首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The morphology of Nyctotheroides hubeiensis (Acta Hydrobiol. Sin. 1998, 22(suppl.):187), collected from the rectum of Phelophylax nigromaculatus, is presented in this paper based on detailed morphological information and molecular data. Our phylogenetic analysis showed that N. hubeiensis fell into the Nyctotheroides clade, which was strongly supported as monophyletic and clustered as basal to the genera Nyctotherus and Clevelandella. Also, the monophyly of the Order Clevelandellida and the affinity of parasitic nyctotherids and free‐living metopids were indicated in our work. The origin of clevelandellid ciliates as well as their possible evolutionary history was also discussed here; however, the analysis of more species from other vertebrate hosts (fish, reptiles) should be made before a well‐supported conclusion can be drawn.  相似文献   

2.
Two new ciliate species, Clevelandella lynni sp. n. and Nyctotherus galerus sp. n., were discovered in the hindgut of wood‐feeding panesthiine cockroaches. Their morphology was studied using standard methods, and their phylogenetic positions within the order Clevelandellida were determined using the 18S rRNA gene sequences. Clevelandella lynni is characterized by a prominent peristomial projection, a notched left body margin, a tear‐shaped to broadly ovoidal macronucleus, a karyophore attached to the right body margin, and by an adoral zone composed of on average 48 membranelles and extending about 51% of body length. The diagnostic features of N. galerus include a short posterior body projection, a spherical to broadly ellipsoidal macronucleus, a karyophore attached to the right and left body margins, refractile bodies densely packed anterior to the macronucleus, and an adoral zone composed of on average 57 membranelles and extending about 70% body length. The order Clevelandellida was consistently depicted as monophyletic in 18S rRNA gene phylogenies. Nyctotherus galerus was placed in the paraphyletic family Nyctotheridae, as sister taxon to all other Nyctotherus and Clevelandella species isolated from cockroaches. Clevelandella lynni fell in the monophyletic family Clevelandellidae, as sister taxon to C. panesthiae KC139718 but with very poor statistical support.  相似文献   

3.
The venomous snake subfamily Hydrophiinae includes more than 40 genera and approximately 200 species. Most members of this clade inhabit Australia, and have been well studied. But, because of poor taxon sampling of Melanesian taxa, basal evolutionary relationships have remained poorly resolved. The Melanesian genera Ogmodon, Loveridgelaps, and Salomonelaps have not been included in recent phylogenetic studies, and the New Guinean endemic, Toxicocalamus, has been poorly sampled and sometimes recovered as polyphyletic. We generated a multilocus phylogeny for the subfamily using three mitochondrial and four nuclear loci so as to investigate relationships among the basal hydrophiine genera and to determine the status of Toxicocalamus. We sequenced these loci for eight of the 12 described species within Toxicocalamus, representing the largest molecular data set for this genus. We found that a system of offshore island arcs in Melanesia was the centre of origin for terrestrial species of Hydrophiinae, and we recovered Toxicocalamus as monophyletic. Toxicocalamus demonstrates high genetic and morphological diversity, but some of the molecular diversity is not accompanied by diagnostic morphological change. We document at least five undescribed species that all key morphologically to Toxicocalamus loriae (Boulenger, 1898), rendering this species polyphyletic. Continued work on Toxicocalamus is needed to document the diversity of this genus, and is likely to result in the discovery of additional species. Our increased taxon sampling allowed us to better understand the evolution and biogeography of Hydrophiinae; however, several unsampled lineages remain, the later study of which may be used to test our biogeographic hypothesis.  相似文献   

4.
The Balkan Peninsula is a hot spot for European herpetofaunal biodiversity and endemism. The rock climbing lizards Dalmatolacerta oxycephala and Dinarolacerta mosorensis and the ground‐dwelling Dalmatian wall lizard Podarcis melisellensis are endemic to the Western Balkans, and their ranges largely overlap. Here, we present a comparative phylogeographical study of these three species in the area of their codistribution in order to determine the level of concordance in their evolutionary patterns. Phylogenetic analyses were performed based on two mitochondrial genes (cytochrome b and 16S rRNA), and a molecular clock approach was used to date the most important events in their evolutionary histories. We also tested for correlations regarding genetic differentiation among populations and their geographical distances. For all three species, a significant correlation between genetic and geographical distances was found. Within D. oxycephala, two deeply separated clades (‘island’ and ‘mainland clade’), with further subdivision of the ‘mainland clade’ into two subclades (‘south‐eastern’ and ‘north‐western’), were found. High sequence divergences were observed between these groups. From our data, the time of separation of the two main clades of D. oxycephala can be estimated at about 5 mya and at about 0.8 mya for the two subclades of the mainland clade. Within D. mosorensis, coalescence time may be dated at about 1 mya, while D. mosorensis and D. montenegrina separated around 5 mya. The results imply the existence of complex palaeo‐biogeographical and geological factors that probably influenced the observed phylogeographical patterns in these lacertid species, and point to the presence of numerous glacial/interglacial refugia. Furthermore, the observed cryptic genetic diversity within the presently monotypic species D. oxycephala prompts for a revision of its taxonomic and conservation status.  相似文献   

