首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Survey of the year 2003 commercial optical biosensor literature   总被引:3,自引:0,他引:3  
In the year 2003 there was a 17% increase in the number of publications citing work performed using optical biosensor technology compared with the previous year. We collated the 962 total papers for 2003, identified the geographical regions where the work was performed, highlighted the instrument types on which it was carried out, and segregated the papers by biological system. In this overview, we spotlight 13 papers that should be on everyone's 'must read' list for 2003 and provide examples of how to identify and interpret high-quality biosensor data. Although we still find that the literature is replete with poorly performed experiments, over-interpreted results and a general lack of understanding of data analysis, we are optimistic that these shortcomings will be addressed as biosensor technology continues to mature.  相似文献   

2.
A fractal analysis of a confirmative nature only is presented for cellular analyte-receptor binding kinetics utilizing biosensors. Data taken from the literature can be modeled by using a single-fractal analysis. Relationships are presented for the binding rate coefficient as a function of the fractal dimension and for the analyte concentration in solution. In general, the binding rate coefficient is rather sensitive to the degree of heterogeneity that exists on the biosensor surface. It is of interest to note that examples are presented where the binding coefficient, k exhibits an increase as the fractal dimension (D(f)) or the degree of heterogeneity increases on the surface. The predictive relationships presented provide further physical insights into the binding reactions occurring on the surface. These should assist in understanding the cellular binding reaction occurring on surfaces, even though the analysis presented is for the cases where the cellular "receptor" is actually immobilized on a biosensor or other surface. The analysis suggests possible modulations of cell surfaces in desired directions to help manipulate the binding rate coefficient (or affinity). In general, the technique presented is applicable for the most part to other reactions occurring on different types of biosensor or other surfaces.  相似文献   

3.
We describe a novel biosensor strain for detection and quantification of a small molecule, mevalonate. The biosensor strain is an Escherichia coli mevalonate auxotroph that expresses the green fluorescent protein and reports on the mevalonate concentration in the growth medium through a change in growth rate. A model describing the growth rate dependence on mevalonate was developed in order to use the biosensor strain for high-throughput screening (HTS) and quantitative measurement of mevalonate in the extracellular environment. In general, this method should be applicable to the quantification of any small molecule for which an auxotroph can be developed and will be useful for HTS of evolved metabolic pathways for which there is no readily available screen or selection.  相似文献   

4.
A portable biosensor has been developed to meet the demands of field toxicity analysis. This biosensor consists of three parts, a freeze-dried biosensing strain within a vial, a small light-proof test chamber, and an optic-fiber connected between the sample chamber and a luminometer. Various genetically engineered bioluminescent bacteria were freeze-dried to measure different types of toxicity based upon their modes of action. GC2 (lac::luxCDABE), a constitutively bioluminescent strain, was used to monitor the general toxicity of samples through a decrease in its bioluminescence, while specific toxicity was detected through the use of strains such as DPD2540 (fabA::luxCDABE), TV1061 (grpE::luxCDABE), DPD2794 (recA::luxCDABE), and DPD2511 (katG::luxCDABE). These inducible strains show an increase in bioluminescence under specific stressful conditions, i.e. membrane-, protein-, DNA-, and oxidative-stress, respectively. The toxicity of a sample could be detected by measuring the bioluminescence 30 min after addition to the freeze-dried strains. In an attempt to enhance the sensitivity of the freeze-dried cells, glucose and Tween 80 were tested as additives. It was found that the addition of glucose had a negative effect on the viability of the freeze-dried cells, while samples having Tween 80 showed an increase in their viability. On the other hand, the addition of either Tween 80 or glucose decreased the final bioluminescent response of DPD2540 in response to 4-chlorophenol. Using these strains, many different chemicals were tested and characterized. This portable biosensor, with a very simple protocol, can be used for field sample analysis and the monitoring of various water systems on-site.  相似文献   

5.
The lyophilized biomass of White rot fungi (Phanerochaete chrysosporium ME446) was immobilized in gelatine using glutaraldehyde crosslinking agent on a Pt working electrode. The fungal cells retained their laccase activity under entrapped state. The immobilized cells were used as a source of laccase to develop amperometric epinephrine biosensor. The catalytic action of the laccase in the biosensor released an epinephrinequinone as a result of redox activity, thereby causing an increase in the current. The optimal working conditions of the biosensor were carried out at pH 4.5 (50 mM acetate buffer containing 100 mM K(3)Fe(CN)(6)), and 20°C. The sensor response was linear over a range of 5-100 μM epinephrine. The detection limit of the biosensor was found to be 1.04 μM. In the optimization and characterization studies of the microbial biosensor some parameters such as effect of fungi and gelatine amount, percentage of glutaraldehyde on the biosensor response and substrate specificity were carried out. In the application studies of the biosensor, sensitive determination of epinephrine in pharmaceutical ampules was investigated.  相似文献   

