首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Argentine ant, Linepithema humile, has invaded sites across Africa, Australia, Europe, and North America. In its introduced ranges it eliminates native ants and tends agricultural pests. Few studies have examined the ecology of Argentine ants in their native habitat. This study examined the effects of parasitoid flies, genus Pseudacteon, on the foraging behavior of Argentine ants in part of their native range in southern Brazil. Pseudacteon parasitoids commonly attacked Argentine ants, but not other ant species, in daylight at temperatures above 18°C. Argentine ants abandoned food resources and returned underground in the presence of parasitoids. Parasitoid attack rates diminished as Argentine ants retreated underground. Where parasitoids were present, Argentine ants were abundant at food resources only during times of day when parasitoids were inactive. Where parasitoids were absent, Argentine ants were abundant at food resources throughout the day. Overall, the presence of parasitoids explained observed variation in Argentine ant foraging far better than temperature, although temperature had some effect. The results suggest that Pseudacteon parasitoids inhibit the ability of Argentine ants to gather food resources in their native habitat in Brazil. Received: 11 December 1997 / Accepted: 12 June 1998  相似文献   

2.
The Argentine ant Linepithema humile (Dolichoderinae) is one of the most widespread invasive ant species in the world. Throughout its introduced range, it is associated with the loss or reduced abundance of native ant species. The mechanisms by which these native species are displaced have received limited attention, particularly in Australia. The role of interference competition in the displacement of native ant species by L. humile was examined in coastal vegetation in central Victoria (southeastern Australia). Foragers from laboratory colonies placed in the field consistently and rapidly displaced the tyrant ant Iridomyrmex bicknelli, the big-headed ant Pheidole sp. 2, and the pony ant Rhytidoponera victoriae from baits. Numerical and behavioural dominance enabled Argentine ants to displace these ants in just 20 min; the abundance of native species at baits declined 3.5–24 fold in direct relation to the rapid increase in L. humile. Most precipitous was the decline of I. bicknelli, even though species in this typically dominant genus have been hypothesized to limit invasion of L. humile in Australia. Interspecific aggression contributed strongly to the competitive success of Argentine ants at baits. Fighting occurred in 50–75% of all observed interactions between Argentine and native ants. This study indicates that Argentine ants recruit rapidly, numerically dominate, and aggressively displace from baits a range of Australian native ant species from different subfamilies and functional groups. Such direct displacement is likely to reduce native biodiversity and indirectly alter food web structure and ecosystem processes within invaded areas. Biotic resistance to Argentine ant invasion from native ants in this coastal community in southeastern Australia is not supported in this study.  相似文献   

3.
When populations of native predators are subsidized by numerically dominant introduced species, the structure of food webs can be greatly altered. Surprisingly little is known, however, about the general factors that influence whether or not native predators consume introduced species. To learn more about this issue, we examined how native pit-building ant lions (Myrmeleon) are affected by Argentine ant (Linepithema humile) invasions in coastal southern California. Compared to areas without L. humile, invaded areas contained few native ant species and were deficient in medium-sized and large bodied native ants. Based on these differences, we predicted that Argentine ants would negatively affect ant lion larvae. Contrary to this expectation, observational surveys and laboratory growth rate experiments revealed that Myrmeleon were heavier, had longer mandibles, and grew more quickly when their main ant prey were Argentine ants rather than native ants. Moreover, a field transplant experiment indicated that growth rates and pupal weights were not statistically different for larval ant lions reared in invaded areas compared to those reared in uninvaded areas. Argentine ants were also highly susceptible to capture by larval Myrmeleon. The species-level traits that presumably make Argentine ant workers susceptible to capture by larval ant lions—small size and high activity levels—appear to be the same characteristics that make them unsuitable prey for vertebrate predators, such as horned lizards. These results underscore the difficulties in predicting whether or not numerically dominant introduced species serve as prey for native predators.  相似文献   

