首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Summary Heterotrophic nitrogen fixation by rhizosphere soil samples from 20 rice cultivars grown under uniform field conditions was estimated employing15N-tracer technique. Rhizosphere soil samples from different rice cultivars showed striking differences with regard to their ability to incorporate15N2. Rhizosphere samples from rice straw-amended (3 and 6 tons/ha) soil exhibited more pronounced nitrogen-fixing activity than the samples from unamended soil; while the activity of the rhizosphere samples from soils receiving combined nitrogen (40 and 80 kg N/ha) was relatively low. However, the inhibitory effect of combined nitrogen was not expressed in the presence of rice straw at 6 tons/ha. Results suggest that plant variety, application of combined nitrogen and organic matter influence the rhizosphere nitrogen fixation.  相似文献   

2.
Summary A two-year field study was undertaken using15N isotope techniques to differentiate between stimulation of N uptake and N2 fixation in Western Canadian cultivars of spring wheat (Triticum aestivum L. emend Thell) and durum (T. turgidum L. emend Bowden) in response to inoculation with N2-fixing bacteria. Bacterial inoculation either had no effect or lowered the % N derived from the fertilizer and the fertilizer use efficiency. Despite the depression of fertilizer uptake, inoculants did not alter the relative uptake from soil and fertilizer-N pools indicating that bacterial inoculation did not alter rooting patterns. Nitrogen-15 isotope dilution indicated that N2 fixation did occur. In 1984, % plant N derived from the atmosphere (% Ndfa) due to inoculation with Bacillus C-11-25 averaged 23.9% while that withAzospirillum brasilense ATCC 29729 (Cd) averaged 15.5%. In 1985, higher soil N levels reduced these values by approximately one-half. Cultivar x inoculant interactions, while significant, were not consistent across years. However, these interactions did not affect cultivars ‘Cadet’ and ‘Rescue’. In agreement with previous results, ‘Cadet’ performed well with all inoculants in both years while ‘Rescue’ performed poorly. Among 1984 treatments, the N increament in inoculated plants was positively correlated with % Ndfa but no such correlation existed in 1985. N2 fixation averaged over all cultivars and strains was 17.9 and 6.7 kg N fixed ha−1 in 1984 and 1985, respectively. Highest rates of N2 fixation were estimated at 52.4 kg N ha−1 for ‘Cadet’ in 1984 and 31.3 kg N ha−1 for ‘Owens’ in 1985, both inoculated with Bacillus C-11-25, an isolate from southern Alberta soils. Inoculation with either ofAzospirillum brasilense strain Cd (ATCC29729) or 245 did not result in as consistent or as high N2 fixation, suggesting that these wheats had not evolved genetic compatability with this exogenous microorganism. These agronomically significant amounts of N2 fixation occurred under optimally controlled experimental conditions in the field. It is yet to be determined if N2 fixation would occur in response to bacterial inoculation under dryland conditions commonly occurring in Western Canada. Contribution from Agriculture Canada Research Station, Lethbridge, Alberta, Canada.  相似文献   

3.
Summary Two experiments were performed to examine the effects of inoculation of field grown wheat with various Azospirillum strains. In the first experiment the soil was sterilized with methyl bromide to reduce the Azospirillum population and15N labelled fertilizer was added to all treatments. Two strains ofAzospirillum brasilense isolated from surface sterilized wheat roots and theA. brasilense type strain Sp7 all produced similar increases in grain yield and N content. From the15N and acetylene reduction data it was apparent that these increases were not due to N2 fixation. In the second experiment performed in the same (unsterilized) soil, twoA. brasilense strains (Sp245, Sp246) and oneA. amazonense strain (Am YTr), all isolated from wheat roots, produced responses of dry matter and N content while the response to the strain Sp7 was much smaller. These data confirm earlier results which indicate that if natural Azospirillum populations in the soil are high (the normal situation under Brazilian conditions), strains which are isolated from wheat roots are better able to produce inoculation responses than strains isolated from other sources. The inoculation of a nitrate reductase negative mutant of the strain Sp245 produced only a very small inoculation response in wheat. This suggests that the much greater inoculation response of the original strain was not due to N2 fixation but to an increased nitrate assimilation due to the nitrate reductase activity of the bacteria in the roots. Consultant Inter-American Institute for Cooperation in Agriculture IICA/EMBRAPA World Bank Project.  相似文献   

