首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
To investigate the metal-binding properties of KChIP1, the interaction of KChIP1 and mutated KChIP1 with divalent cations (Mg(2+), Ca(2+), Sr(2+), and Ba(2+)) was explored by 8-anilinonaphthalene-1-sulfonate (ANS) fluorescence. It showed that KChIP1 possessed two types of Ca(2+)-binding sites, high-affinity and low-affinity Ca(2+)-binding sites. However, only low-affinity-binding site for Mg(2+), Sr(2+), and Ba(2+) was observed. The metal-binding properties of KChIP1 are not appreciably affected after removal of the N-terminal portion and EF-hand 1. Deleting the EF-hand 4 of KChIP1 abolishes its high-affinity Ca(2+)-binding site, but retains the intact low-affinity-binding site for metal ions. A decrease in the nonpolarity of ANS-binding site occurs with all mutants. However, the binding of ANS with KChIP1 is no longer observed after removal of EF-hands 3 and 4. Intermolecular interaction assessed by chemical cross-linking suggested that KChIP1 had a propensity to form dimer in the absence of metal ions, and a KChIP1 tetramer was pronouncedly produced in the presence of metal ions. Noticeably, the oligomerization state depends on the integrity of EF-hand 4. Taken together, our data suggest that EF-hand 4 is of structural importance as well as functional importance for fulfilling the physiological function of KChIP1.  相似文献   

2.
Sr(2+) triggers neurotransmitter release similar to Ca(2+), but less efficiently. We now show that in synaptotagmin 1 knockout mice, the fast component of both Ca(2+)- and Sr(2+)-induced release is selectively impaired, suggesting that both cations partly act by binding to synaptotagmin 1. Both the C(2)A and the C(2)B domain of synaptotagmin 1 bind Ca(2+) in phospholipid complexes, but only the C(2)B domain forms Sr(2+)/phospholipid complexes; therefore, Sr(2+) binding to the C(2)B domain is sufficient to trigger fast release, although with decreased efficacy. Ca(2+) induces binding of the synaptotagmin C(2) domains to SNARE proteins, whereas Sr(2+) even at high concentrations does not. Thus, triggering of the fast component of release by Sr(2+) as a Ca(2+) agonist involves the formation of synaptotagmin/phospholipid complexes, but does not require stimulated SNARE binding.  相似文献   

3.
Synaptotagmin I has two tandem Ca(2+)-binding C(2) domains, which are essential for fast synchronous synaptic transmission in the central nervous system. We have solved four crystal structures of the C(2)B domain, one of them in the cation-free form at 1.50 A resolution, two in the Ca(2+)-bound form at 1.04 A (two bound Ca(2+) ions) and 1.65 A (three bound Ca(2+) ions) resolution and one in the Sr(2+)-bound form at 1.18 A (one bound Sr(2+) ion) resolution. The side chains of four highly conserved aspartic acids (D303, D309, D363, and D365) and two main chain oxygens (M302:O and Y364:O), together with water molecules, are in direct contact with two bound Ca(2+) ions (sites 1 and 2). At higher Ca(2+) concentrations, the side chain of N333 rotates and cooperates with D309 to generate a third Ca(2+) coordination site (site 3). Divalent cation binding sites 1 and 2 in the C(2)B domain were previously identified from NMR NOE patterns and titration studies, supplemented by site-directed mutation analysis. One difference between the crystal and NMR studies involves D371, which is not involved in coordination with any of the identified Ca(2+) sites in the crystal structures, while it is coordinated to Ca(2+) in site 2 in the NMR structure. In the presence of Sr(2+), which is also capable of triggering exocytosis, but with lower efficiency, only one cation binding site (site 1) was occupied in the crystallographic structure.  相似文献   

