首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temporary waters, in general, are fascinating habitats in which to study the properties of species adapted to living in highly variable environments. Species display a remarkable array of strategies for dealing with the periodic loss of their primary medium that sets them apart from the inhabitants of permanent water bodies. Survival of individuals typically depends on exceptional physiological tolerance or effective migrational abilities, and communities have their own, distinctive hallmarks. This paper will broadly overview the biology of temporary ponds, but will emphasize those in temperate forests. In particular, links will be sought between aquatic community properties, the nature of the riparian vegetation, and forestry practices. Quite apart from their inherent biological interest, temporary waters are now in the limelight both from a conservation perspective, as these habitats come more into conflict with human activities, and a health-control perspective, as breeding habitats for vectors of arboviruses. Traditionally, many temporary waters, be they pools, streams or wetlands, have been considered to be ȁ8wastedȁ9 areas of land, potentially convertible to agriculture/silviculture once drained. In reality, they are natural features of the global landscape representing distinct and unique habitats for many species – some that are found nowhere else, others that reach their maximum abundance there. To be effective, conservation measures must preserve the full, hydroseral range of wetland types.  相似文献   

2.
Transitions from fresh to saline habitats are restricted to a handful of insect lineages, as the colonization of saline waters requires specialized mechanisms to deal with osmotic stress. Previous studies have suggested that tolerance to salinity and desiccation could be mechanistically and evolutionarily linked, but the temporal sequence of these adaptations is not well established for individual lineages. We combined molecular, physiological and ecological data to explore the evolution of desiccation resistance, hyporegulation ability (i.e., the ability to osmoregulate in hyperosmotic media) and habitat transitions in the water beetle genus Enochrus subgenus Lumetus (Hydrophilidae). We tested whether enhanced desiccation resistance evolved before increases in hyporegulation ability or vice versa, or whether the two mechanisms evolved in parallel. The most recent ancestor of Lumetus was inferred to have high desiccation resistance and moderate hyporegulation ability. There were repeated shifts between habitats with differing levels of salinity in the radiation of the group, those to the most saline habitats generally occurring more rapidly than those to less saline ones. Significant and accelerated changes in hyporegulation ability evolved in parallel with smaller and more progressive increases in desiccation resistance across the phylogeny, associated with the colonization of meso‐ and hypersaline waters during global aridification events. All species with high hyporegulation ability were also desiccation‐resistant, but not vice versa. Overall, results are consistent with the hypothesis that desiccation resistance mechanisms evolved first and provided the physiological basis for the development of hyporegulation ability, allowing these insects to colonize and diversify across meso‐ and hypersaline habitats.  相似文献   

3.
Environment-contingent sexual selection in a colour polymorphic fish   总被引:1,自引:0,他引:1  
Sexual selection could be a driving force in the maintenance of intraspecific variation, but supporting observations from nature are limited. Here, we test the hypothesis that spatial heterogeneity of the visual environment can influence sexual selection on colourful male secondary traits such that selective advantage is environment contingent. Using a small fish endemic to Sulawesi, Indonesia (Telmatherina sarasinorum) that has five male colour morphs varying in frequency between two visually distinct mating habitats, we used direct behavioural observations to test the environment-contingent selection hypothesis. These observations were combined with measurements of the visual environment, fish coloration and the sensitivity of visual photopigments to determine whether differential morph conspicuousness was associated with reproductive success across habitats. We found that blue and yellow males are most conspicuous in different habitats, where they also have the highest reproductive fitness. A less conspicuous grey morph also gained high reproductive success in both habitats, raising the possibility that alternative behaviours may also contribute to reproductive success. In a comprehensive analysis, conspicuousness was strongly correlated with reproductive success across morphs and environments. Our results suggest an important role for spatially heterogeneous environments in the maintenance of male colour polymorphism.  相似文献   