4.
Kucey  R. M. N.  Snitwongse  P.  Chaiwanakupt  P.  Wadisirisuk  P.  Siripaibool  C.  Arayangkool  T.  Boonkerd  N.  Rennie  R. J. 《Plant and Soil》1988,108(1):33-41
Controlled environment and field studies were conducted to determine relationships between various measurements of N2 fixation using soybeans and to use these measures to evaluate a number ofBradyrhizobium japonicum strains for effectiveness in N2 fixation in Thai soils.15N dilution measurements of N2 fixation showed levels of fixation ranging from 32 to 161 kg N ha−1 depending on bacterial strain, host cultivar and location. Midseason measures of N2 fixation were correlated with each other, but not related measures taken at maturity. Ranking ofB. japonicum strains based on performance under controlled conditions in N-free media were highly correlated with rankings based on soybean seed yields and N2 fixation under field conditions. This study showed that inoculation of soybeans with effectiveB. japonicum strains can result in significant increases in yield and uptake of N through fixation. The most effective strains tested for use in Thai conditions were those isolated from Thai soils; however, effective strains from other locations were also of benefit.  相似文献   

5.
Rennie  R. J.  Rennie  D. A.  Siripaibool  C.  Chaiwanakupt  P.  Boonkerd  N.  Snitwongse  P. 《Plant and Soil》1988,112(2):183-193
The practice of seeding soybeans following paddy rice in Thailand has encountered difficulties in seedling germination, nodulation and crop establishment. This research project evaluated the choice of a non-fixing control to quantify N2 fixation by15N isotope dilution, and the effect of tillage regime, soybean cultivar, strain ofBradyrhizobium japonicum and P fertilization on yield and N2 fixation after paddy rice in northern and central Thailand.Japanese non-nodulating lines Tol-0 and A62-2 were the most appropriatecontrol plants for15N isotope dilution for Thai soybeans in these soils which contained indigenous rhizobia. Cereals such as maize, sorghum and barley were also appropriate controls at some sites. The choice of the appropriate non-fixing control plant for the15N isotope dilution technique remains a dilemma and no alternative exists other than to use several possible controls with each experiment. Acetylene reduction assay (ARA) proved of little value for screening varieties on their N2 fixing capacity.The recommended Thai soybean cultivars (SJ1, 2, 4, 5) and an advanced line 16–4 differed little in their ability to support N2 fixation or yield, possibly due to similar breeding ancestry. The ten AVRDC (ASET) lines showed considerable genotypic control in their ability to utilize their three available N sources (soil, fertilizer, atmosphere) and to translate them into yields. None of these lines were consistently superior to Thai cultivars SJ4 or SJ5 although ASET lines 129, 209 and 217 showed considerable promise.Neither recommended Thai or ASET cultivars were affected by tillage regime. Zero tillage resulted in superior N2 fixation and yield at two sites but conventional tillage was superior at another site. Soybean cultivars grown in Thailand were well adapted to zero tillage. Levels of N2 fixation were similar to world figures, averaging more than 100 kg N ha–1 and supplying over 50% of the plant's N yield. However, seed yields seldom exceeded 2 t ha–1, well below yields for temperately-grown soybeans. It is not clear why Thai soybeans support N2 fixation, but do not translate this into higher seed yields.  相似文献   