4.
Ozawa T  Fukuda M  Nara M  Nakamura A  Komine Y  Kohama K  Umezawa Y 《Biochemistry》2000,39(47):14495-14503
We investigated the relationship between metal ion selective conformational changes of recoverin and its metal-bound coordination structures. Recoverin is a 23 kDa heterogeneously myristoylated Ca(2+)-binding protein that inhibits rhodopsin kinase. Upon accommodating two Ca(2+) ions, recoverin extrudes a myristoyl group and associates with the lipid bilayer membrane, which was monitored by the surface plasmon resonance (SPR) technique. Large changes in SPR signals were observed for Sr(2+), Ba(2+), Cd(2+), and Mn(2+) as well as Ca(2+), indicating that upon binding to these ions, recoverin underwent a large conformational change to extrude the myristoyl group, and thereby interacted with lipid membranes. In contrast, no SPR signal was induced by Mg(2+), confirming that even though it accommodates two Mg(2+) ions, recoverin does not induce the large conformational change. To investigate the coordination structures of metal-bound Ca(2+) binding sites, FT-IR studies were performed. The EF-hands, Ca(2+)-binding regions each comprising 12 residues, arrange to coordinate Ca(2+) with seven oxygen ligands, two of which are provided by a conserved bidentate Glu at the 12th relative position in the EF-hand. FT-IR analysis confirmed that Sr(2+), Ba(2+), Cd(2+), and Mn(2+) were coordinated to COO(-) of Glu by a bidentate state as well as Ca(2+), while coordination of COO(-) with Mg(2+) was a pseudobridging state with six-coordinate geometry. These SPR and FT-IR results taken together reveal that metal ions with seven-coordinate geometry in the EF-hands induce a large conformational change in recoverin so that it extrudes the myristoyl group, while metal ions with six-coordinate geometry in the EF-hands such as Mg(2+) remain the myristoyl group sequestered in recoverin.  相似文献   

5.
TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions   总被引:18,自引:0,他引:18  
Trace metal ions such as Zn(2+), Fe(2+), Cu(2+), Mn(2+), and Co(2+) are required cofactors for many essential cellular enzymes, yet little is known about the mechanisms through which they enter into cells. We have shown previously that the widely expressed ion channel TRPM7 (LTRPC7, ChaK1, TRP-PLIK) functions as a Ca(2+)- and Mg(2+)-permeable cation channel, whose activity is regulated by intracellular Mg(2+) and Mg(2+).ATP and have designated native TRPM7-mediated currents as magnesium-nucleotide-regulated metal ion currents (MagNuM). Here we report that heterologously overexpressed TRPM7 in HEK-293 cells conducts a range of essential and toxic divalent metal ions with strong preference for Zn(2+) and Ni(2+), which both permeate TRPM7 up to four times better than Ca(2+). Similarly, native MagNuM currents are also able to support Zn(2+) entry. Furthermore, TRPM7 allows other essential metals such as Mn(2+) and Co(2+) to permeate, and permits significant entry of nonphysiologic or toxic metals such as Cd(2+), Ba(2+), and Sr(2+). Equimolar replacement studies substituting 10 mM Ca(2+) with the respective divalent ions reveal a unique permeation profile for TRPM7 with a permeability sequence of Zn(2+) approximately Ni(2+) > Ba(2+) > Co(2+) > Mg(2+) >/= Mn(2+) >/= Sr(2+) >/= Cd(2+) >/= Ca(2+), while trivalent ions such as La(3+) and Gd(3+) are not measurably permeable. With the exception of Mg(2+), which exerts strong negative feedback from the intracellular side of the pore, this sequence is faithfully maintained when isotonic solutions of these divalent cations are used. Fura-2 quenching experiments with Mn(2+), Co(2+), or Ni(2+) suggest that these can be transported by TRPM7 in the presence of physiological levels of Ca(2+) and Mg(2+), suggesting that TRPM7 represents a novel ion-channel mechanism for cellular metal ion entry into vertebrate cells.  相似文献   

