanger provides a major Ca2+ extrusion pathway in excitable cells and plays a key role in the control of intracellular Ca2+ concentrations. In Canis familiaris, Na+/Ca2+ exchanger (NCX) activity is regulated by the binding of Ca2+ to two cytosolic Ca2+‐binding domains, CBD1 and CBD2, such that Ca2+‐binding activates the exchanger. Despite its physiological importance, little is known about the exchanger's global structure, and the mechanism of allosteric Ca2+‐regulation remains unclear. It was found previously that for NCX in the absence of Ca2+ the two domains CBD1 and CBD2 of the cytosolic loop are flexibly linked, while after Ca2+‐binding they adopt a rigid arrangement that is slightly tilted. A realistic model for the mechanism of the exchanger's allosteric regulation should not only address this property, but also it should explain the distinctive behavior of Drosophila melanogaster's sodium/calcium exchanger, CALX, for which Ca2+‐binding to CBD1 inhibits Ca2+ exchange. Here, NMR spin relaxation and residual dipolar couplings were used to show that Ca2+ modulates CBD1 and CBD2 interdomain flexibility of CALX in an analogous way as for NCX. A mechanistic model for the allosteric Ca2+ regulation of the Na+/Ca2+ exchanger is proposed. In this model, the intracellular loop acts as an entropic spring whose strength is modulated by Ca2+‐binding to CBD1 controlling ion transport across the plasma membrane. Proteins 2016; 84:580–590. © 2016 Wiley Periodicals, Inc.  相似文献   

11.
Phagocytosis and the ensuing NADPH-mediated respiratory burst are important aspects of microglial activation that require calcium ion (Ca(2+)) influx. However, the specific Ca(2+) entry pathway(s) that regulates this mechanism remains unclear, with the best candidates being surface membrane Ca(2+)-permeable ion channels or Na(+)/Ca(2+) exchangers. In order to address this issue, we used quantitative real-time RT-PCR to assess mRNA expression of the Na(+)/Ca(2+) exchangers, Slc8a1-3/NCX1-3, before and after phagocytosis by rat microglia. All three Na(+)/Ca(2+) exchangers were expressed, with mRNA levels of NCX1 > NCX3 > NCX2, and were unaltered during the one hour phagocytosis period. We then carried out a biophysical characterization of Na(+)/Ca(2+) exchanger activity in these cells. To investigate conditions under which Na(+)/Ca(2+) exchange was functional, we used a combination of perforated patch-clamp analysis, fluorescence imaging of a Ca(2+) indicator (Fura-2) and a Na(+) indicator (SBFI), and manipulations of membrane potential and intracellular and extracellular ions. Then, we used a pharmacological toolbox to compare the contribution of Na(+)/Ca(2+) exchange with candidate Ca(2+)-permeable channels, to the NADPH-mediated respiratory burst that was triggered by phagocytosis. We find that inhibiting the reversed mode of the Na(+)/Ca(2+) exchanger with KB-R7943, dose dependently reduced the phagocytosis-stimulated respiratory burst; whereas, blockers of store-operated Ca(2+) channels or L-type voltage-gated Ca(2+) channels had no effect. These results provide evidence that Na(+)/Ca(2+) exchangers are potential therapeutic targets for reducing the bystander damage that often results from microglia activation in the damaged CNS.  相似文献   

12.
《Biophysical journal》2021,120(17):3664-3675
Na+/Ca2+ exchangers (NCXs) are secondary active transporters that couple the translocation of Na+ with the transport of Ca2+ in the opposite direction. The exchanger is an essential Ca2+ extrusion mechanism in excitable cells. It consists of a transmembrane domain and a large intracellular loop that contains two Ca2+-binding domains, CBD1 and CBD2. The two CBDs are adjacent to each other and form a two-domain Ca2+ sensor called CBD12. Binding of intracellular Ca2+ to CBD12 activates the NCX but inhibits the NCX of Drosophila, CALX. NMR spectroscopy and SAXS studies showed that CALX and NCX CBD12 constructs display significant interdomain flexibility in the apo state but assume rigid interdomain arrangements in the Ca2+-bound state. However, detailed structure information on CBD12 in the apo state is missing. Structural characterization of proteins formed by two or more domains connected by flexible linkers is notoriously challenging and requires the combination of orthogonal information from multiple sources. As an attempt to characterize the conformational ensemble of CALX-CBD12 in the apo state, we applied molecular dynamics (MD) simulations, NMR (1H-15N residual dipolar couplings), and small-angle x-ray scattering (SAXS) data in a combined strategy to select an ensemble of conformations in agreement with the experimental data. This joint approach demonstrated that CALX-CBD12 preferentially samples closed conformations, whereas the wide-open interdomain arrangement characteristic of the Ca2+-bound state is less frequently sampled. These results are consistent with the view that Ca2+ binding shifts the CBD12 conformational ensemble toward extended conformers, which could be a key step in the NCXs’ allosteric regulation mechanism. This strategy, combining MD with NMR and SAXS, provides a powerful approach to select ensembles of conformations that could be applied to other flexible multidomain systems.  相似文献   

