首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The endogenous cation in peroxidases may contribute to the type of heme coordination. Here a series of ferric and ferrous derivatives of wild-type Leishmania major peroxidase (LmP) and of engineered K+ site mutants of LmP, lacking potassium cation binding site, has been examined by electronic absorption spectroscopy at 25 °C. Using UV–visible spectrophotometry, we show that the removal of K+ binding site causes substantial changes in spin states of both the ferric and ferrous forms. The spectral changes are interpreted to be, most likely, due to the formation of a bis-histidine coordination structure in both the ferric and ferrous oxidation states at neutral pH 7.0. Stopped flow spectrophotometric techniques revealed that characteristics of Compound I were not observed in the K+ site double mutants in the presence of H2O2. Similarly electron donor oxidation rate was two orders less for the K+ site double mutants compared to the wild type. These data show that K+ functions in preserving the protein structure in the heme surroundings as well as the spin state of the heme iron, in favor of the enzymatically active form of LmP.  相似文献   

2.
The UV-visible absorption and magnetic circular dichroism (MCD) spectra of the ferric, ferrous, CO-ligated forms and kinetic photolysis intermediates of the tetraheme electron-transfer protein cytochrome c3 (Cc3) are reported. Consistent with bis-histidinyl axial coordination of the hemes in this Class III c-type cytochrome, the Soret and visible region MCD spectra of ferric and ferrous Cc3 are very similar to those of other bis-histidine axially coordinated hemeproteins such as cytochrome b5. The MCD spectra indicate low spin state for both the ferric (S = 1/2) and ferrous (S = 0) oxidation states. CO replaces histidine as the axial sixth ligand at each heme site, forming a low-spin complex with an MCD spectrum similar to that of myoglobin-CO. Photodissociation of Cc3-CO (observed photolysis yield = 30%) produces a transient five-coordinate, high-spin (S = 2) species with an MCD spectrum similar to deoxymyoglobin. The recombination kinetics of CO with heme Fe are complex and appear to involve at least five first-order or pseudo first-order rate processes, corresponding to time constants of 5.7 microseconds, 62 microseconds, 425 microseconds, 2.9 ms, and a time constant greater than 1 s. The observed rate constants were insensitive to variation of the actinic photon flux, suggesting noncooperative heme-CO rebinding. The growing in of an MCD signal characteristic of bis-histidine axial ligation within tens of microseconds after photodissociation shows that, although heme-CO binding is thermodynamically favored at 1 atm CO, binding of histidine to the sixth axial site competes kinetically with CO rebinding.  相似文献   

3.
Magnetic circular dichroism (MCD) spectroscopy has been utilized to characterize the change in coordination structure in native ferric sperm whale myoglobin upon cyanogen bromide-modification. Comparison of the MCD properties of the ferric high-spin state of cyanogen bromide-modified myoglobin (BrCN-Mb) with those of native ferric horseradish peroxidase and Aplysia myoglobin suggests that ferric BrCN-Mb is a potential MCD model for the pentacoordinate state of ferric high-spin histidine-ligated heme proteins. These five-coordinate heme proteins afford a relatively weak and unsymmetric signal in the Soret region of the MCD spectrum. In contrast, native ferric myoglobin and the benzohydroxamic acid adduct of ferric horseradish peroxidase show a strong and symmetric derivative-shaped Soret MCD signal which is indicative of hexacoordination with water and histidine axial ligands. Therefore it seems that MCD spectroscopy could be used to probe the presence of water ligated to the distal side of ferric high-spin heme proteins. The MCD spectra of the ferric-azide, ferrous-deoxy and ferrous-CO forms of BrCN-Mb have also been measured and compared to those of analogous native myoglobin complexes. The present MCD study has been extended to include new ligands, NO, thiocyanate and cyanate, which bind to ferric BrCN-Mb. With exogenous ligands such as CO, NO and thiocyanate, the coordination structures of the BrCN-Mb complexes are similar to those of the respective native myoglobin adducts. In the case of ferrous-deoxy and ferric-cyanate BrCN-Mb, however, the altered MCD spectra (and EPR for the latter) reveal changes in electronic structure which likely correlate with alterations of the coordination environment of these BrCN-Mb derivatives. Data are also presented which support the proposed tetrazole-bound structure for azide-treated BrCN-Mb (Hori, H., Fujii, M., Shiro, Y., Iizuka, T., Adachi, S. and Morishima, I. (1989) J. Biol. Chem. 264, 5715-5719) and the inability of the distal histidine of BrCN-Mb to stabilize the ferric ligand-bound state.  相似文献   