6.
The ubiquitous C2 domain is a conserved Ca2+ triggered membrane-docking module that targets numerous signaling proteins to membrane surfaces where they regulate diverse processes critical for cell signaling. In this study, we quantitatively compared the equilibrium and kinetic parameters of C2 domains isolated from three functionally distinct signaling proteins: cytosolic phospholipase A2-alpha (cPLA2-alpha), protein kinase C-beta (PKC-beta), and synaptotagmin-IA (Syt-IA). The results show that equilibrium C2 domain docking to mixed phosphatidylcholine and phosphatidylserine membranes occurs at micromolar Ca2+ concentrations for the cPLA2-alpha C2 domain, but requires 3- and 10-fold higher Ca2+ concentrations for the PKC-beta and Syt-IA C2 domains ([Ca2+](1/2) = 4.7, 16, 48 microM, respectively). The Ca2+ triggered membrane docking reaction proceeds in at least two steps: rapid Ca2+ binding followed by slow membrane association. The greater Ca2+ sensitivity of the cPLA2-alpha domain results from its higher intrinsic Ca2+ affinity in the first step compared to the other domains. Assembly and disassembly of the ternary complex in response to rapid Ca2+ addition and removal, respectively, require greater than 400 ms for the cPLA2-alpha domain, compared to 13 ms for the PKC-beta domain and only 6 ms for the Syt-IA domain. Docking of the cPLA2-alpha domain to zwitterionic lipids is triggered by the binding of two Ca2+ ions and is stabilized via hydrophobic interactions, whereas docking of either the PKC-beta or the Syt-IA domain to anionic lipids is triggered by at least three Ca2+ ions and is maintained by electrostatic interactions. Thus, despite their sequence and architectural similarity, C2 domains are functionally specialized modules exhibiting equilibrium and kinetic parameters optimized for distinct Ca2+ signaling applications. This specialization is provided by the carefully tuned structural and electrostatic parameters of their Ca2+ and membrane-binding loops, which yield distinct patterns of Ca2+ coordination and contrasting mechanisms of membrane docking.  相似文献   

7.
Formation of palmitic acid/Ca(2+) (PA/Ca(2+)) complexes was suggested to play a key role in the non-classical permeability transition in mitochondria (NCPT), which seems to be involved in the PA-induced apoptosis of cardiomyocytes. Our previous studies of complexation of free fatty acids (FFA) with Ca(2+) showed that long-chain (C:16-C:22) saturated FFA had an affinity to Ca(2+), which was much higher than that of other FFA and lipids. The formation of FFA/Ca(2+) complexes in the black-lipid membrane (BLM) was demonstrated to induce a nonspecific ion permeability of the membrane. In the present work, we have found that binding of Ca(2+) to PA incorporated into the membrane of sulforhodamine B (SRB)-loaded liposomes results in an instant release of a part of SRB, with the quantity of SRB released depending on the concentration of PA and Ca(2+). The pH-optimum of this phenomenon, similar to that of PA/Ca(2+) complexation, is in the alkaline range. The same picture of SRB release has been revealed for stearic, but not for linoleic acid. Along with Ca(2+), some other bivalent cations (Ba(2+), Sr(2+), Mn(2+), Ni(2+), Co(2+)) also induce SRB release upon binding to PA-containing liposomes, while Mg(2+) turns out to be relatively ineffective. As revealed by fluorescence correlation spectroscopy, the apparent size of liposomes does not alter after the addition of PA, Ca(2+) or their combination. So it has been supposed that the cause of SRB release from liposomes is the formation of lipid pores. The effect of FFA/Ca(2+)-induced permeabilization of liposomal membranes has several analogies with NCPT, suggesting that both these phenomena are of similar nature.  相似文献   

8.
Ion selectivities for Ca(2+) signaling pathways of 33 metal ions were examined based on the Ca(2+)-dependent on/off switching mechanism of calmodulin (CaM): Ca(2+) ion-induced selective binding of CaM-Ca(2+) ion complex to the target peptide was observed as an increase in surface plasmon resonance (SPR) signals. As the target peptide, M13 of 26-amino-acid residues derived from skeletal muscle myosin light-chain kinase was immobilized in the dextran matrix, over which sample solutions containing CaM and each metal ion were injected in a flow system. Large changes in SPR signals were also observed for Sr(2+), Ba(2+), Cd(2+), Pb(2+), Y(3+) and trivalent lanthanide ions, thereby indicating that not only Ca(2+) but also these metal ions induce the formation of CaM-M13-metal ion ternary complex. No SPR signal was, however, induced by Mg(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+) and all monovalent metal ions examined. The latter silent SPR signal indicates that these ions, even if they bind to CaM, are incapable of forming the CaM-M13-metal ion ternary complex. Comparing the obtained SPR results with ionic radii of those metal ions, it was found that all cations examined with ionic radii close to or greater than that of Ca(2+) induced the formation of the CaM-metal-M13 ternary complex, whereas those with smaller ionic radii were not effective, or much less so. Since these results are so consistent with earlier systematic data for the effects of various metal ions on the conformational changes of CaM, it is concluded that the present SPR analysis may be used for a simple screening and evaluating method for physiologically relevant metal ion selectivity for the Ca(2+) signaling via CaM based on CaM/peptide interactions.  相似文献   