6.
3种水稻土中7株固氮蓝细菌的分离与特征   总被引:1,自引:0,他引:1  
【背景】蓝细菌是水生和陆地生态系统中生物固氮的主要贡献者。【目的】增加对稻田土壤固氮蓝细菌的了解,获得用于进一步研究的可培养固氮蓝细菌菌株。【方法】选择3种具有不同固氮能力的水稻土,采用BG11-N培养基分离培养固氮蓝细菌菌株,对新分离菌株进行形态特征观察,通过基因组DNA的nifH基因扩增明确其固氮潜力,进一步采用乙炔还原法和~(15)N_2示踪法定量测定其固氮能力,通过基因组DNA的16SrRNA基因序列比对进行鉴定。【结果】在光照培养条件下,采用BG11-N培养基共分离纯化得到自养菌株7株,细胞呈圆形或椭圆形、单列、无分枝、丝状和念珠状,在固体培养基上形成团垫状菌落。新分离菌株在BG11-N培养基中生长状况良好,以基因组DNA为模板可扩增出nifH基因,乙炔还原法和~(15)N_2示踪法测定结果显示具有较高固氮能力,同时具有铁载体生成能力。结合16S rRNA基因序列比对和形态特征,7株菌被初步鉴定隶属于念珠藻科(Nostocaceae)。【结论】从水稻土中分离到在稻田生物固氮中发挥重要作用的蓝细菌(念珠藻科)菌株,可培养固氮蓝细菌菌株固氮能力较高,兼具铁载体生成能力,可作为进一步深入研究的微生物资源,具有潜在的研究应用价值。  相似文献   

7.
An F2 population, consisting of 231 individuals derived from a cross between rice cultivars with a similar growing duration, Palawan and IR42, was utilized to investigate the genetic nature of rice varietal ability to stimulate N2 fixation in the rice rhizosphere. To assess rhizospheric N2 fixation, an isotope-enriched 15N dilution technique was employed, using 15N-stabilized soil in pots. IR42, an indica variety, had 23% higher N derived from fixation (Ndfa) than Palawan, a javanica genotype. Normal segregation of atom% 15N excess was obtained in the F2 population, with an average of 0.218 with 8% of plants below IR42 (0.188) and 10% of plants above Palawan (0.248). One-hundred-and-four RFLP markers mapped on 12 chromosomes were tested for linkage to the putative QTLs. Significant (P<0.01) associations between markers and segregation of atom% 15N excess were observed for seven marker loci located on chromosomes 1, 3, 6 and 11. Four QTLs defined by the detected marker loci were identified by interval-mapping analysis. Additive gene action was found to be predominant, but for at least one locus, dominance and partial dominance effects were observed. Significant (P<0.01) epistatic effects were also identified. Individual marker loci detected between 8 and 16% of the total phenotypic variation. All four putative QTLs showed recessive gene action, and no phenotypic effects associated with heterozygosity of marker loci were observed. The results of this study suggest that rice genetic factors can be identified which affect levels of atom% 15N excess in the soil by interacting with diazotrophs in the rice rhizosphere.  相似文献   