4.
The 1H nuclear magnetic resonance (nmr) spectra of complexes of soybean ferric leghemoglobin with 3-substituted pyridines and 5-substituted nicotinic acids have been recorded in order to determine the influence of axial ligands on heme electronic structure. The hyperfine shifted resonances of the heme group were assigned by analogy to previous assignments for the pyridine and nicotinic acid complexes of leghemoglobin. The spectra are characteristic of predominantly low-spin ferric heme complexes. For the pyridine complexes, the rate of ligand exchange was found to increase with decreasing ligand pKA. For many of the complexes, optical and nmr spectra reveal the presence of an equilibrium mixture of high- and low-spin states of the iron atom. The percentage of high-spin component increases with decreasing ligand pKA Smaller hyperfine shifts are noted for leghemoglobin complexes with ligands capable of weak ligand → metal π bonding. The pattern of hyperfine shifted resonances is similar for all complexes studied and indicates that the overall heme electronic structure is dominated by the bonding to the proximal histidine.  相似文献   

5.
The spectral properties of both ferric and ferrous cytochromes c' from Alcaligenes sp. N.C.I.B. 11015 are reported. The EPR spectra at 77 K and the electronic, resonance Raman, CD and MCD spectra at room temperature have been compared with those of the other cytochromes c' and various hemoproteins. In the ferrous form, all the spectral results at physiological pH strongly indicated that the heme iron(II) is in a high-spin state. In the ferric form, the EPR and electronic absorption spectra were markedly dependent upon pH. EPR and electronic spectral results suggested that the ground state of heme iron(III) at physiological pH consists of a quantum mechanical admixture of an intermediate-spin and a high-spin state. Under highly alkaline conditions, identification of the axial ligands of heme iron(III) was attempted by crystal field analysis of the low-spin EPR g values. Upon the addition of sodium dodecyl sulfate to ferric and ferrous cytochrome c', the low-spin type spectra were induced. The heme environment of this low-spin species is also discussed.  相似文献   

6.
In order to probe the active site of the heme protein indoleamine 2,3-dioxygenase, magnetic and natural circular dichroism (MCD and CD) and electron paramagnetic resonance (EPR) studies of the substrate (L-tryptophan)-free and substrate-bound enzyme with and without various exogenous ligands have been carried out. The MCD spectra of the ferric and ferrous derivatives are similar to those of the analogous myoglobin and horseradish peroxidase species. This provides strong support for histidine imidazole as the fifth ligand to the heme iron of indoleamine 2,3-dioxygenase. The substrate-free native ferric enzyme exhibits predominantly high-spin EPR signals (g perpendicular = 6, g parallel = 2) along with weak low-spin signals (g perpendicular = 2.86, 2.28, 1.60); similar EPR, spin-state and MCD features are found for the benzimidazole adduct of ferric myoglobin. This suggests that the substrate-free ferric enzyme has a sterically hindered histidine imidazole nitrogen donor sixth ligand. Upon substrate binding, noticeable MCD and EPR spectral changes are detected that are indicative of an increased low spin content (from 30 to over 70% at ambient temperature). Concomitantly, new low spin EPR signals (g = 2.53, 2.18, 1.86) and MCD features characteristic of hydroxide complexes of histidine-ligated heme proteins appear. For almost all of the other ferric and ferrous derivatives, only small substrate effects are observed with MCD spectroscopy, while substantial substrate effects are seen with CD spectroscopy. Thus, changes in the heme coordination structure of the ferric enzyme and in the protein conformation at the active site of the ferric and ferrous enzyme are induced by substrate binding. The observed substrate effects on the ferric enzyme may correlate with the previously observed kinetic substrate inhibition of indoleamine 2,3-dioxygenase activity, while such effects on the ferrous enzyme suggest the possibility that the substrate is activated during turnover.  相似文献   