9.
10.
Zheng J  Li Z  Wu A  Zhou H 《Biophysical chemistry》2003,104(1):37-43
As counterions of DNA on mica, Mg(2+), Ca(2+), Sr(2+) and Ba(2+) were used for clarifying whether DNA molecules equilibrate or are trapped on mica surface. End to end distance and contour lengths were determined from statistical analysis of AFM data. It was revealed that DNA molecules can equilibrate on mica when Mg(2+), Ca(2+) and Sr(2+) are counterions. When Ba(2+) is present, significantly crossovered DNA molecules indicate that it is most difficult for DNA to equilibrate on mica and the trapping degree is different under different preparation conditions. In the presence of ethanol, using AFM we have also observed the dependence of B-A conformational transition on counterion identities. The four alkaline earth metal ions cause the B-A transition in different degrees, in which Sr(2+) induces the greatest structural transition.  相似文献   

11.
Lead(II)-induced cleavage can be used as a tool to probe conformational changes in RNA. In this report, we have investigated the conformation of M1 RNA, the catalytic subunit of Escherichia coli RNase P, by studying the lead(II)-induced cleavage pattern in the presence of various divalent metal ions. Our data suggest that the overall conformation of M1 RNA is very similar in the presence of Mg(2+), Mn(2+), Ca(2+), Sr(2+) and Ba(2+), while it is changed compared to the Mg(2+)-induced conformation in the presence of other divalent metal ions, Cd(2+) for example. We also observed that correct folding of some M1 RNA domains is promoted by Pb(2+), while folding of other domain(s) requires the additional presence of other divalent metal ions, cobalt(III) hexamine or spermidine. Based on the suppression of Pb(2+) cleavage at increasing concentrations of various divalent metal ions, our findings suggest that different divalent metal ions bind with different affinities to M1 RNA as well as to an RNase P hairpin-loop substrate and yeast tRNA(Phe). We suggest that this approach can be used to obtain information about the relative binding strength for different divalent metal ions to RNA in general, as well as to specific RNA divalent metal ion binding sites. Of those studied in this report, Mn(2+) is generally among the strongest RNA binders.  相似文献   

12.
Citrate uptake in Bacillus subtilis is stimulated by a wide range of divalent metal ions. The metal ions were separated into two groups based on the expression pattern of the uptake system. The two groups correlated with the metal ion specificity of two homologous B. subtilis secondary citrate transporters, CitM and CitH, upon expression in Escherichia coli. CitM transported citrate in complex with Mg(2+), Ni(2+), Mn(2+), Co(2+), and Zn(2+) but not in complex with Ca(2+), Ba(2+), and Sr(2+). CitH transported citrate in complex with Ca(2+), Ba(2+), and Sr(2+) but not in complex with Mg(2+), Ni(2+), Mn(2+), Co(2+), and Zn(2+). Both transporters did not transport free citrate. Nevertheless, free citrate uptake could be demonstrated in B. subtilis, indicating the expression of at least a third citrate transporter, whose identity is not known. For both the CitM and CitH transporters it was demonstrated that the metal ion promoted citrate uptake and, vice versa, that citrate promoted uptake of the metal ion, indicating that the complex is the transported species. The results indicate that CitM and CitH are secondary transporters that transport complexes of divalent metal ions and citrate but with a complementary metal ion specificity. The potential physiological function of the two transporters is discussed.  相似文献   