8.
Summary The perdeuteration of aliphatic sites in large proteins has been shown to greatly facilitate the process of sequential backbone and side-chain 13C assignments and has also been utilized in obtaining long-range NOE distance restraints for structure calculations. To obtain the maximum information from a 4D 15N/15N-separated NOESY, as many main-chain and side-chain 1HN/15N resonances as possible must be assigned. Traditionally, only backbone amide 1HN/15N resonances are assigned by correlation experiments, whereas slowly exchanging side-chain amide, amino, and guanidino protons are assigned by NOEs to side-chain aliphatic protons. In a perdeuterated protein, however, there is a minimal number of such protons. We have therefore developed several gradient-enhanced and sensitivity-enhanced pulse sequences, containing water-flipback pulses, to provide through-bond correlations of the aliphatic side-chain 1HN/15N resonances to side-chain 13C resonances with high sensitivity: NH2-filtered 2D 1H-15N HSQC (H2N-HSQC), 3D H2N(CO)C/ and 3D H2N(COC/)C/ for glutamine and asparagine side-chain amide groups; 2D refocused H(N/)C/ and H(N/C/)C/ for arginine side-chain amino groups and non-refocused versions for lysine side-chain amino groups; and 2D refocused H(N)C and nonrefocused H(N.)C for arginine side-chain guanidino groups. These pulse sequences have been applied to perdeuterated 13C-/15N-labeled human carbonic anhydrase II (2H-HCA II). Because more than 95% of all side-chain 13C resonances in 2H-HCA II have already been assigned with the C(CC)(CO)NH experiment, the assignment of the side-chain 1HN/15N resonances has been straightforward using the pulse sequences mentioned above. The importance of assigning these side-chain HN protons has been demonstrated by recent studies in which the calculation of protein global folds was simulated using only 1HN-1HN NOE restraints. In these studies, the inclusion of NOE restraints to side-chain HN protons significantly improved the quality of the global fold that could be determined for a perdeuterated protein [R.A. Venters et al. (1995) J. Am. Chem. Soc., 117, 9592–9593].To whom correspondence should be addressed.  相似文献   

9.
Con A stimulated lymphocytes proliferation was measured as [3H]thymidine incorporation and IgG was quantified by single radial immunodiffusion to study recovering or protecting effect of selenium (Se) on immunity attacked by exogenous active oxygen species, H2O2 and60Co-radiation, respectively. Lipid peroxidation was also determined to observe the relation between antioxidation ability and protecting ability of Se. It was found that H2O2 injured lymphocytes immunocompetence deeply and60Co-radiation decreased immune response capacity greatly, but that administration of Se counteracts this damage. The antioxidative ability of Se was correlated with its protecting ability.  相似文献   

10.
Summary Model experiments were performed to investigate the nitrogen fixation (C2H2 reduction) and denitrification (N2O formation) capabilities ofAzospirillum spp. in association with wheat. Plants and bacteria were grown together for a week and then assayed for activities. This association performed C2H2 reduction or N2O formation, depending on the concentrations of nitrate and oxygen in the vessels. Both activities depended on theAzospirillum strains used. The newly isolatedAzospirillum amazonense strains Y1 and Y6 showed significant C2H2 reduction and low N2O formation in association with wheat under the conditions employed and are possibly useful in practice. A cell-free preparation fromAzospirillum brasilense Sp 7 possessed a cytochrome cd type dissimilatory nitrite reductase.  相似文献   

11.
An enrichment method for nitrogen fixing hydrogen bacteria is described. The procedure invariably resulted in the isolation of yellow-pigmented coryneform bacterial strains assigned to Corynebacterium autotrophicum. The procedure included a serial transfer in an ammonium-free mineral liquid medium under an atmosphere of 10% hydrogen, 5% oxygen, 10% carbon dioxide and 75% nitrogen, followed by a short alkali treatment and by streaking on nutrient broth-succinate agar. The ability to fix nitrogen was confirmed by the acetylene reduction test and by 15N2 incorporation.  相似文献   

12.
The role of H2O2 in abscisic acid (ABA)-induced NH4+ accumulation in rice leaves was investigated. ABA treatment resulted in an accumulation of NH4+ in rice leaves, which was preceded by a decrease in the activity of glutamine synthetase (GS) and an increase in the specific activities of protease and phenylalanine ammonia-lyase (PAL). GS, PAL, and protease seem to be the enzymes responsible for the accumulation of NH4+ in ABA-treated rice leaves. Dimethylthiourea (DMTU), a chemical trap for H2O2, was observed to be effective in inhibiting ABA-induced accumulation of NH4+ in rice leaves. Inhibitors of NADPH oxidase, diphenyleneiodonium chloride (DPI) and imidazole (IMD), and nitric oxide donor (N-tert-butyl-α-phenylnitrone, PBN), which have previously been shown to prevent ABA-induced increase in H2O2 contents in rice leaves, inhibited ABA-induced increase in the content of NH4+. Similarly, the changes of enzymes responsible for NH4+ accumulation induced by ABA were observed to be inhibited by DMTU, DPI, IMD, and PBN. Exogenous application of H2O2 was found to increase NH4+ content, decrease GS activity, and increase protease and PAL-specific activities in rice leaves. Our results suggest that H2O2 is involved in ABA-induced NH4+ accumulation in rice leaves.  相似文献   