13.
Using bovine heart sarcolemma vesicles we studied the effects of protons and phosphatidylinositol-4,5-bisphosphate (PtdIns-4,5-P2) on the affinity of the mammalian Na(+)/Ca(2+) exchanger (NCX1) for intracellular Ca(2+). By following the effects of extravesicular ligands in inside-out vesicles, their interactions with sites of NCX1 facing the intracellular medium were investigated. Two Na(+)-gradient-dependent fluxes were studied: Ca(2+) uptake and Ca(2+) release. PtdIns-4,5-P2 binding to NCX1 was investigated in parallel. Without MgATP (no 'de novo' synthesis of PtdIns-4,5-P2), alkalinization increased the affinity for Ca(2+) and the PtdIns-4,5-P2 bound to NCX1. Vesicles depleted of phosphoinositides were insensitive to alkalinization, but became responsive following addition of exogenous PtdIns-4,5-P2 or PtdIns plus MgATP. Acidification reduced the affinity for Ca(2+)(ev); this was only partially reversed by MgATP, despite the increase in bound PtdIns-4,5-P2 to levels observed with alkalinization. Inhibition of Ca(2+) uptake by increasing extravesicular [Na(+)] indicates that it is related to H(+)(i) and Na(+)(i) synergistic inhibition of the Ca(2+)(i) regulatory site. Therefore, the affinity of the NCX1 Ca(2+)(i) regulatory site for Ca(2+) was maximal when both intracellular alkalinization and an increase in PtdIns-4,5-P2 bound to NCX1 (not just of the total membrane PtdIns-4,5-P2) occurred simultaneously. In addition, protons influenced the distribution, or the exposure, of PtdIns-4,5-P2 molecules in the surroundings and/or on the exchanger protein.  相似文献   

14.
The Na(+)/Ca(2+) exchanger gene NCX1 undergoes alternative splicing leading to several isoforms that differ in a small portion of the large cytoplasmic loop. This loop is involved in many regulatory processes of NCX1, including ionic regulation by the transported substrates Na(+) and Ca(2+). High intracellular Ca(2+) can alleviate intracellular Na(+)-dependent inactivation in exon A (NCX1.4)-containing isoforms but not in those containing the mutually exclusive exon B (NCX1.3). Giant excised patches from Xenopus oocytes expressing various NCX1 constructs were used to examine the specific amino acids responsible for these observed regulatory differences. Using a chimeric approach, the region responsible was narrowed down to the small central part of exon A (IDDEEYEKNKTF). Replacing the second aspartic acid of this sequence with arginine (the corresponding amino acid in exon B) in an exon A background completely prevented the effect of Ca(2+) on intracellular Na(+)-dependent inactivation. Mutating the second lysine to cysteine (exon B) had a similar, but only partial, effect. The converse double mutant, but neither single mutation alone, introduced into an exon B background (arginine to aspartic acid and cysteine to lysine) was able to restore the NCX1.4 regulatory phenotype. These data demonstrate that aspartic acid 610 and lysine 617 (using the rat NCX1.4 numbering scheme) are critical molecular determinants of the unique Ca(2+) regulatory properties of NCX1.4.  相似文献   