13.
The C2 domain of cytosolic phospholipase A2 (cPLA2) is involved in the Ca2+-dependent membrane binding of this protein. To identify protein residues in the C2 domain of cPLA2 essential for its Ca2+ and membrane binding, we selectively mutated Ca2+ ligands and putative membrane-binding residues of cPLA2 and measured the effects of mutations on its enzyme activity, membrane binding affinity, and monolayer penetration. The mutations of five Ca2+ ligands (D40N, D43N, N65A, D93N, N95A) show differential effects on the membrane binding and activation of cPLA2, indicating that two calcium ions bound to the C2 domain have differential roles. The mutations of hydrophobic residues (F35A, M38A, L39A, Y96A, Y97A, M98A) in the calcium binding loops show that the membrane binding of cPLA2 is largely driven by hydrophobic interactions resulting from the penetration of these residues into the hydrophobic core of the membrane. Leu39 and Val97 are fully inserted into the membrane, whereas Phe35 and Tyr96 are partially inserted. Finally, the mutations of four cationic residues in a beta-strand (R57E/K58E/R59E/R61E) have modest and negligible effects on the binding of cPLA2 to zwitterionic and anionic membranes, respectively, indicating that they are not directly involved in membrane binding. In conjunction with our previous study on the C2 domain of protein kinase C-alpha (Medkova, M., and Cho, W. (1998) J. Biol. Chem. 273, 17544-17552), these results demonstrate that C2 domains are not only a membrane docking unit but also a module that triggers membrane penetration of protein and that individual Ca2+ ions bound to the calcium binding loops play differential roles in the membrane binding and activation of their parent proteins.  相似文献   

14.
The presence of an Na/Ca exchange system in fasciculata cells of the bovine adrenal gland was tested using isolated plasmalemmal vesicles. In the presence of an outwardly Na(+) gradient, Ca(2+) uptake was about 2-fold higher than in K(+) condition. Li(+) did not substitute for Na(+) and 5 mM Ni(2+) inhibited Ca(2+) uptake. Ca(2+) efflux from Ca(2+)-loaded vesicles was Na(+)-stimulated and Ni(2+)-inhibited. The saturable part of Na(+)-dependent Ca(2+) uptake displayed Michaelis-Menten kinetics. The relationship of Na(+)-dependent Ca(2+) uptake versus intravesicular Na(+) concentration was sigmoid (apparent K(0.5) approximately 24 mM; Hill number approximately 3) and Na(+) acted on V(max) without significant effect on K(m). Na(+)-stimulated Ca(2+) uptake was temperature-dependent (apparent Q(10) approximately 2.2). The inhibition properties of several divalent cations (Cd(2+), Sr(2+), Ni(2+), Ba(2+), Mn(2+), Mg(2+)) were tested and were similar to those observed in kidney basolateral membrane. The above results indicate the presence of an Na/Ca exchanger located on plasma membrane of zona fasciculata cells of bovine adrenal gland. This exchanger displays similarities with that of renal basolateral cell membrane.  相似文献   

15.
Wrzesinski J  Ciesiolka J 《Biochemistry》2005,44(16):6257-6268
Studies on RNA motifs capable of binding metal ions have largely focused on Mg(2+)-specific motifs, therefore information concerning interactions of other metal ions with RNA is still very limited. Application of the in vitro selection approach allowed us to isolate two RNA aptamers that bind Co(2+) ions. Structural analysis of their secondary structures revealed the presence of two motifs, loop E and "kissing" loop complex, commonly occurring in RNA molecules. The Co(2+)-induced cleavage method was used for identification of Co(2+)-binding sites after the determination of the optimal cleavage conditions. In the aptamers, Co(2+) ions seem to bind to N7 atoms of purines, inducing cleavage of the adjacent phosphodiester bonds, similarly as is the case with yeast tRNA(Phe). Although the in vitro selection experiment was carried out in the presence of Co(2+) ions only, the aptamers displayed broader metal ions specificity. This was shown by inhibition of Co(2+)-induced cleavages in the presence of the following transition metal ions: Zn(2+), Cd(2+), Ni(2+), and Co(NH(3))(6)(3+) complex. On the other hand, alkaline metal ions such as Mg(2+), Ca(2+), Sr(2+), and Ba(2+) affected Co(2+)-induced cleavages only slightly. Multiple metal ions specificity of Co(2+)-binding sites has also been reported for other in vitro selected or natural RNAs. Among many factors that influence metal specificity of the Co(2+)-binding pocket, chemical properties of metal ions, such as their hardness as well as the structure of the coordination site, seem to be particularly important.  相似文献   