4.
The troglobitic amphipod crustacean Crangonyx antennatus occupies mud-bottom pools and small, gravel-bottom streams in caves in the southern Appalachians. One large, mud-bottom pool population in Lee Co., Virginia was observed periodically from 1967 to 1975. Amphipods in this population frequently burrowed into the soft mud substrate, where they were able to survive desiccation during periods when the pool dried up. Animals kept in the laboratory also burrowed and survived desiccation during an experiment which simulated drought conditions similar to those observed in caves. Amphipods collected from both pool and stream habitats burrowed, thereby indicating that stream-adapted populations of this species still retain sufficient flexibility to survive under variable environmental conditions that might be encountered in nature. It is concluded that burrowing provides a means of survival for C. antennatus when it is sometimes exposed to drought conditions in cave pool habitats and also provides protection from potential terrestrial predators under similar conditions. Burrowing also offers amphipods protection from aquatic predators (such as salamander larvae) during normal water levels and possibly allows juveniles a means of escaping cannibalism by adults.  相似文献   

5.
Thoughts about the potential effects of climatic change due to greenhouse warming on hydrophytes and hydrophyte communities in inland still waters of Europe are presented. A distinction is made between permanent and temporary shallow aquatic ecosystems and between freshwater and brackish systems. Potential effects of greenhouse warming on the hydrology and salinity of isolated brackish waters are illustrated with a computer model, simulating several scenario's of climatic change and differently shaped waters.In permanent waters, greenhouse warming may result in an earlier onset of growth of those hydrophytes in which the germination of propagules and the resumption of growth is primarily controlled by temperature. This may occur at the cost of macrophytes that have dormancy mechanisms regulated by environmental cues other than temperature (e.g. photoperiod). In addition, it seems plausible that because of milder winters, some thermophilous aquatic plants spread to the north. Furthermore, in culturally eutrophicated waters, in which the sediment compartment is heavily loaded with organic matter and/or nutrients, a rise in temperature may accelerate nutrient turn-over for several years, resulting in algal blooms and shifts in quality and quantity of macrophyte vegetation.Effects of greenhouse warming on temporary shallow waters will be more complex. Changes in temperature, precipitation and evaporation may lead to larger seasonal fluctuations in the water table and a more frequent or more prolonged period of desiccation. Some hydrophytes can cope with these circumstances, while others withstand desiccation only for a short period. Macrophyte communities may also be affected in an indirect way by periodic desiccation of their habitats. In emerged bottoms the rate of mineralization is probably higher than when overlying water is present. When water returns, a pulse of mineral nutrients may temporarily result in algal blooms and a high turbidity of the water, thus hampering hydrophyte growth. In addition, in isolated brackish waters an increased evaporation may result in larger fluctuations in salinity. In such a harsh environment species diversity of aquatic macrophytes will most probably decline.  相似文献   

6.
  • 1 Ostracods occurring at two sections of the Upper Rhône River, France, were examined to determine relationships among species traits, habitat utilization, the relationship between species traits and habitat utilization, and trends in species traits and species richness in the context of spatial and temporal variability of habitats. Twenty regularly sampled species were used in this study and fifteen species traits were considered.
  • 2 Throe groups can be distinguished according to their species traits: group 1 has species of mixed sizes with high reproductive rates, short life span, spherical shape, long swimming bristles, low thigmotactism, and high resistance to desiccation; group 2 has medium-sized species with low reproductive rates, long life span, low or no tolerance to desiccation, geometric (trapezoidal, triangular) or streamlined carapace shape, no swimming bristles, and a strong thigmotactism; group 3 has the largest species with parthenogenetic reproduction, medium-sized swimming bristles, and flattened or cylindric carapace shape.
  • 3 Ostracod habitat utilization segregates the superficial and interstitial habitats along a gradient from the main channel to the abandoned arms and to the temporary waters.
  • 4 The co-structure (= relationship) between species traits and habitat utilization indicates that the species use particular habitats with a particular set of species trait modalities. Species with long life spans, late maturity, low fecundity, and low migratory ability are restricted to the interstitial habitats; the epigean species with long life spans, large size, and parental care are more abundant in permanent flowing and standing surface waters; the epigean species with short life spans, high migratory ability, and high tolerance to desiccation are more abundant in temporary ponds.
  • 5 The analyses of the distribution of the species traits in a river habitat templet of spatial and temporal variability emphasized that the main disturbance structuring the Rhône River ostracod assemblage is desiccation.
  • 6 Of the trends predicted for species traits in the framework of the river habitat templet, five (size, body form, attachment, reproductive technique, and mobility) are clearly opposite for ostracods (because the predictions were mainly established for flood-related disturbances) but four (life span, number of reproductive cycles per year, age at first reproduction, and desiccation tolerance) are in agreement.
  • 7 No trends in ostracod species richness in the framework of spatial–temporal habitat variability were evident.
  相似文献   