7.
The endogenous cation in peroxidases may contribute to the type of heme coordination. Here a series of ferric and ferrous derivatives of wild-type Leishmania major peroxidase (LmP) and of engineered K(+) site mutants of LmP, lacking potassium cation binding site, has been examined by electronic absorption spectroscopy at 25°C. Using UV-visible spectrophotometry, we show that the removal of K(+) binding site causes substantial changes in spin states of both the ferric and ferrous forms. The spectral changes are interpreted to be, most likely, due to the formation of a bis-histidine coordination structure in both the ferric and ferrous oxidation states at neutral pH 7.0. Stopped flow spectrophotometric techniques revealed that characteristics of Compound I were not observed in the K(+) site double mutants in the presence of H(2)O(2). Similarly electron donor oxidation rate was two orders less for the K(+) site double mutants compared to the wild type. These data show that K(+) functions in preserving the protein structure in the heme surroundings as well as the spin state of the heme iron, in favor of the enzymatically active form of LmP.  相似文献   

8.
Nitric oxide synthases (NOS) are heme proteins that have a cysteine residue as axial ligand, which generates nitric oxide (NO). The proximal environment, specifically H-bonding between tryptophan (Trp) 178 and thiolate, has been proposed to play a fundamental role in the modulation of NOS activity. We analyzed the molecular basis of this modulation by performing electronic structure calculations on isolated model systems and hybrid quantum-classical computations of the active sites in the protein environment for wild-type and mutant (Trp 178 × Gly) proteins. Our results show that in the ferrous proteins NO exhibits a considerable trans effect. We also showed that in the ferrous (Fe+2) mutant NOS the absence of Trp, experimentally associated to a protonated cysteine, weakens the Fe–S bond and yields five coordinate complexes. In the ferric (Fe+3) state, the NO dissociation energy is shown to be slightly smaller in the mutant NOS, implying that the Fe+3–NO complex has a shorter half-life. We found computational evidence suggesting that ferrous NOS is favored in wild-type NOS when compared to the Trp mutant, consistently with the fact that Trp mutants have been shown to accumulate less Fe+2–NO dead end species. We also found that the heme macrocycle showed a significant distortion in the wild-type protein, due to the presence of the nearby Trp 178. This may also play a role in the subtle tuning of the electronic structure of the heme moiety.  相似文献   

9.
《Inorganica chimica acta》1988,152(4):241-249
The electronic absorption, EPR and MCD spectra of NO derivatives of both ferrous and ferric cytochrome c (horse heart) have been measured in the pH region 2.0 to 12.9, in order to elucidate the pH dependence of the stereochemistry around the heme group. The reaction products of NO with ferrous cytochrome c in equilibrium were as follows: in the region 2.0 ⩽ pH ⩽ 5.3, NO–ferrous cytochrome c; in the region 5.3 < pH ⩽ 11.0, a mixture of NO–ferrous cytochrome c and native ferrous cytochrome c; at pH 12.0, NO–ferrous cytochrome c. At pH 2.0, the NO–ferrous cytochrome c contained a five-coordinate nitrosylheme as the major component and a six-coordinate species as the minor component, and at the order pH values it contained only the six-coordinate species. The reaction products of NO with ferric cytochrome c in equilibrium were as follows: in the region 2.0 ⩽ pH ⩽ 7.2, NO–ferric cytochrome c with six-coordinate nitrosylheme; in the region 7.2 < pH ⩽ 11.0, a mixture of NO–ferrous cytochrome c and native ferrous cytochrome c; at pH 12.0, NO–ferrous cytochrome c. Thus, the reaction of NO with ferric cytochrome c results in the formation of NO–ferrous cytochrome c, which is a typical case of reductive nitrosylation.  相似文献   