16.
The ability of Li(+), Na(+), K(+), Rb(+), Cs(+), Mg(2+), Ca(2+), Sr(2+), Ba(2+), Cu(2+), Cd(2+), Al(3+), V(4+), Hg(2+), Pd(2+), Au(3+), and Pt(4+) to provoke liquid crystalline (LC) phases in high molecular weight DNA was investigated. The alkali and alkaline earth metal ions provoked typical cholesteric/columnar structures, whereas transition metal ions precipitated DNA into solid/translucent gel-like aggregates. Heavy metal ions reduced viscosity of DNA solution, disrupting rigid, rod-like DNA structure necessary for LC textures. Three-layer quantum mechanical-molecular mechanical (QM/MM) studies of Li(+), Na(+), K(+), Mg(2+), and Ca(2+) binding DNA fragment suggested several possible binding modes of these ions to the phosphate groups. The dianion mode of metal binding, involving the phosphate groups of both strands of DNA, allowed for higher DNA binding affinity of the alkaline earth metal ions. These results have implications in understanding the biological role of metal ions and developing DNA-based sensors and nanoelectronic devices.  相似文献   

17.
Nara M  Yumoto F  Kagi H  Tanokura M 《Biopolymers》2008,89(7):595-599
Akazara scallop striated adductor muscle troponin C (TnC) binds only one Ca2+ because the three EF-hand motifs are short of critical residues for the coordination of Ca2+. Fourier-transform infrared spectroscopy was applied to study coordination structures of M2+ (= Mg2+, Ca2+, Sr2+, and Ba2+) bound in an Akazara scallop TnC mutant (E142D) and the wild-type TnC C-lobe in D2O solution. The region of the COO- antisymmetric stretch provides information regarding the coordination modes of a COO- group to a metal ion. The side chain COO- group of Asp142 did not bind to Ca2+ in the bidentate coordination mode, suggesting that the absence of a methylene group is critical for the Ca2+ coordination structure of Akazara scallop TnC (Nara et al., Vib Spect 2006, 42, 188-191). The present study has shown that the absence of a methylene group is not compensated for by a larger metal ion such as Sr2+ or Ba2+. CD spectra showed that the secondary structures are conserved between M2+-free (apo), Mg2+-loaded, Ca2+-loaded, Sr2+-loaded, and Ba2+-loaded states, which was consistent with the results estimated from their amide I band patterns. The metal-ligand interaction at position 12 of site IV is discussed in comparison with the coordination mode of the side chain COO- group of the wild-type TnC C-lobe.  相似文献   

18.
Aqualysin I is a heat-stable protease; in the presence of 1 mM Ca(2+), the enzyme is stable at 80 degrees C and shows the highest activity at the same temperature. After gel filtration to remove free Ca(2+) from the purified enzyme sample, the enzyme (holo-aqualysin I) still bound Ca(2+) (1 mol/mol of the enzyme), but was no longer stable at 80 degrees C. On treatment of the holo-enzyme with EDTA, bound Ca(2+) decreased to about 0.3 mol/mol of the enzyme. The thermostability of holo-aqualysin I was dependent on the concentration of added Ca(2+), and 1 mM added Ca(2+) stabilized the enzyme completely, suggesting that aqualysin I has at least two Ca(2+) binding sites, i.e. stronger and weaker binding ones. Titration calorimetry showed single binding of Ca(2+) to the holo-enzyme with an association constant of 3.1 x 10(3) M(-1), and DeltaH and TDeltaS were calculated to be 2.3 and 6.9 kcal/mol, respectively, at 13 degrees C. La(3+), Sr(2+), Nd(3+), and Tb(3+) stabilized the holo-enzyme at 80 degrees C, as Ca(2+) did. These results suggest that the weaker binding site exhibits structural flexibility to bind several metal cations different in size and valency, and that the metal binding to the weaker binding site is essential for the thermostability of aqualysin I.  相似文献   