7.
Plastic phenotypes are expected to be favoured in heterogeneous environments compared with stable environments. Sensory systems are interesting to test this theory because they are costly to produce and support, and strong fitness costs are expected if they are not tuned to the local environment. Consistently, the visual system of several species changes with the conditions experienced during early development. However, there is little information on whether the amplitude of the change, that is the reaction norm, differs between visual environments. Given the rapid change of many ecosystems, especially eutrophication for aquatic habitats, it is crucial to determine down to which spatial scale, change in the reaction norm occurs. We addressed this issue by quantifying the between‐habitat variation in the expression of a UV‐sensitive opsin in a newt. In western France, this species breeds in ponds of small forest patches, where water filters out UV, and in agricultural ponds where UV transmission is variable. We raised larvae from both habitats with or without exposure to UV. Opsin expression was reduced in larvae from agricultural habitats when raised without UV, whereas it was low in larvae from forest ponds under all lighting conditions. Thus, the variation in the reaction norm of opsin expression was lower in stable filtering environments and higher in heterogeneous environments. Its variation occurred between habitats across a small spatial scale. We discuss the hypotheses for this pattern and for the maintenance of residual opsin expression in forest populations.  相似文献   

8.
We use a conceptual mathematical reaction-diffusion model to investigate the mechanisms of spatial structure formation and complex temporal dynamics of plankton in a heterogeneous environment. We take into account basic trophic interactions, namely, "prey-predator" interactions between phytoplankton, zooplankton, and fish in upper layers of natural waters. We consider plankton as a passive contaminant in turbulent waters. We show that plankton structure formation can result from the difference in phytoplankton growth rate in neighboring habitats. Phytoplankton and zooplankton biomass is shown to undergo both regular and chaotic oscillations. The fish predation rate substantially affects the spatial and temporal dynamics of plankton in a heterogeneous environment.  相似文献   

9.
10.
1. The occurrence of larvae of Limnephilus coenosus and L. vittatus (Trichoptera) was recorded in 103 rock pools both before and after the dry periods in spring–summer (April–May and July–early August), when a great number of the pools dried out. In early spring, 84% of the pools sampled contained larvae of at least one of the species. Limnephilus coenosus larvae were present in a higher proportion of pools that later dried out than in the permanent ones, while L. vittatus larvae were predominantly found in permanent pools. Larvae of both species were found together in 31% of the inhabited pools.
2. Laboratory experiments, designed to elucidate differential survival under drought conditions, demonstrated that the organic cases of L. coenosus larvae held water more efficiently than did the mineral L. vittatus cases. Full-grown (fifth instar) L. coenosus larvae also survived dry conditions better than did L. vittatus larvae. The higher survival of L. coenosus was due to a combination of drought-resistant case material and a higher survival ability of the larvae themselves.
3. Limnephilus vittatus larvae were restricted by their low capability to withstand desiccation, although case material and food were available for L. vittatus larvae in all pools. Absence of case material and high-quality food in many pools, however, restricted the presence of L. coenosus larvae, but this species did not suffer from heavy mortality because of desiccation and all pool populations of L. coenosus survived until pupation.
4. The differences in species composition in these temporary and permanent pools can be explained by the differential site selection by ovipositing females, as well as by larval survival. The intrinsically greater survival of L. coenosus larvae during drought, together with the water-retaining properties of the cases, allowed this species to exploit stressful and risky habitats, such as temporary pools.  相似文献   