10.
J J Rux  J H Dawson 《FEBS letters》1991,290(1-2):49-51
Horse heart cytochrome c with either histidine or cysteine replacing the endogenous axial methionine ligand at position 80 has been characterized with magnetic circular dichroism (MCD) spectroscopy in the UV-visible region. Comparison of the MCD spectra of the mutant proteins in the ferric state to those of authentic bis-imidazole- and imidazole/thiolate-ligated ferric heme proteins clearly shows that the histidine-imidazole and cysteine-thiolate groups of the replacement amino acids at position 80 are coordinated to the heme iron in the mutant proteins. This study demonstrates the power of MCD spectroscopy in identifying axial ligands in mutant heme proteins. Accurate axial ligand assignment is essential for proper interpretation of the altered properties of such novel proteins.  相似文献   

11.
The spectral properties for NO complexes of ferric and ferrous cytochrome c' from photosynthetic bacterium Rhodopseudomonas capsulata B100 are reported. The electronic absorption, MCD, and EPR spectra have been compared with those of the NO complexes of the other cytochromes c' and horse heart cytochrome c. The NO-ferrous cytochrome c' would be a mixture of NO complexes with six- and five-coordinate nitrosylheme, suggesting that the heme-iron to histidine bond in the ferrous cytochrome c' is more stable than that from chemoheterotrophic bacteria. The reaction product of ferric cytochrome c' with NO exhibited the spectra similar to NO-ferric derivatives of the other hemoproteins, which indicates the formation of NO-ferric cytochrome c'.  相似文献   

12.
All cytochrome P450s (CYPs) contain a cysteinate heme iron proximal ligand that plays a crucial role in their mechanism of action. Conversion of the proximal Cys436 to Ser in NH2-truncated microsomal CYP2B4 (ΔCYP2B4) transforms the enzyme into a two-electron NADPH oxidase producing H2O2 without monooxygenase activity [K.P. Vatsis, H.M. Peng, M.J. Coon, J. Inorg. Biochem. 91 (2002) 542–553]. To examine the effects of this ligation change on the heme iron spin-state and coordination structure of ΔC436S CYP2B4, the magnetic circular dichroism and electronic absorption spectra of several oxidation/ligation states of the variant have been measured and compared with those of structurally defined heme complexes. The spectra of the substrate-free ferric mutant are indicative of a high-spin five-coordinate structure ligated by anionic serinate. The spectroscopic properties of the dithionite-reduced (deoxyferrous) protein are those of a five-coordinate (high-spin) state, and it is concluded that the proximal ligand has been protonated to yield neutral serine (ROH-donor). Low-spin six-coordinate ferrous complexes of the mutant with neutral sixth ligands (NO, CO, and O2) examined are also likely ligated by neutral serine, as would be expected for ferric complexes with anionic sixth ligands such as the hydroperoxo-ferric catalytic intermediate. Ligation of the heme iron by neutral serine vs. deprotonated cysteine is likely the result of the large difference in their acidity. Thus, without the necessary proximal ligand push of the cysteinate, although the ΔC436S mutant can accept two electrons and two protons, it is unable to heterolytically cleave the O–O bond of the hydroperoxo-ferric species to generate Compound I and hydroxylate the substrate.  相似文献   

13.
The globin-coupled sensor (GCS) of Geobacter sulfurreducens is unique amongst GCSs in that its signalling domain is a transmembrane domain with yet unknown function. In the present work we use X-band continuous-wave and pulsed electron paramagnetic resonance (EPR) to investigate the ferric form of the globin domain of the G. sulfurreducens GCS (GsGCS162) at pH 8.5. This form shows a unique bis-histidine coordination of the heme with the F8His and E11His. In contrast with previous crystal structure data, where three conformers of the heme structure were identified, ferric GsGCS162 assumes only one conformation in frozen solution. The EPR data of ferric GsGCS162 are compared in detail with those of other bis-histidine coordinated globins, including other GCS systems.  相似文献   

14.
The intensity of the Soret magnetic circular dichroism (MCD) spectra of various complexes of methemoglobin subunits (α+ and β+) as well as methemoglobin (metHb A) was correlated well with the spin states of ferric heme. Upon the subunit association, spin state transition toward higher spin was observed only in high spin derivatives and the changes in spin state were due to mainly those of β+ chains. The effect of an allostric effector, inositol hexaphosphate (IHP), on the MCD spectra of metHb A derivatives was observed much significantly for high spin forms than low spin ones.  相似文献   