5.
6.
The effect of glaciation on the levels and patterns of genetic variation has been well studied in the Northern Hemisphere. However, although glaciation has undoubtedly shaped the genetic structure of plants in the Southern Hemisphere, fewer studies have characterized the effect, and almost none of them using microsatellites. Particularly, complex patterns of genetic structure might be expected in areas such as the Andes, where both latitudinal and altitudinal glacial advance and retreat have molded modern plant communities. We therefore studied the population genetics of three closely related, hybridizing species of Nothofagus (Nobliqua, N. alpina, and N. glauca, all of subgenus Lophozonia; Nothofagaceae) from Chile. To estimate population genetic parameters and infer the influence of the last ice age on the spatial and genetic distribution of these species, we examined and analyzed genetic variability at seven polymorphic microsatellite DNA loci in 640 individuals from 40 populations covering most of the ranges of these species in Chile. Populations showed no significant inbreeding and exhibited relatively high levels of genetic diversity (HE = 0.502–0.662) and slight, but significant, genetic structure (RST = 8.7–16.0%). However, in N. obliqua, the small amount of genetic structure was spatially organized into three well‐defined latitudinal groups. Our data may also suggest some introgression of N. alpina genes into N. obliqua in the northern populations. These results allowed us to reconstruct the influence of the last ice age on the genetic structure of these species, suggesting several centers of genetic diversity for N. obliqua and N. alpina, in agreement with the multiple refugia hypothesis.  相似文献   

7.
8.
The family Oocystaceae (Chlorophyta) is a group of morphologically and ultrastructurally distinct green algae that constitute a well‐supported clade in the class Trebouxiophyceae. Despite the family's clear delimitation, which is based on specific cell wall features, only a few members of the Oocystaceae have been examined using data other than morphological. In previous studies of Trebouxiophyceae, after the establishment of molecular phylogeny, the taxonomic status of the family was called into question. The genus Oocystis proved to be paraphyletic and some species were excluded from Oocystaceae, while a few other species were newly redefined as members of this family. We investigated 54 strains assigned to the Oocystaceae using morphological, ultrastructural and molecular data (SSU rRNA and rbcL genes) to clarify the monophyly of and diversity within Oocystaceae. Oonephris obesa and Nephrocytium agardhianum clustered within the Chlorophyceae and thus are no longer members of the Oocystaceae. On the other hand, we transferred the coenobial Willea vilhelmii to the Oocystaceae. Our findings combined with those of previous studies resulted in the most robust definition of the family to date. The division of the family into three subfamilies and five morphological clades was suggested. Taxonomical adjustments in the genera Neglectella, Oocystidium, Oocystis, and Ooplanctella were established based on congruent molecular and morphological data. We expect further taxonomical changes in the genera Crucigeniella, Eremosphaera, Franceia, Lagerheimia, Oocystis, and Willea in the future.  相似文献   

9.
10.
Peanut worm (Sipunculus nudus) is a cosmopolitan species mainly distributed in tropical and subtropical coastal waters. Analysis of the mitochondrial cytochrome c oxidase subunit I (COI) gene sequences among S. nudus from GenBank revealed high genetic variation (p‐distance, 0.115–0.235; k2p, 0.128–0.297) and paraphyletic relationships. These indicated misidentification and/or cryptic diversity may be present in the genus Sipunculus. To understand the genetic diversity and to manage the recourse of S. nudus, we collected specimens from coastal waters of southern China and Taiwan. In the phylogenetic topology, specimens can be separated into four distinct clades; three of these clades (clade A, B and C) were only represented from this region (southern China and Taiwan), but the clade D grouped with individuals from Central America (Atlantic coast). Furthermore, individuals of clades A and D were collected at the same location, which does not support the hypothesis that this genetic break reflects contemporary geographical isolation. The four distinct clades observed among coastal waters of southern China and Taiwan indicated underestimated diversity. It is noteworthy that the cryptic diversity is vulnerable under high pressure of human activity.  相似文献   