13.
Summary Isotopic15N2 experiments confirmed nitrogen fixation inParasponia parviflora. The conversion ratio C2H4/N2 was 6.7 under the experimental conditions employed. Measurements of the δ15N in leaves of Parasponia and Trema showed on the basis of these determinations thatParasponia parviflora possesses N2-fixing capacity and can be distinguished in this respect from the non-nitrogen-fixingTrema cannabina tested by the same method. Therefore, δ15N can be used to monitor N2 fixation in natural ecosystems. Hydrogen evolution and the relative efficiency of N2 fixation in this relation have been determined. DetachedParasponia parviflora root nodules grown in soil and tested in an argon/oxygen atmosphere produced appr. 4 μmol H2.h−1.g−1 fresh weight root nodules. The relative efficiency of hydrogen utilization as measured in argon, air, and in the presence of C2H2 10% (v/v) was for both equations used for to express this efficiency 0.96 and 0.97, respectively. This indicates that Parasponia like the root nodules of some actinorhizal symbioses (Alnus, Myrica, Elaeagnus) and some tropical legumes (Vigna sinensis) has evolved mechanisms of minimizing net hydrogen production in air, thus increasing the efficiency of electron transfer to nitrogen. The oxygen relation of nitrogen fixation (C2H2) inParasponia parviflora root nodules was determined. The nitrogenase activity of Parasponia root nodules increased at increasing oxygen concentrations up till c. 40% O2. At oxygen levels above 40% O2, the nitrogenase activity of the root nodules was nil or very erratic suggesting that at these oxygen levels the nitrogenase is not longer protected against the harmful effect of oxygen. In this respect Parasponia root nodules differ from actinorhizal root nodules in other nonlegumes, where optimal nitrogenase activity was observed in the range of 12–25% oxygen. Respiration experiments with Parasponia root nodules showed that in the range 10, 20, and 40% oxygen, the respiration rate (CO2 evolution) increased concomitantly with an increase of the acetylene reduction rate. The CO2/C2H4 values obtained varied between 8.1 and 19.2, being therefore 2–3 times higher than similar estimations in some actinorhizal and legume root nodules. The respiratory quotient (RQ) of detachedParasponia parviflora root nodules was in air initially approximately 2.0, but this value dropped to about 1.0 in a 3-hours period.  相似文献   

14.
Summary Plants from agricultural and natural upland ecosystem were investigated for15N content to evaluate the role of symbiotic N2-fixation in the nitrogen nutrition of soybean. Increased yields and lower δ15N values of nodulating soybeansvs, non-nodulating isolines gave semi-quantitative estimates of N2 fixation. A fairly large discrepancy was found between estimations by δ15N and by N yield at 0 kg N/ha of fertilizer. More precise estimates were made by following changes in plant δ15N when fertilizer δ15N was varied near15N natural abundance level. Clearcut linear relationships between δ15N values of whole plants and of fertilizer were obtained at 30 kg N/ha of fertilizer for three kinds of soils. In experimental field plots, nodulating soybeans obtained 13±1% of their nitrogen from fertilizer, 66±8% from N2 fixation and 21±10% from soil nitrogen in Andosol brown soil; 30%, 16% and 54% in Andosol black soil; 7%, 77% and 16% in Alluvial soil, respectively. These values for N2 fixation coincided with each corresponding estimation by N yield method. Other results include: 1)15N content in upland soils and plants was variable, and may reflect differences in the mode of mineralization of soil organics, and 2) nitrogen isotopic discrimination during fertilizer uptake (δ15N of plant minus fertilizer) ranged from −2.2 to +4.9‰ at 0–30 kg N/ha of fertilizer, depending on soil type and plant species. The proposed method can accurately and relatively simply establish the importance of symbiotic nitrogen fixation for soybeans growing in agricultural settings.  相似文献   