6.
Survey of the year 2000 commercial optical biosensor literature.   总被引:7,自引:0,他引:7  
We have compiled a comprehensive list of the articles published in the year 2000 that describe work employing commercial optical biosensors. Selected reviews of interest for the general biosensor user are highlighted. Emerging applications in areas of drug discovery, clinical support, food and environment monitoring, and cell membrane biology are emphasized. In addition, the experimental design and data processing steps necessary to achieve high-quality biosensor data are described and examples of well-performed kinetic analysis are provided.  相似文献   

7.
A survey of the year 2002 commercial optical biosensor literature   总被引:2,自引:0,他引:2  
We have compiled 819 articles published in the year 2002 that involved commercial optical biosensor technology. The literature demonstrates that the technology's application continues to increase as biosensors are contributing to diverse scientific fields and are used to examine interactions ranging in size from small molecules to whole cells. Also, the variety of available commercial biosensor platforms is increasing and the expertise of users is improving. In this review, we use the literature to focus on the basic types of biosensor experiments, including kinetics, equilibrium analysis, solution competition, active concentration determination and screening. In addition, using examples of particularly well-performed analyses, we illustrate the high information content available in the primary response data and emphasize the impact of including figures in publications to support the results of biosensor analyses.  相似文献   

8.
A fractal analysis of confirmative nature only is presented for analyte-receptor binding and dissociation kinetics for biosensor applications. Data taken from the literature may be modeled, in the case of binding using a single-fractal analysis or a dual-fractal analysis. The dual-fractal analysis represents a change in the binding mechanism as the reaction progresses on the surface. Relationships are presented for the binding and dissociation rate coefficients as a function of their corresponding fractal dimension, Df or the degree of heterogeneity that exists on the surface. When analyte-receptor binding or dissociation is involved, an increase in the heterogeneity on the surface (increase in Df) leads to an increase in the binding and in the dissociation rate coefficient. It is suggested that an increase in the degree of heterogeneity on the surface leads to an increase in the turbulence on the surface owing to the irregularities on the surface. This turbulence promotes mixing, minimizes diffusional limitations, and leads subsequently to an increase in the binding and in the dissociation rate coefficient (Martin S.J., Granstaff, V.E., Frye, G.C., Anal. Chem., 65, (1991) 2910). The binding and the dissociation rate coefficient are rather sensitive to the degree of heterogeneity, Df,bind and Df,diss respectively, that exists on the biosensor surface. For example, the order of dependence on Df,bind is 19.2 for the binding rate coefficient, kbind for the binding of 0.03-1.0 microM SH-2Ld in solution to 2C TCR immobilized on a surface plasmon resonance (SPR) biosensor (Corr, M., Salnetz, A.E., Boyd, L.F., Jelonek, M.T., Khilko, S., Al-Ramadi, B.K., Kim, Y.S., Maher, S.E., Bothwell, A.L.M., Margulies, D.H., Science, 265, (1994) 946). The order of dependence on Df,diss is -6.22 for the dissociation rate coefficient, kdiss for the dissociation of 250-1000 nM Sophora japonica agglutinin (SJA)-lactose complex from the SPR surface. In general, the technique is applicable to other reactions occurring on different types of surfaces, such as cell-surface reactions.  相似文献   

9.
A two-cell biosensor was developed that uses optically detected changes in naturally colored fish chromatophores to measure the neurosecretory output of mammalian neuronal cells. The specific version of the biosensor described here is a continuous flow device that places red-pigmented, dendritic erythrophore cells directly downstream of an immobilized population of PC12 neuronal cells, a well-established model cell-line having neuroendocrine function. Agents known to stimulate catecholamine neurosecretion (secretagogues) were presented to the PC12 cells. It was found that the varying level of neurosecretion from the PC12 cells was measurable by judging the degree of pigment aggregation in the erythrophores. Increases in catecholamine secretion and consequent pigment aggregation were observed for several known secretagogues, including receptor agonists (ATP, acetylcholine), membrane depolarizing agents (high K(+) concentration), and specific neurotoxins (black widow spider venom, alpha-latrotoxin). This particular two-cell biosensor, which is applicable to the detection of any agents that affect the levels of catecholamine secretion from PC12 cells, demonstrates the general principle that the breadth of sensitivity of a biosensor is increased by employing coupled cell types.  相似文献   