15.
Whole cell patch clamp and intracellular Ca(2+) transients in trout atrial cardiomyocytes were used to quantify calcium release from the sarcoplasmic reticulum (SR) and examine its dependency on the Ca(2+) trigger source. Short depolarization pulses (2-20 ms) elicited large caffeine-sensitive tail currents. The Ca(2+) carried by the caffeine-sensitive tail current after a 2-ms depolarization was 0.56 amol Ca(2+)/pF, giving an SR Ca(2+) release rate of 279 amol Ca(2+). pF(-1). s(-1) or 4.3 mM/s. Depolarizing cells for 10 ms to different membrane potentials resulted in a local maximum of SR Ca(2+) release, intracellular Ca(2+) transient, and cell shortening at 10 mV. Although 100 microM CdCl(2) abolished this local maximum, it had no effect on SR Ca(2+) release elicited by a depolarization to 110 or 150 mV, and the SR Ca(2+) release was proportional to the membrane potential in the range -50 to 150 mV with 100 microM CdCl(2). Increasing the intracellular Na(+) concentration ([Na(+)]) from 10 to 16 mM enhanced SR Ca(2+) release but reduced cell shortening at all membrane potentials examined. In the absence of TTX, SR Ca(2+) release was potentiated with 16 mM but not 10 mM pipette [Na(+)]. Comparison of the total sarcolemmal Ca(2+) entry and the Ca(2+) released from the SR gave a gain factor of 18.6 +/- 7.7. Nifedipine (Nif) at 10 microM inhibited L-type Ca(2+) current (I(Ca)) and reduced the time integral of the tail current by 61%. The gain of the Nif-sensitive SR Ca(2+) release was 16.0 +/- 4.7. A 2-ms depolarization still elicited a contraction in the presence of Nif that was abolished by addition of 10 mM NiCl(2). The gain of the Nif-insensitive but NiCl(2)-sensitive SR Ca(2+) release was 14.8 +/- 7.1. Thus both reverse-mode Na(+)/Ca(2+) exchange (NCX) and I(Ca) can elicit Ca(2+) release from the SR, but I(Ca) is more efficient than reverse-mode NCX in activating contraction. This difference may be due to extrusion of a larger fraction of the Ca(2+) released from the SR by reverse-mode NCX rather than a smaller gain for NCX-induced Ca(2+) release.  相似文献   

16.
Jeon D  Yang YM  Jeong MJ  Philipson KD  Rhim H  Shin HS 《Neuron》2003,38(6):965-976
The plasma membrane Na(+)/Ca(2+) exchanger (NCX) plays a role in regulation of intracellular Ca(2+) concentration via the forward mode (Ca(2+) efflux) or the reverse mode (Ca(2+) influx). To define the physiological function of the exchanger in vivo, we generated mice deficient for NCX2, the major isoform in the brain. Mutant hippocampal neurons exhibited a significantly delayed clearance of elevated Ca(2+) following depolarization. The frequency threshold for LTP and LTD in the hippocampal CA1 region was shifted to a lowered frequency in the mutant mice, thereby favoring LTP. Behaviorally, the mutant mice exhibited enhanced performance in several hippocampus-dependent learning and memory tasks. These results demonstrate that NCX2 can be a temporal regulator of Ca(2+) homeostasis and as such is essential for the control of synaptic plasticity and cognition.  相似文献   

17.
The superfamily of cation/Ca(2+) exchangers includes both Na(+)/Ca(2+) exchangers (NCXs) and Na(+)/Ca(2+),K(+) exchangers (NCKX) as the families characterized in most detail. These Ca(2+) transporters have prominent physiological roles. For example, NCX and NCKX are important in regulation of cardiac contractility and visual processes, respectively. The superfamily also has a large number of members of the YrbG family expressed in prokaryotes. However, no members of this family have been functionally expressed, and their transport properties are unknown. We have expressed, purified, and characterized a member of the YrbG family, MaX1 from Methanosarcina acetivorans. MaX1 catalyzes Ca(2+) uptake into membrane vesicles. The Ca(2+) uptake requires intravesicular Na(+) and is stimulated by an inside positive membrane potential. Despite very limited sequence similarity, MaX1 is a Na(+)/Ca(2+) exchanger with kinetic properties similar to those of NCX. The availability of a prokaryotic Na(+)/Ca(2+) exchanger should facilitate structural and mechanistic investigations.  相似文献   

18.
The cardiac Na(+)/Ca(2+) exchanger (NCX1) is the predominant mechanism for the extrusion of Ca(2+) from beating cardiomyocytes. The role of protein phosphorylation in the regulation of NCX1 function in normal and diseased hearts remains unclear. In our search for proteins that interact with NCX1 using a yeast two-hybrid screen, we found that the C terminus of calcineurin Abeta, containing the autoinhibitory domain, binds to the beta1 repeat of the central cytoplasmic loop of NCX1 that presumably constitutes part of the allosteric Ca(2+) regulatory site. The association of NCX1 with calcineurin was significantly increased in the BIO14.6 cardiomyopathic hamster heart compared with that in the normal control. In hypertrophic neonatal rat cardiomyocytes subjected to chronic phenylephrine treatment, we observed a marked depression of NCX activity measured as the rate of Na(+)(i)-dependent (45)Ca(2+) uptake or the rate of Na(+)(o)-dependent (45)Ca(2+) efflux. Depressed NCX activity was partially and independently reversed by the acute inhibition of calcineurin and protein kinase C activities with little effect on myocyte hypertrophic phenotypes. Studies of NCX1 deletion mutants expressed in CCL39 cells were consistent with the view that the beta1 repeat is required for the action of endogenous calcineurin and that the large cytoplasmic loop may be required to maintain the interaction of the enzyme with its substrate. Our data suggest that NCX1 is a novel regulatory target for calcineurin and that depressed NCX activity might contribute to the etiology of in vivo cardiac hypertrophy and dysfunction occurring under conditions in which both calcineurin and protein kinase C are chronically activated.  相似文献   