11.
Twenty‐six strains morphologically identified as Cylindrospermum as well as the closely related taxon Cronbergia siamensis were examined microscopically as well as phylogenetically using sequence data for the 16S rRNA gene and the 16S‐23S internal transcribed spacer (ITS) region. Phylogenetic analysis of the 16S rRNA revealed three distinct clades. The clade we designate as Cylindrospermum sensu stricto contained all five of the foundational species, C. maius, C. stagnale, C. licheniforme, C. muscicola, and C. catenatum. In addition to these taxa, three species new to science in this clade were described: C. badium, C. moravicum, and C. pellucidum. Our evidence indicated that Cronbergia is a later synonym of Cylindrospermum. The phylogenetic position of Cylindrospermum within the Nostocaceae was not clearly resolved in our analyses. Cylindrospermum is unusual among cyanobacterial genera in that the morphological diversity appears to be more evident than sequence divergence. Taxa were clearly separable using morphology, but had very high percent similarity among ribosomal sequences. Given the high diversity we noted in this study, we conclude that there is likely much more diversity remaining to be described in this genus.  相似文献   

12.
13.
The globally distributed avian family Motacillidae consists of five to seven genera (Anthus, Dendronanthus, Tmetothylacus, Macronyx and Motacilla, and depending on the taxonomy followed, Amaurocichla and Madanga) and 66–68 recognized species, of which 32 species in four genera occur in sub‐Saharan Africa. The taxonomy of the Motacillidae has been contentious, with variable numbers of genera, species and subspecies proposed and some studies suggesting greater taxonomic diversity than currently recognized (five genera and 67 species). Using one nuclear (Mb) and two mitochondrial (cyt b and CO1) gene regions amplified from DNA extracted from contemporary and museum specimens, we investigated the taxonomic status of 56 of the currently recognized motacillid species and present the most taxonomically complete and expanded phylogeny of this family to date. Our results suggest that the family comprises six clades broadly reflecting continental distributions: sub‐Saharan Africa (two clades), the New World (one clade), Palaearctic (one clade), a widespread large‐bodied Anthus clade, and a sixth widespread genus, Motacilla. Within the Afrotropical region, our phylogeny further supports recognition of Wood Pipit Anthus nyassae as a valid species, and the treatment of Long‐tailed Pipit Anthus longicaudatus and Kimberley Pipit Anthus pseudosimilis as junior subjective synonyms of Buffy Pipit Anthus vaalensis and African Pipit Anthus cinnamomeus, respectively. As the disjunct populations of Long‐billed Pipit Anthus similis in southern and East Africa are genetically distinct and geographically separated, we propose a specific status for the southern African population under the earliest available name, Nicholson's Pipit Anthus nicholsoni. Further, as our analyses indicate that Yellow‐breasted Pipit Anthus chloris and Golden Pipit Tmetothylacus tenellus are both nested within the Macronyx longclaws, we propose transferring these species to the latter genus.  相似文献   

14.
15.
Species of the marine benthic dinoflagellate genus Gambierdiscus are the principal cause of Ciguatera fish poisoning. This genus has been recorded from tropical to temperate oceans, although Gambierdiscus species have rarely been found in Chinese waters. Our work revealed the morphological and genetic characteristics of three potentially toxic Gambierdiscus species observed in the temperate to subtropical waters of China. The fine thecal morphology was determined based on light microscopy and scanning electron microscopy analyses, and these species were also characterized by sequencing the D1–D3 and D8–D10 regions of the LSU rDNA. The morphological and genetic data indicated that these three Gambierdiscus species were G. pacificus, G. australes and G. caribaeus. This work provides the first report of these species in Chinese waters, which increases the known species distribution of this genus.  相似文献   

16.
Brown algae of the order Laminariales, commonly referred to as kelps, are the largest and most productive primary producers in the coastal inshore environment. The genus Ecklonia (Lessoniaceae, Phaeophyceae) consists of seven species with four species in the Northern Hemisphere and three in the Southern Hemisphere. It was recently transferred to the family Lessoniaceae based on phylogenetic analyses of nuclear and chloroplastic markers, though the type of the genus was not included and its relationship with allied genera Eckloniopsis and Eisenia remained unresolved. The present study is the first to produce a phylogeny focussed on the genus Ecklonia. It included sequences from nuclear, mitochondrial, and chloroplastic DNA, for most of the distribution range of the three current Southern Hemisphere species (Ecklonia radiata, Ecklonia maxima, and a sample of a putative Ecklonia brevipes specimen), sequences for East Asiatic species (Ecklonia cava, Ecklonia kurome, and Ecklonia stolonifera), as well as the closely related genera Eckloniopsis and Eisenia. Results confirmed E. radiata and E. maxima as two distinct species in South Africa, E. radiata as a single species throughout the Southern Hemisphere (in South Africa, Australia, and New Zealand) and East Asiatic species as a distinct lineage from the Southern Hemisphere clade. Results further pointed out a close sister relationship between Eckloniopsis radicosa and two Eisenia species (including the type species: Eisenia arborea) to the genus Ecklonia suggesting that the genera Eckloniopsis and Eisenia are superfluous.  相似文献   