11.
1. The occurrence of larvae of Limnephilus coenosus and L. vittatus (Trichoptera) was recorded in 103 rock pools both before and after the dry periods in spring–summer (April–May and July–early August), when a great number of the pools dried out. In early spring, 84% of the pools sampled contained larvae of at least one of the species. Limnephilus coenosus larvae were present in a higher proportion of pools that later dried out than in the permanent ones, while L. vittatus larvae were predominantly found in permanent pools. Larvae of both species were found together in 31% of the inhabited pools.
2. Laboratory experiments, designed to elucidate differential survival under drought conditions, demonstrated that the organic cases of L. coenosus larvae held water more efficiently than did the mineral L. vittatus cases. Full-grown (fifth instar) L. coenosus larvae also survived dry conditions better than did L. vittatus larvae. The higher survival of L. coenosus was due to a combination of drought-resistant case material and a higher survival ability of the larvae themselves.
3. Limnephilus vittatus larvae were restricted by their low capability to withstand desiccation, although case material and food were available for L. vittatus larvae in all pools. Absence of case material and high-quality food in many pools, however, restricted the presence of L. coenosus larvae, but this species did not suffer from heavy mortality because of desiccation and all pool populations of L. coenosus survived until pupation.
4. The differences in species composition in these temporary and permanent pools can be explained by the differential site selection by ovipositing females, as well as by larval survival. The intrinsically greater survival of L. coenosus larvae during drought, together with the water-retaining properties of the cases, allowed this species to exploit stressful and risky habitats, such as temporary pools.  相似文献   

12.
Chromosomal inversions are thought to confer a selective advantage in alternative habitats by protecting co-adapted alleles from recombination. The frequencies of two inversions (2La and 2Rb) of the afro-tropical malaria mosquito Anopheles gambiae change gradually along geographical clines, increasing in frequency with degree of aridity. Such clines can result from gene flow and local selection acting upon alternative karyotypes along the cline, suggesting that these inversions may be associated with tolerance to xeric conditions. Since water loss represents a major challenge in xeric habitats, it can be supposed that genes inside these inversions are involved in water homeostasis. To test this hypothesis, we compared the desiccation resistance of alternative karyotypes from a colonised 2Rb/2La polymorphic population of A. gambiae from Cameroon. The strain included only the molecular form S, one of the genetic units marking incipient speciation in this taxon. Day-old mosquitoes of both sexes were assayed individually for time to death in a dry environment and the karyotype of each was determined post-mortem using molecular diagnostic assays for each inversion. In agreement with expectations based on their eco-geographical distribution, we found that 2La homokaryotypes survived significantly longer (1.3 hours) than the other karyotypes. However, there was weak support for the effect of 2Rb on desiccation resistance. Larger mosquitoes survived longer than smaller ones. Median survival of females was greater than males, but the effect of sex on desiccation resistance was weakly supported, indicating that differential survival was correlated to differences between sexes in average size. We found weak evidence for a heterotic effect of 2La karyotype on size in females. These results support the notion that genes located inside the 2La inversion are involved in water balance, contributing towards local adaptation of A. gambiae to xeric habitats, beyond the adaptive value conferred by a larger body size.  相似文献   