10.
JM Haugh 《Biophysical journal》2012,102(9):2003-2011
Engineered protein biosensors, such as those based on Förster resonance energy transfer, membrane translocation, or solvatochromic shift, are being used in combination with live-cell fluorescence microscopy to reveal kinetics and spatial localization of intracellular processes as they occur. Progress in the application of this approach has been steady, yet its general suitability for quantitative measurements remains unclear. To address the pitfalls of the biosensor approach in quantitative terms, simple reaction-diffusion models were analyzed. The analysis shows that although high-affinity molecular recognition allows robust detection of the fluorescence readout, either of two detrimental effects is fostered. Binding of an intramolecular biosensor or of a relatively abundant intermolecular biosensor introduces observer effects in which the dynamics of the target molecule under study are significantly perturbed, whereas binding of a sparingly expressed intermolecular biosensor is subject to a saturation effect, where the pool of unbound biosensor is significantly depleted. The analysis explores how these effects are manifest in the kinetics and spatial gradients of the biosensor-target complex. A sobering insight emerges: the observer or saturation effect is always significant; the question is whether or not it can be tolerated or accounted for. The challenge in managing the adverse effects is that specification of the biosensor-target affinity to within a certain order of magnitude is required.  相似文献   

11.
Kardash E  Bandemer J  Raz E 《Nature protocols》2011,6(12):1835-1846
Fluorescence resonance energy transfer (FRET)-based molecular biosensors serve as important tools for studying protein activity in live cells and have been widely used for this purpose over the past decade. However, FRET biosensors are rarely used in the context of the live organism because of the inherent high cellular complexity and imaging challenges associated with the three-dimensional environment. Here we provide a protocol for using single-chain intramolecular FRET-based biosensors in early development. We provide a general protocol for FRET ratio imaging in embryos, including the data-acquisition conditions and the algorithm for ratio image generation. We then use the pRaichu RacFRET biosensor to exemplify the adaptation and optimization of a particular biosensor for use in live zebrafish embryos. Once an optimized biosensor is available, the complete procedure, including introduction of the probes into embryos, imaging and data analysis, requires 2-3 d.  相似文献   

12.
A new amperometric whole cell biosensor based on Saccharomyces cerevisiae immobilized in gelatin was developed for selective determination of vitamin B1 (thiamine). The biosensor was constructed by using gelatin and crosslinking agent glutaraldehyde to immobilize S. cerevisiae cells on the Teflon membrane of dissolved oxygen (DO) probe used as the basic electrode system combined with a digital oxygen meter. The cells were induced by vitamin B1 in the culture medium, and the cells used it as a carbon source in the absence of glucose. So, when the vitamin B1 solution is injected into the whole cell biosensor system, an increase in respiration activity of the cells results from the metabolic activity and causes a decrease in the DO concentration of interval surface of DO probe related to vitamin B1 concentration. The response time of the biosensor is 3 min, and the optimal working conditions of the biosensor were carried out as pH 7.0, 50mM Tris-HCl, and 30 degrees C. A linear relationship was obtained between the DO concentration decrease and vitamin B1 concentration between 5.0 x 10(-3) and 10(-1) microM. In the application studies of the biosensor, sensitive determination of vitamin B1 in the vitamin tablets was investigated.  相似文献   

13.
We report on the utilization of a novel nanoscaled cobalt phthalocyanine (NanoCoPc)-glucose oxidase (GOD) biocomposite colloid to create a highly responsive glucose biosensor. The biocomposite colloid is constructed under enzyme-friendly conditions by adsorbing GOD molecules on CoPc nanoparticles via electrostatic interactions. The glucose biosensor can be easily achieved by casting the biocomposite colloid on a pyrolytic graphite electrode (PGE) without any auxiliary matter. It has been found that GOD can be firmly immobilized on PGE surface and maintain its bioactivity after conjugating with NanoCoPc. NanoCoPc displays intrinsic electrocatalytic ability to the oxidation of the product of enzymatic reaction H2O2 and shows a higher catalytic activity than that of bulk CoPc. Under optimal conditions, the biosensor shows a wide linear response to glucose in the range of 0.02-18 mM, with a fast response (5s), high sensitivity (7.71 microA cm(-2) mM(-1)), as well as good thermostability and long-term life. The detection limit was 5 microM at 3 sigma. The general interferences coexisted in blood except ascorbic acid and L-cysteine do not affect glucose determination, and further coating Nafion film on the surface of the biosensor can effectively eliminate the interference from ascorbic acid and L-cysteine. The biosensor with Nafion film has been used for the determination of glucose in serum with an acceptable accuracy.  相似文献   

14.
微悬臂列阵传感器在生物检测方面具有快速、痕量和非标记的特性. 我们以镀金并在其上固定了 DNA 探针的微悬臂为正极,在靶杂交液槽内引入另一电极作为负极,构成电场驱动微悬臂 DNA 生物传感器. 对该传感器系统施加静电场,驱动 DNA 分子朝正极迁移,使溶液中的 DNA 分子富集在微悬臂上,促进 DNA 分子的杂交. 结果表明: a. DNA 在微悬臂上的杂交时间仅需 3 min,加快了微悬臂生物传感器对 DNA 分子的检测速度; b. 提高了微悬臂生物传感器的灵敏度,可以检测到皮克级的 DNA 分子.  相似文献   