19.
1. Isolated outer membranes from rat spleen mitochondria can be stored in liquid N(2) for several weeks without significant loss of ATPase (adenosine triphosphatase) activity. 2. The ATPase reaction has a broad pH optimum centering on neutral pH, with little significant activity above pH9.0 or below pH5.5. 3. A sigmoidal response of the ATPase activity to temperature is observed between 0 and 55 degrees C, with complete inactivation at 60 degrees C. The Arrhenius plot shows that the activation energy above the transition temperature (22 degrees C) (E(a)=144kJ/mol) is one-third of that calculated for below the transition temperature (E'(a)=408kJ/mol). 4. The outer-membrane ATPase (K(m) for MgATP=50mum) is inactive unless Mg(2+) is added, whereas the inner-membrane ATPase (K(m) for ATP=11mum) is active without added Mg(2+) unless the mitochondria have been depleted of all endogenous Mg(2+) (by using ionophore A23187). 5. The substrate for the outer-membrane ATPase is a bivalent metal ion-nucleoside triphosphate complex in which Mg(2+) (K(m)=50mum) can be replaced effectively by Ca(2+) (K(m)=6.7mum) or Mn(2+), and ATP by ITP. Cu(2+), Co(2+), Sr(2+), Ba(2+), Ni(2+), Cd(2+) and Zn(2+) support very little ATP hydrolysis. 6. Univalent metal ions (Na(+), K(+), Rb(+), Cs(+) and NH(4) (+), but not Li(+)) stimulate the MgATPase activity (<10%) at low concentrations (50mm), but, except for K(+), are slightly inhibitory (20-30%) at higher concentrations (500mm). 7. The Mg(2+)-stimulated ATPase activity is significantly inhibited by Cu(2+) (K(i)=90mum), Ni(2+) (K(i)=510mum), Zn(2+) (K(i)=680mum) and Co(2+) (K(i)=1020mum), but not by Mg(2+), Ca(2+), Ba(2+) or Sr(2+). 8. The outer-membrane ATPase is insensitive to the inhibitors oligomycin, NN'-dicyclohexylcarbodiimide, NaN(3), ouabain and thiol-specific reagents. A significant inhibition is observed at high concentrations of AgNO(3) (0.5mm) and NaF (10mm). 9. The activity towards MgATP is competitively inhibited by the product MgADP (K(i)=0.7mm) but not by the second product P(i) or by 5'-AMP.  相似文献   

20.
Corbin JA  Evans JH  Landgraf KE  Falke JJ 《Biochemistry》2007,46(14):4322-4336
The C2 domain is a ubiquitous, conserved protein signaling motif widely found in eukaryotic signaling proteins. Although considerable functional diversity exists, most C2 domains are activated by Ca2+ binding and then dock to a specific cellular membrane. The C2 domains of protein kinase Calpha (PKCalpha) and cytosolic phospholipase A2alpha (cPLA2alpha), for example, are known to dock to different membrane surfaces during an intracellular Ca2+ signal. Ca2+ activation targets the PKCalpha C2 domain to the plasma membrane and the cPLA2alpha C2 domain to the internal membranes, with no detectable spatial overlap. It is crucial to determine how such targeting specificity is achieved at physiological bulk Ca2+ concentrations that during a typical signaling event rarely exceed 1 muM. For the isolated PKCalpha C2 domain in the presence of physiological Ca2+ levels, the target lipids phosphatidylserine (PS) and phosphatidylinositol-4,5-bisphosphate (PIP2) are together sufficient to recruit the PKCalpha C2 domain to a lipid mixture mimicking the plasma membrane inner leaflet. For the cPLA2alpha C2 domain, the target lipid phosphatidylcholine (PC) appears to be sufficient to drive membrane targeting to an internal membrane mimic at physiological Ca2+ levels, although the results do not rule out a second, unknown target molecule. Stopped-flow kinetic studies provide additional information about the fundamental molecular events that occur during Ca2+-activated membrane docking. In principle, C2 domain-directed intracellular targeting, which requires coincidence detection of multiple signals (Ca2+ and one or more target lipids), can exhibit two different mechanisms: messenger-activated target affinity (MATA) and target-activated messenger affinity (TAMA). The C2 domains studied here both utilize the TAMA mechanism, in which the C2 domain Ca2+ affinity is too low to be activated by physiological Ca2+ signals in most regions of the cell. Only when the C2 domain nears its target membrane, which provides a high local concentration of target lipid, is the effective Ca2+ affinity increased by the coupled binding equilibrium to a level that enables substantial Ca2+ activation and target docking. Overall, the findings emphasize the importance of using physiological ligand concentrations in targeting studies because super-physiological concentrations can drive docking interactions even when an important targeting molecule is missing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号