4.
Argentine ants displace floral arthropods in a biodiversity hotspot   总被引:2,自引:1,他引:1  
Argentine ant (Linepithema humile (Mayr)) invasions are often associated with the displacement of ground‐dwelling arthropods. Argentine ant invasions can also exert other effects on the community through interactions with plants and their associated arthropods. For example, carbohydrate resources (e.g. floral or extrafloral nectar) may influence foraging behaviour and interactions among ants and other arthropods. In South Africa's Cape Floristic Region, Argentine ants and some native ant species are attracted to the floral nectar of Leucospermum conocarpodendron Rourke (Proteaceae), a native tree that also has extrafloral nectaries (EFNs). Despite having relatively low abundance in pitfall traps, Argentine ants visited inflorescences more frequently and in higher abundance than the most frequently observed native ants, Camponotus spp., though neither native nor Argentine ant floral foraging was influenced by the EFNs. Non‐metric multidimensional scaling revealed significant dissimilarity in arthropod communities on inflorescences with Argentine ants compared to inflorescences with native or no ants, with Coleoptera, Diptera, Hymenoptera, Arachnida, Orthoptera, and Blattaria all being underrepresented in inflorescences with Argentine ants compared to ant‐excluded inflorescences. Native honeybees (Apis mellifera capensis Eschscholtz) spent 75% less time foraging on inflorescences with Argentine ants than on inflorescences without ants. Neither Argentine ant nor native ant visits to inflorescences had a detectable effect on seed set of Le. conocarpodendron. However, a pollen supplementation experiment revealed that like many other proteas, Le. conocarpodendron is not pollen‐limited. Flower predation was negatively associated with increased ant visit frequency to the inflorescences, but did not differ among inflorescences visited by native and Argentine ants. Displacement of arthropods appears to be a consistent consequence of Argentine ant invasions. The displacement of floral arthropods by Argentine ants may have far‐reaching consequences for this biodiversity hotspot and other regions that are rich in insect‐pollinated plants.  相似文献   

5.
Abstract The Argentine ant, Linepithema humile (Mayr), is a widespread invasive ant species that has been associated with losses of native ant species and other invertebrates from its introduced range. To date, various abiotic conditions have been associated with limitations to the spread of Argentine ants, however, competitive interactions with native ant fauna may also affect the spread of Argentine ants. Here, we experimentally manipulated colony sizes of Argentine ants in the laboratory to assess whether Argentine ants were able to survive and compete for resources with a widespread, dominant native ant, Iridomyrmexrufoniger’. The results showed that over 24 h, the proportions of Argentine ants that were alive, at baits, and at sugar water decreased significantly in the presence of Iridomyrmex. In addition, Argentine ant mortality increased over time, however, the proportion of the colony that was dead decreased with the largest colony size. Argentine ants were only able to overcome Iridomyrmex when their colony sizes were 5–10 times greater than those of the native ants. We also conducted trials in which colonies of Argentine ants of varying sizes were introduced to artificial baits occupied by Iridomyrmex in the field. The results showed that larger Argentine ant colonies significantly affected the foraging success of Iridomyrmex after the initial introduction (5 min). However, over the first 20 min, when the Argentine ants were present at the baits, and over the entire 50 min experimental period, the numbers of Iridomyrmex at baits did not differ significantly with the size of the Argentine ant colony. This is the first experimental study to investigate the role of colony size in the invasion biology of Argentine ants in Australia, and the results suggest that Iridomyrmex may reduce the spread of Argentine ants, and that Argentine ants may need to attain large colony sizes in order to survive in the presence of Iridomyrmex. We address the implications of these findings for the invasion success of Argentine ants in Australia, and discuss the ability of Argentine ants to attain large colony sizes in introduced areas.  相似文献   