15.
The nicotinic acetylcholine receptor, purified from Torpedo electric organ, was coupled to a light addressable potentiometric sensor (LAPS) to form a LAPS-receptor biosensor. Receptor-ligand complexes containing biotin and urease were captured on a biotinylated nitrocellulose membrane via a streptavidin bridge and detected with a silicon-based sensor. Competition between biotinylated alpha-bungarotoxin and nonbiotinylated ligands formed the basis of this assay. This biosensor detected both agonists (acetylcholine, carbamylcholine, succinylcholine, suberyldicholine, and nicotine) and competitive antagonists (d-tubocurarine, alpha-bungarotoxin, and alpha-Naja toxin) of the receptor with affinities comparable to those obtained using radioactive ligand binding assays. Consistent with agonist-induced desensitization of the receptor, the LAPS-receptor biosensor reported a time-dependent increase in affinity for the agonist carbamylcholine as expected, but not for the antagonists.  相似文献   

16.
A biosensor for detecting the toxicity of polycylic aromatic hydrocarbons (PAHs) contaminated soil has been successfully constructed using an immobilized recombinant bioluminescent bacterium, GC2 (lac::luxCDABE), which constitutively produces bioluminescence. The biosurfactant, rhamnolipids, was used to extract a model PAH, phenanthrene, and was found to enhance the bioavailability of phenanthrene via an increase in its rate of mass transfer from sorbed soil to the aqueous phase. The monitoring of phenanthrene toxicity was achieved through the measurement of the decrease in bioluminescence when a sample extracted with the biosurfactant was injected into the minibioreactor. The concentrations of phenanthrene in the aqueous phase were found to correlate well with the corresponding toxicity data obtained by using this toxicity biosensor. In addition, it was also found that the addition of glass beads to the agar media enhanced the stability of the immobilized cells. This biosensor system using a biosurfactant may be applied as an in-situ biosensor to detect the toxicity of hydrophobic contaminants in soils and for performance evaluation of PAH degradation in soils.  相似文献   

17.
Survey of the year 2004 commercial optical biosensor literature   总被引:4,自引:0,他引:4  
The year 2004 represents a milestone for the biosensor research community: in this year, over 1000 articles were published describing experiments performed using commercially available systems. The 1038 papers we found represent an approximately 10% increase over the past year and demonstrate that the implementation of biosensors continues to expand at a healthy pace. We evaluated the data presented in each paper and compiled a 'top 10' list. These 10 articles, which we recommend every biosensor user reads, describe well-performed kinetic, equilibrium and qualitative/screening studies, provide comparisons between binding parameters obtained from different biosensor users, as well as from biosensor- and solution-based interaction analyses, and summarize the cutting-edge applications of the technology. We also re-iterate some of the experimental pitfalls that lead to sub-optimal data and over-interpreted results. We are hopeful that the biosensor community, by applying the hints we outline, will obtain data on a par with that presented in the 10 spotlighted articles. This will ensure that the scientific community at large can be confident in the data we report from optical biosensors.  相似文献   

18.
The direct electrochemistry of glucose oxidase (GOD) adsorbed on a CdS nanoparticles modified pyrolytic graphite electrode was investigated, where the enzyme demonstrated significantly enhanced electron-transfer reactivity. GOD adsorbed on CdS nanoparticles maintained its bioactivity and structure, and could electro-catalyze the reduction of dissolved oxygen, which resulted in a great increase of the reduction peak current. Upon the addition of glucose, the reduction peak current decreased, which could be used for glucose detection. Performance and characteristics of the fabricated glucose biosensor were assessed with respect to detection limit, sensitivity, storage stability and interference exclusion. The results showed that the fabricated biosensor was sensitive and stable in detecting glucose, indicating that CdS nanoparticle was a good candidate material for the immobilization of enzyme in glucose biosensor construction.  相似文献   

19.
The development of a piezoelectric biosensor based on nucleic acids interaction is presented focusing on the methodology for probe immobilization. This is a key step in any DNA biosensor development. Often, the detection limits and, in general, the analytical performances of the biosensor can be improved by optimizing the immobilization of the receptor on the transducer surface. DNA must be attached to the solid support, retaining native conformation, and binding activity. This attachment must be stable over the course of a binding assay and, in addition, sufficient binding sites must be presented to the solution phase to interact with the analyte. In this paper, the optimization of the coating of the gold quartz crystal surface, to immobilize an oligonucleotide probe, is reported. Two immobilization procedures are illustrated in details with a comparison regarding the immobilization of the probe, the detection of the hybridization reaction, and the possibility of regeneration. The two procedures are based on the use of biotinylated or thiolated DNA probes. Specific applications will be also presented.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号