13.
The freshwaters of Martinique (French West Indies) have recently been invaded by snails belonging to the Thiaridae family (Gastropoda; Prosobranchia). Eight distinct Thiarid lines have been successively introduced in Martinique, and are still in the process of sequentially replacing one another within local habitats, revealing a range of increasing invasive abilities. Our aim was to test whether the variation in invasive ability can be partly explained by a specific life-history trait, desiccation tolerance, which might be important in view of the typical instability of tropical freshwater habitats. We therefore tested desiccation tolerance in both juveniles and adults under laboratory conditions. Our data show that, although all Thiarid lines resist desiccation quite well, they exhibit extreme variation in the degree of tolerance. These differences are mostly mediated by individual size, but are definitely of genetic origin given that our individuals were of similar ages and were raised under standardized laboratory conditions. The overall invasive success of a line in Martinique, deduced from field surveys, does not correlate with its desiccation tolerance. However, desiccation tolerance does seem to be a limiting factor for the invasion of the small fraction of habitats that are most exposed to drought. More generally, our study exemplifies the possibility that the invasion differential among habitats, rather than a general invasion ability, be predicted according to a particular life-history trait, within a set of closely related invasive taxa.  相似文献   

14.
SUMMARY 1. Larvae of cased caddisflies (Limnephilidae and Phryganeidae) are among the most abundant and conspicuous invertebrates in northern wetlands. Although species replacements are often observed along permanence gradients, the underlying causal mechanisms are poorly understood. In this paper, we report on the distributional patterns of caddisflies in permanent and temporary high‐altitude ponds, and how those patterns reflect differences in life history characteristics that affect desiccation tolerance (fundamental niches) versus constraints related to biotic interactions (realised niches). 2. Species (Hesperophylax occidentalis and Agrypnia deflata) that were encountered only in permanent ponds are restricted in distribution by life history (no ovarian diapause, aquatic oviposition, and/or inability to tolerate desiccation). Although the egg masses of H. occidentalis tolerate desiccation, the larvae leave the protective gelatinous matrix of the egg mass because adults oviposit in water. 3. Three species (Asynarchus nigriculus, Limnephilus externus and L. picturatus) have life history characteristics (rapid larval growth, ovarian diapause and terrestrial oviposition of desiccation‐tolerant eggs) that should facilitate the use of both permanent and temporary habitats. However, A. nigriculus is rare or absent in most permanent ponds, and L. externus and L. picturatus are rare or absent in most temporary ponds. Experimental data from a previous study on the combined effects of salamander predation and interspecific interactions among caddisflies (e.g. intraguild predation) suggest that biotic interactions limit each species to a subset of potentially exploitable habitats. 4. Many wetland invertebrates exhibit species replacements along permanence gradients, but few studies have separated the relative importance of the effects of drying per se from the effects of biotic interactions. Our results emphasise the complementary roles of comparative data on life histories and experimental data on competition and predation for understanding invertebrate distributions along permanence gradients.  相似文献   

15.
16.
Exceptional ecological niche diversity, clear waters and unique divergent selection pressures have often been invoked to explain high morphological and genetic diversity of taxa within ancient lakes. However, it is possible that in some ancient lake taxa high diversity has arisen because these historically stable environments have allowed accumulation of lineages over evolutionary timescales, a process impossible in neighbouring aquatic habitats undergoing desiccation and reflooding. Here we examined the evolution of a unique morphologically diverse assemblage of thiarid gastropods belonging to the Melanoides polymorpha'complex' in Lake Malawi. Using mitochondrial DNA sequences, we found this Lake Malawi complex was not monophyletic, instead sharing common ancestry with Melanoides anomala and Melanoides mweruensis from the Congo Basin. Fossil calibrations of molecular divergence placed the origins of this complex to within the last 4 million years. Nuclear amplified fragment length polymorphism markers revealed sympatric M. polymorpha morphs to be strongly genetically differentiated lineages, and males were absent from our samples indicating that reproduction is predominantly parthenogenetic. These results imply the presence of Lake Malawi as a standing water body over the last million years or more has facilitated accumulation of clonal morphological diversity, a process that has not taken place in more transient freshwater habitats. As such, the historical stability of aquatic environments may have been critical in determining present spatial distributions of biodiversity.  相似文献   