6.
Ants are often considered antagonists when they visit flowers because they typically steal nectar without providing pollination services. Previous research on ant–flower interactions on two species of South African Proteaceae in the Cape Floral Kingdom revealed that the invasive Argentine ant (Linepithema humile), but not native ants, displace other floral arthropod visitors. To determine how common Argentine ant use of inflorescences is, how Argentine and native ant visits differ in the numbers they recruit to inflorescences, and what factors may affect Argentine and native ant foraging in inflorescences, I surveyed 723 inflorescences in 10 species in the genera Protea and Leucospermum across 16 sites and compared ant presence and abundance in inflorescences with abundance at nearby cat food and jam baits. Argentine ants were the most commonly encountered ant of the 22 observed. Argentine ants, as well as six species of native ants were present in all inflorescences for which they were present at nearby baits. Mean Argentine ant abundance per inflorescence was 4.4 ± 0.84 (SE) ants and similar to that of Anoplolepis custodiens and Crematogaster peringueyi, but higher than observed for the other most commonly encountered native ants, Camponotus niveosetosus and Lepisiota capensis. Both Argentine ants and A. custodiens were more likely to be found foraging in spring and under humid conditions, and in inflorescences closer to the ground, with lower sucrose concentrations, and with a greater proportion of open flowers. Argentine ants were more likely to be found in Protea inflorescences, whereas A. custodiens and L. capensis more often visited Leucospermum inflorescences. Considering its displacement of floral arthropods and widespread use of Proteaceae inflorescences, the Argentine ant could be posing a serious threat to plant and pollinator conservation in this biodiversity hotspot.  相似文献   

7.
Human  K. G.  Gordon  D. M. 《Insectes Sociaux》1999,46(2):159-163
Summary: The Argentine ant, Linepithema humile, has invaded many areas of the world, displacing native ants. Its behavior may contribute to its competitive success. Staged and natural encounters were observed at food resources in the field, between Argentine ants and eight ant species native to northern California. There was no relation between the frequency of aggression by any ant species and the outcome of encounters, though Argentine ants were more likely than ants of native species to behave aggressively. When an ant of one species initiated an encounter of any kind with an ant of another species, the ant that did not initiate was likely to retreat. This was true of all species studied. Most encounters between ants were initiated by Argentine ants. Thus the native species tended to retreat more frequently than Argentine ants. Interactions between Argentine ants and native species at food resources, causing ants of native species to retreat, may help Argentine ants to displace native species from invaded areas.  相似文献   

8.
1. Behavioural responses to varying macronutrient availability are increasingly studied in highly invasive ant species to better understand their ecological success. However, such work is lacking in relation to native ant species confronted with biological invaders. 2. Here the link between diet and behaviour was examined in Prolasius advenus, a native ant from New Zealand facing intense competition for food with invasive insects, including social wasps. A long‐term laboratory experiment was conducted to assess the impact of protein and carbohydrate restriction on several behavioural parameters. 3. Ants shifted their food‐collecting activity towards the least available macronutrient in both protein‐limited and carbohydrate‐limited colonies. But when lacking carbohydrate, they also strongly increased their efforts to discover resources. After 10 weeks, the proportion of the colony patrolling outside of the nest was eight times higher than at the initiation of the experiment. This high patrolling activity was then maintained for several weeks and resulted in a higher efficiency to explore a novel territory. Moreover, ants fed a carbohydrate‐limited diet engaged in longer aggressive acts towards conspecifics. 4. These behavioural responses to carbohydrate scarcity may, in part, enhance the ability of P. advenus to resist a competing invader under natural conditions. While much of the previous research has linked diet and behavioural dominance in invasive ants, the present study shows that conducting similar investigations in the native species to which they are confronted may shed light on the mechanisms behind biotic resistance and the ability of some native species to coexist with highly abundant invaders.  相似文献   