19.
TRPC3 has been suggested as a key component of phospholipase C-dependent Ca(2+) signaling. Here we investigated the role of TRPC3-mediated Na(+) entry as a determinant of plasmalemmal Na(+)/Ca(2+) exchange. Ca(2+) signals generated by TRPC3 overexpression in HEK293 cells were found to be dependent on extracellular Na(+), in that carbachol-stimulated Ca(2+) entry into TRPC3 expressing cells was significantly suppressed when extracellular Na(+) was reduced to 5 mm. Moreover, KB-R9743 (5 microm) an inhibitor of the Na(+)/Ca(2+) exchanger (NCX) strongly suppressed TRPC3-mediated Ca(2+) entry but not TRPC3-mediated Na(+) currents. NCX1 immunoreactivity was detectable in HEK293 as well as in TRPC3-overexpressing HEK293 cells, and reduction of extracellular Na(+) after Na(+) loading with monensin resulted in significant rises in intracellular free Ca(2+) (Ca(2+)(i)) of HEK293 cells. Similar rises in Ca(2+)(i) were recorded in TRPC3-overexpressing cells upon the reduction of extracellular Na(+) subsequent to stimulation with carbachol. These increases in Ca(2+)(i) were associated with outward membrane currents at positive potentials and inhibited by KB-R7943 (5 microm), chelation of extracellular Ca(2+), or dominant negative suppression of TRPC3 channel function. This suggests that Ca(2+) entry into TRPC3-expressing cells involves reversed mode Na(+)/Ca(2+) exchange. Cell fractionation experiments demonstrated co-localization of TRPC3 and NCX1 in low density membrane fractions, and co-immunoprecipitation experiments provided evidence for association of TRPC3 and NCX1. Glutathione S-transferase pull-down experiments revealed that NCX1 interacts with the cytosolic C terminus of TRPC3. We suggest functional and physical interaction of nonselective TRPC cation channels with NCX proteins as a novel principle of TRPC-mediated Ca(2+) signaling.  相似文献   

20.
VEGF is a key angiogenic cytokine and a major target in anti-angiogenic therapeutic strategies. In endothelial cells (ECs), VEGF binds VEGF receptors and activates ERK1/2 through the phospholipase γ (PLCγ)-PKCα-B-Raf pathway. Our previous work suggested that influx of extracellular Ca(2+) is required for VEGF-induced ERK1/2 activation, and we hypothesized that this could occur through reverse mode (Ca(2+) in and Na(+) out) Na(+)-Ca(2+) exchange (NCX). However, the role of NCX activity in VEGF signaling and angiogenic functions of ECs had not previously been described. Here, using human umbilical vein ECs (HUVECs), we report that extracellular Ca(2+) is required for VEGF-induced ERK1/2 activation and that release of Ca(2+) from intracellular stores alone, in the absence of extracellular Ca(2+), is not sufficient to activate ERK1/2. Furthermore, inhibitors of reverse mode NCX suppressed the VEGF-induced activation of ERK1/2 in a time- and dose-dependent manner and attenuated VEGF-induced Ca(2+) transients. Knockdown of NCX1 (the main NCX isoform in HUVECs) by siRNA confirmed the pharmacological data. A panel of NCX inhibitors also significantly reduced VEGF-induced B-Raf activity and inhibited PKCα translocation to the plasma membrane and total PKC activity in situ. Finally, NCX inhibitors reduced VEGF-induced HUVEC proliferation, migration, and tubular differentiation in surrogate angiogenesis functional assays in vitro. We propose that Ca(2+) influx through reverse mode NCX is required for the activation and the targeting of PKCα to the plasma membrane, an essential step for VEGF-induced ERK1/2 phosphorylation and downstream EC functions in angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号