17.
18.
Tribe Sabiceeae (Ixoroideae, Rubiaceae) has undergone recent taxonomical changes with the incorporation of the related genera Ecpoma, Pseudosabicea and Stipularia into the type genus Sabicea. We use phylogenetic analysis and morphological data to verify the relationships among members of the tribe, including the most comprehensive taxon sampling of the tribe to date with 74 of 145 species. Sequence data from the nuclear internal transcribed spacer (ITS) and three plastid markers (petD, rps16, trnT–F) were used to infer relationships among the members of the tribe. Individual analyses using maximum likelihood, parsimony and Bayesian approaches reveal several supported clades: the former genus Stipularia is resolved as a monophyletic unit, but Ecpoma is monophyletic only if Sabicea urbaniana and Sabicea xanthotricha are included (corresponding to Sabicea subgenus Stipulariopsis sensu Wernham). Pseudosabicea is biphyletic, with one clade corresponding to section Anisophyllae of Hallé (1964) and the other one to the other sections (Floribundae and Sphaericae) of the genus. Eleven morphological characteristics were recorded for all species studied and seven have been mapped onto the phylogenetic tree to study their evolution in the group and assess their value for the classification of Sabicea s.l. Finally, our study shows that a combination of diagnostic characteristics should be used to differentiate each group and we propose to recognise four subgenera in Sabicea.  相似文献   

19.
Ninety‐two strains of Microcoleus vaginatus (=nomenclatural‐type species of the genus Microcoleus Desmazières ex Gomont) and Phormidium autumnale Trevisan ex Gomont from a wide diversity of regions and biotopes were examined using a combination of morphological and molecular methods. Phylogenies based on the 16S rDNA and 16S‐23S ITS (partial) demonstrated that the 92 strains, together with a number of strains in GenBank, were members of a highly supported monophyletic clade of strains (Bayesian posterior probability = 1.0) distant from the species‐cluster containing the generitype of Phormidium. Similarity of the 16S rRNA gene exceeded 95.5% among all members of the Microcoleus clade, but was less than 95% between any Microcoleus strains and species outside of the clade (e.g., Phormidium sensu stricto). These findings, which are in agreement with earlier studies on these taxa, necessitate the revision of Microcoleus to include P. autumnale. Furthermore, the cluster of Phormidium species in the P. autumnale group (known as Group VII) must be moved into Microcoleus as well, and these nomenclatural transfers are included in this study. The main diacritical characters defining Microcoleus are related to the cytomorphology of trichomes, including: narrowed trichome ends, calyptra, cells shorter than wide up to more or less isodiametric, and facultative presence of sheaths. The majority of species are 4–10 μm in diameter. The possession of multiple trichomes in a common sheath is present facultatively in many but not all species.  相似文献   

20.
This study demonstrates for the first time the presence of marine‐associated mites in the Andaman Sea and Strait of Malacca and reveals a relatively high diversity of these taxa with six species from two different families: Selenoribatidae and Fortuyniidae. Indopacifica, a new genus of Selenoribatidae, is described from Thailand and Malaysia, with two new species, Indopacifica pantai n. sp. and Indopacifica parva n. sp. The genus is characterized by the unique combination of following characters: lacking lamellar ridges, incomplete dorsosejugal suture, fourteen pairs of notogastral setae, and presence of epimeral foveae. A phylogenetic reconstruction based on 18S ribosomal RNA sequences clearly confirms the distinctness of the new genus Indopacifica and places it close to the genus Rhizophobates. The lack of molecular genetic data of possible relatives impedes a clear assessment, and hence, we emphasize the need for further combined approaches using morphological and molecular genetic sequence data. All species show wide distribution areas within this geographic region suggesting that these taxa are good dispersers despite their minute size and wingless body. Molecular genetic data demonstrate recent gene flow between far distant populations of I. pantai n. sp. from the coasts of Thailand and two islands of Malaysia and hence confirm this assumption. The seasonally changing surface currents within this geographic area may favor hydrochorous dispersal and hence genetic exchange. Nevertheless, morphometric data show a slight trend to morphological divergence among the studied populations, whereas this variation is suggested to be a result of genetic drift but also of habitat differences in one population of Alismobates pseudoreticulatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号