15.
Summary Isotopic as well as non-isotopic methods were used to assess symbiotic nitrogen fixation within eight soybean [Glycine max (L.) Merr.] cultivars grown at 20 and 100 kg N/ha levels of nitrogen fertilizer under field conditions.The15N methodology revealed large differences between soybean cultivars in their abilities to support nitrogen fixation. In almost all cases, the application of 100 kg N/ha resulted in lower N2 fixed in soybean than at 20 kg N/ha in the first year of the study. However, N2 fixed in one cultivar, Dunadja, was not significantly affected by the higher rate of N fertilizer application. These results were confirmed by measurements of acetylene reduction activity, nodule dry weight and N2 fixed as measured by the difference method. Further proof of differences in N2 fixed within soybean cultivars and the ability of Dunadja to fix similar amounts of N2 at 20 and 100 kg N/ha was obtained during a second year experiment. Dunadja yield was affected by N fertilizer and produced larger yield at 100 kg N/ha than at 20 kg N/ha. This type of cultivar could be particularly useful in situations where soil N levels are high or where there is need to apply high amounts of N fertilizer.The present study reveals the great variability between legume germplasms in the ability to fix N2 at different inorganic N levels, and also the potential that exists in breeding for nitrogen fixation associative traits. The15N methodology offers a unique tool to evaluate germplasms directly in the field for their N2 fixation abilities at different N fertilizer levels.  相似文献   

16.
Different products have been observed in the reactions of C5H5Co+ and C5H5Ni+ ions with halogen-substituted pyridines (XPy) that have been studied by ion trap mass spectrometry (ITMS) techniques. In particular, an addition product C5H5M(XPy)+ and a product ion C5H4M(Py)+ corresponding to a loss of a HX molecule (X = F, Cl, Br) have been detected. The relative yield of these products is determined by the nature of the metal and by the nature and position of the halogen on the pyridine ring. A computational study at the DFT level on model-systems formed by 2-fluoro and 2-bromopyridine reacting either with the C5H5Ni+ or the C5H5Co+ ion has been carried out. This study shows the existence of a general mechanistic pattern. The rate-determining step of this mechanism is the migration of the halogen from the pyridine ring to the metal. A final hydrogen abstraction step carried out by the halogen leads to the expulsion of a HX molecule. The existence of avoided crossings between surfaces of different multiplicities (ground and first excited state) allows the system to follow lower energy reaction pathways. The barrier determined for the reactions involving 2-bromopyridine is significantly lower than that found for 2-fluoropyridine. This is mainly due to the poor migrating/leaving character and low polarizability of fluorine compared to that of bromine.  相似文献   

17.
Azospirillum isolates were obtained from rhizosphere soil and roots of three cactaceae species growing under arid conditions. All Azospirillum isolates from rhizosphere and roots ofStenocereus pruinosus andStenocereus stellatus were identified asA. brasilense; isolates of surface-sterilized roots fromOpuntia ficus-indica were bothA. brasilense andA. lipoferum. Azospirilla per g of fresh root in the three species ranged from 70×103 to 11×103. The most active strains in terms of C2H2 reduction (25–49.6 nmol/h·ml) and indoleacetic acid (IAA) production (36.5–77 μg/ml) were those identified asA. brasilense and isolated from Stenocereus roots.A. lipoferum isolated from Opuntia roots produced low amounts of IAA (6.5–17.5 μg/ml) and low C2H2-reduction activity (17.8–21.2 nmol/h·ml).  相似文献   