17.
Many of the physiological adaptations evolved in terrestrial invertebrates to resist desiccation have also been shown to enhance the survival of low temperatures. In this study we have examined temporal changes in the physiology of the collembolan Folsomia candida during acclimation to mild desiccation stress (98.2% RH), and how physiological changes correlate with resistance to subsequent cold shock, heat shock and acute desiccation stress. Drought-acclimation increased the resistance to cold and acute drought but reduced the resistance to heat shock. The composition of membrane phospholipid fatty acids (PLFA) changed during acclimation resulting in a higher degree of unsaturation by the end of the 192-h acclimation period. This resembles typical membrane alterations seen in ectothermic animals exposed to cold. Only small changes were seen in the neutral lipid fraction. The temporal changes in cold resistance and drought resistance correlated well with changes in PLFA composition and accumulation of sugars and polyols (’cryoprotectives’). It is proposed that the drought-induced PLFA desaturation, combined with the membrane protecting accumulation of cryoprotectives, are important physiological adaptations providing tolerance to both desiccation and cold.  相似文献   

18.
In this study, we use a quantitative genetics model of structured populations to investigate the evolution of senescence in a variable environment. Adaptation to local environments depends on phenotypic traits whose optimal values vary with age and with environmental conditions. We study different scenarios of environmental heterogeneity, where the environment changes abruptly, gradually, or cyclically with time and where the environment is heterogeneous in space with different populations connected by migration. The strength of selection decreases with age, which predicts slower adaptation of traits expressed late in the life cycle, potentially generating stronger senescence in habitats where selection changes in space or in time. This prediction is however complicated by the fact that the genetic variance also increases with age. Using numerical calculations, we found that the rate of senescence is generally increased when the environment varies. In particular, migration between different habitats is a source of senescence in heterogeneous landscapes. We also show that the rate of senescence can vary transiently when the population is not at equilibrium, with possible implications for experimental evolution and the study of invasive species. Our results highlight the need to study age‐specific adaptation, as a changing environment can have a different impact on different age classes.  相似文献   

19.
Dormancy can serve as an adaptation to persist in variable habitats and often is coupled with sex. In cyclically parthenogenetic rotifers, an asexual phase enables rapid population growth, whereas sex results in diapausing embryos capable of tolerating desiccation. Few studies have experimentally tested whether sex–dormancy associations in temporary waters reflect evolution in response to the short hydroperiod selecting for diapause ability. Here, we demonstrate evolution of higher propensity for sex and dormancy in ephemeral rotifer cultures mimicking temporary ponds, and lower propensity in permanent cultures. Results are consistent with rapid evolution, with evolutionary changes occurring in a short timeframe (385 days, ≤ 84 generations). We also provide insight into mechanisms for rapid evolution in basal metazoans, discussing potential roles of new mutations, recombination and clonal selection.  相似文献   

20.
Aquatic animals distributed along a 'habitat-permanence' gradient (HPG), differ in life history (Wellborn et al., 1996. Annual Revue of Ecology and Systematics 27: 337--363). Dragonflies that occur in hot arid regions often occur in temporary waters and consequently perform direct and rapid development. Dragonfly species of the Namibian desert do differ in their selection of habitats along the HPG and therefore may also differ in life cycle. Here, we attempt to monitor colonisation, larval growth and emergence in a temporary pond of known history. We studied the development of dragonfly species that laid eggs in artificial ponds constructed by us in March 2001. The assemblage consisted of species that originate from different habitats along the HPG. To obtain data on larval development we took samples from the ponds at 10-day intervals. Most species showed rapid development. By regressing the maximum sizes attained by larvae on each sampling date against time we estimated growth rates for five species and were thereby able to estimate that total duration of development from oviposition to emergence ranged between 38 and 70 days. Observation of first oviposition and first emergence for three of these species corroborated our estimates based on growth rate. Of few species, which laid eggs in the ponds no larvae or adults were found. For some this may have been the result of predation whereas others may not have grown fast enough to emerge before the ponds dried up. Our results indicate that dragonflies cannot recognise whether a pond will retain water long enough for full larval development and oviposit in waters that will not allow larval development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号