15.
 The heme group of myeloperoxidase shows anomalous optical properties, and the enzyme possesses the unique ability to catalyze the oxidation of chloride. However, the nature of the covalently bound heme macrocycle has been difficult to identify. In this work, the electronic and magnetic properties of the heme groups in oxidized and reduced forms of wild-type and Met243Thr mutant myeloperoxidase and wild-type lactoperoxidase have been investigated using variable-temperature (1.6–273 K) magnetic circular dichroism (MCD) spectroscopy along with parallel optical absorption and electron paramagnetic resonance studies. The results provide assessment of the spin state mixtures of the oxidized and reduced samples at ambient and liquid helium temperatures and show that the anomalous MCD properties of myeloperoxidase, e.g. red-shifted and inverted signs for bands in the high-spin ferric and low-spin ferrous forms compared to other heme peroxidases and heme proteins in general, are a direct consequence of a novel electron-withdrawing sulfonium ion heme linkage involving Met243. Received: 3 May 1999 / Accepted: 9 August 1999  相似文献   

16.
Bovine liver catalase (BLC), catalase-related allene oxide synthase (cAOS) from Plexaura homomalla, and a recently isolated protein from the cattle pathogen Mycobacterium avium ssp. paratuberculosis (MAP-2744c (MAP)) are all tyrosinate-ligated heme enzymes whose crystal structures have been reported. cAOS and MAP have low (< 20%) sequence similarity to, and significantly different catalytic functions from, BLC. cAOS transforms 8R-hydroperoxy-eicosatetraenoic acid to an allene epoxide, whereas the MAP protein is a putative organic peroxide-dependent peroxidase. To elucidate factors influencing the functions of these and related heme proteins, we have investigated the heme iron coordination properties of these tyrosinate-ligated heme enzymes in their ferric and ferrous states using magnetic circular dichroism and UV-visible absorption spectroscopy. The MAP protein shows remarkable spectral similarities to cAOS and BLC in its native Fe(III) state, but clear differences from ferric proximal heme ligand His93Tyr Mb (myoglobin) mutant, which may be attributed to the presence of an Arg+-Nω-H···¯O-Tyr (proximal heme axial ligand) hydrogen bond in the first three heme proteins. Furthermore, the spectra of Fe(III)-CN¯, Fe(III)-NO, Fe(II)-NO (except for five-coordinate MAP), Fe(II)-CO, and Fe(II)-O2 states of cAOS and MAP, but not H93Y Mb, are also similar to the corresponding six-coordinate complexes of BLC, suggesting that a tyrosinate (Tyr-O¯) is the heme axial ligand trans to the bound ligands in these complexes. The Arg+-Nω-H to ¯O-Tyr hydrogen bond would be expected to modulate the donor properties of the proximal tyrosinate oxyanion and, combined with the subtle differences in the catalytic site structures, affect the activities of cAOS, MAP and BLC.  相似文献   

17.
The reductive debromination of BrCCl3 by ferrous deoxymyoglobin leads to the covalent bonding of the prosthetic heme to the protein. We have previously shown, by the use of peptide mapping and mass spectrometry, that histidine residue 93 is covalently bound to the heme moiety. In the present study the structure of the heme adduct was more completely determined by 1H and 13C NMR techniques. We have found that the ring I vinyl group of the prosthetic heme was altered by the addition of a histidine imidazole nitrogen to the alpha-carbon and a CCl2 moiety to the beta-carbon. The electronic absorption spectra of the oxidized and reduced states of the altered heme-protein indicated that the heme-iron exists in a bis-histidine-ligated form. Analysis of the crystal structure of native myoglobin suggested that for the altered heme-protein, histidine residues 97 and 64 are ligated to the heme-iron and that residue 97 has replaced the native proximal histidine residue 93. These movements, in effect a "histidine shuffle" at the active site, may be responsible for the enhanced reducing activity of the altered protein.  相似文献   