18.
Fernández Valiente  E.  Ucha  A.  Quesada  A.  Leganés  F.  Carreres  R. 《Plant and Soil》2000,221(1):107-112
This study investigate the potential contribution of nitrogen fixation by indigenous cyanobacteria to rice production in the rice fields of Valencia (Spain). N2-fixing cyanobacteria abundance and N2 fixation decreased with increasing amounts of fertilizers. Grain yield increased with increasing amounts of fertilizers up to 70 kg N ha-1. No further increase was observed with 140 kg N ha-1. Soil N was the main source of N for rice, only 8–14% of the total N incorporated by plants derived from 15N fertilizer. Recovery of applied 15N-ammonium sulphate by the soil–plant system was lower than 50%. Losses were attributed to ammonia volatilization, since only 0.3–1% of applied N was lost by denitrification. Recovery of 15N from labeled cyanobacteria by the soil–plant system was higher than that from chemical fertilizers. Cyanobacterial N was available to rice plant even at the tillering stage, 20 days after N application. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
In a greenhouse study, with and without rice plants, of five flooded Philippine rice soils whose organic C (OC) content varied from 0.5 to 3.6%, incorporation ofSesbania rostrata, Azolla microphylla and rice straw affected the kinetics of soil solution NH 4 + −N, K+, Fe2+, Mn2+, Zn2+, and P. Sesbania and Azolla increased NH 4 + −N concentration above the control treatment, whereas rice straw depressed it. In all soils Azolla released less NH 4 + −N than Sesbania. The apparent net N release depended on the soil and ranged from 44–81% for Sesbania and 27–52% for Azolla. These effects persisted throughout the growth of IR36. Soil solution and exchangeable NH 4 + −N increased initially but levelled off between 30 to 80 days and between 20 to 40 days after flooding (DF), respectively. With rice, soil solution NH 4 + −N concentration, reached a peak at 15–40 DF and declined to very low levels (<4mg L−1). In the 3 soils of low OC content nitrogen derived from green manure ranged from 34–53% and the apparent revovery of added green manure N varied from 29–67%. Almost all N released from both Azolla and Sesbania were recovered in the rice plant in all soils except Concepcion with only 77%. The concentration of K+, Fe2+, Mn2+ and P in the soil solution were higher with rice straw than Sesbania and Azolla in all soils except Hanggan which showed no change in Fe2+ and Mn2+ but increased K+ and P. In general, rice straw, Sesbania and Azolla decreased Zn2+ concentration in all soils.  相似文献   

20.
During the past 10 years estimates of N2 fixation associated with sugar cane, forage grasses, cereals and actinorhizal plants grown in soil with and without addition of inoculum have been obtained using the 15N isotope dilution technique. These experiments are reviewed in this paper with the aim of determining the proportional and absolute contribution of N2 fixation to the N nutrition of non-legumes, and its role as a source of N in agriculture. The review also identifies deficiencies in both the totality of data which are currently available and the experimental approaches used to quantify N2 fixation associated with non-legumes.Field data indicate that associative N2 fixation can potentially contribute agronomically-significant amounts of N (>30–40 kg N ha-1 y-1) to the N nutrition of plants of importance in tropical agriculture, including sugar cane (Saccharum sp.) and forage grasses (Panicum maximum, Brachiaria sp. and Leptochloa fusca) when grown in uninoculated, N-deficient soils. Marked variations in proportions of plant N derived from the atmosphere have been measured between species or cultivars within species.Limited pot-culture data indicate that rice can benefit naturally from associative N2 fixation, and that inoculation responses due to N2 fixation can occur. Wheat can also respond to inoculation but responses do not appear to be due to associative N2 fixation. 15N dilution studies confirm that substantial amounts of N2 can be fixed by actinorhizal plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号