18.
Three mutant proteins of sperm whale myoglobin (Mb) that exhibit altered axial ligations were constructed by site-directed mutagenesis of a synthetic gene for sperm whale myoglobin. Substitution of distal pocket residues, histidine E7 and valine E11, with tyrosine and glutamic acid generated His(E7)Tyr Mb and Val(E11)Glu Mb. The normal axial ligand residue, histidine F8, was also replaced with tyrosine, resulting in His(F8)Tyr Mb. These proteins are analogous in their substitutions to the naturally occurring hemoglobin M mutants (HbM). Tyrosine coordination to the ferric heme iron of His(E7)Tyr Mb and His(F8)Tyr Mb is suggested by optical absorption and EPR spectra and is verified by similarities to resonance Raman spectral bands assigned for iron-tyrosine proteins. His(E7)Tyr Mb is high-spin, six-coordinate with the ferric heme iron coordinated to the distal tyrosine and the proximal histidine, resembling Hb M Saskatoon [His(beta E7)Tyr], while the ferrous iron of this Mb mutant is high-spin, five-coordinate with ligation provided by the proximal histidine. His(F8)Tyr Mb is high-spin, five-coordinate in both the oxidized and reduced states, with the ferric heme iron liganded to the proximal tyrosine, resembling Hb M Iwate [His(alpha F8)Tyr] and Hb M Hyde Park [His(beta F8)Tyr]. Val(E11)Glu Mb is high-spin, six-coordinate with the ferric heme iron liganded to the F8 histidine. Glutamate coordination to the ferric iron of this mutant is strongly suggested by the optical and EPR spectral features, which are consistent with those observed for Hb M Milwaukee [Val(beta E11)Glu]. The ferrous iron of Val(E11)Glu Mb exhibits a five-coordinate structure with the F8 histidine-iron bond intact.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Manganese peroxidase (MnP) from Phanerochaete chrysosporium undergoes a pH-dependent conformational change evidenced by changes in the electronic absorption spectrum. This high- to low-spin alkaline transition occurs at approximately 2 pH units lower in an F190I mutant MnP when compared to the wild-type enzyme. Herein, we provide evidence that these spectral changes are attributable to the formation of a bis(histidyl) heme iron complex in both proteins at high pH. The resonance Raman (RR) spectra of both ferric proteins at high pH are similar, indicating similar heme environments in both proteins, and resemble that of ferric cytochrome b(558), a protein that contains a bis-His iron complex. Upon reduction with dithionite at high pH, the visible spectra of both the wild-type and F190I MnP exhibit absorption maxima at 429, 529, and 558 nm, resembling the absorption spectrum of ferrous cytochrome b(558). RR spectra of the reduced wild-type and F190I mutant proteins at high pH are also similar to the RR spectrum of ferrous cytochrome b(558), further suggesting that the alkaline low-spin species is a bis(histidyl) heme derivative. No shift in the low-frequency RR bands was observed in 75% (18)O-labeled water, indicating that the low-spin species is most likely not a hydroxo-heme derivative. Electronic and RR spectra also indicate that addition of Ca(2+) to either the ferric or ferrous enzymes at high pH completely restores the high-spin pentacoordinate species. Other divalent metals, such as Mn(2+), Mg(2+), Zn(2+), or Cd(2+), do not restore the enzyme under the conditions studied.  相似文献   

20.
Several pH-dependent low-spin ferric haem forms are identified in a frozen solution of the ferric 121Cys→Ser mutant of Drosophila melanogaster haemoglobin (DmHb1*) using electron paramagnetic resonance (EPR) techniques. Different forms with EPR parameters typical of bis-histidine coordinated haem iron centers were observed. Strong pH-dependent changes in the EPR signatures were observed related to changes in the haem pocket. The pulsed EPR data indicate that both the distal and proximal histidine exhibit a large libration around the Fe-N(His) axis. The resonance Raman spectra of the CO-ligated ferrous form of Drosophila melanogaster haemoglobin are typical of an open conformation, with little stabilization of the CO ligand by the surrounding amino-acid residues. The EPR data of the cyanide-ligated ferric DmHb1* indicates a close similarity with cyanide-ligated ferric myoglobin. The structural characteristics of DmHb1* are found to clearly differ from those of other bis-histidine-coordinated globins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号