9.
Invasive ants threaten native biodiversity and ecosystem function worldwide. Although their principal direct impact is usually the displacement of native ants, they may also affect other invertebrates. The Argentine ant, Linepithema humile (Dolichoderinae), one of the most widespread invasive ant species, has invaded native habitat where it abuts peri‐urban development in coastal Victoria in south‐eastern Australia. Here we infer impacts of the Argentine ant on native ants and other litter and ground‐dwelling invertebrates by comparing their abundance and taxonomic composition in coastal scrub forest either invaded or uninvaded by the Argentine ant. Species composition of native ants at bait stations and extracted from litter differed significantly between Argentine ant‐invaded and uninvaded sites and this was consistent across years. Argentine ants had a strong effect on epigeic ants, which were either displaced or reduced in abundance. The native ant Rhytidoponera victoriae (Ponerinae), numerically dominant at uninvaded sites, was completely absent from sites invaded by the Argentine ant. However, small hypogeic ants, including Solenopsis sp. (Myrmicinae) and Heteroponera imbellis (Heteroponerinae), were little affected. Linepithema humile had no detectable effect upon the abundance and richness of other litter invertebrates. However, invertebrate group composition differed significantly between invaded and uninvaded sites, owing to the varied response of several influential groups (e.g. Collembola and Acarina). Floristics, habitat structure and measured environmental factors did not differ significantly between sites either invaded or uninvaded by Argentine ants, supporting the contention that differences in native ant abundance and species composition are related to invasion. Changes in the native ant community wrought by Argentine ant invasion have important implications for invertebrate communities in southern Australia and may affect key processes, including seed dispersal.  相似文献   

10.
The ability of species to invade new habitats is often limited by various biotic and physical factors or interactions between the two. Invasive ants, frequently associated with human activities, flourish in disturbed urban and agricultural environments. However, their ability to invade and establish in natural habitats is more variable. This is particularly so for the invasive Argentine ant (Linepithema humile). While biotic resistance and low soil moisture limits their invasion of natural habitats in some instances, the effect of food availability has been poorly explored. We conducted field experiments to determine if resource availability limits the spread and persistence of Argentine ants in remnant natural forest in North Carolina. Replicated transects paired with and without sucrose solution feeding stations were run from invaded urban edges into forest remnants and compared over time using baits and direct counts at feeding stations. Repeated under different timing regimes in 2006 and 2007, access to sucrose increased local Argentine ant abundances (1.6–2.5 fold) and facilitated their progression into the forest up to 73 ± 21% of 50-m transects. Resource removal caused an expected decrease in Argentine ant densities in 2006, in conjunction with their retreat to the urban/forest boundary. However, in 2007, Argentine ant numbers unexpectedly continued to increase in the absence of sugar stations, possibly through access to alternative resources or conditions not available the previous year such as honeydew-excreting Hemiptera. Our results showed that supplementing carbohydrate supply facilitates invasion of natural habitat by Argentine ants. This is particularly evident where Argentine ants continued to thrive following sugar station removal.  相似文献   

11.
Interactions between the invasive Argentine ant, Linepithema humile, and native ant species were studied in a 450-ha biological reserve in northern California. Along the edges of the invasion, the presence of Argentine ants significantly reduced the foraging success of native ant species, and vice versa. Argentine ants were consistently better than native ants at exploiting food sources: Argentine ants found and recruited to bait more consistently and in higher numbers than native ant species, and they foraged for longer periods throughout the day. Native ants and Argentine ants frequently fought when they recruited to the same bait, and native ant species were displaced from bait during 60% of these encounters. In introduction experiments, Argentine ants interfered with the foraging of native ant species, and prevented the establishment of new colonies of native ant species by preying upon winged native ant queens. The Argentine ants' range within the preserve expanded by 12 ha between May 1993 and May 1994, and 13 between September 1993 and September 1994, with a corresponding reduction of the range of native ant species. Although some native ants persist locally at the edges of the invasion of Argentine ants, most eventually disappear from invaded areas. Both interference and exploitation competition appear to be important in the displacement of native ant species from areas invaded by Argentine ants.  相似文献   

12.
Biological invasions can have severe and widespread impacts on ecological communities. A few species of ants have become particularly damaging invaders but quantitative data of their impacts on many taxa is still lacking. We provide experimental evidence using artificial nests baited with quail eggs that the invasive Argentine ant (Linepithema humile) can be a significant avian nest predator – Argentine ants recruited to more nests and in higher abundance than the native ant species they displace. However, at a site invaded by Argentine ants, we monitored over 400 nests of a ground-nesting species, the Dark-eyed Junco (Junco hyemalis), and found that less than 2% of nests failed as a result of Argentine ant predation/infestation. A review of the literature also suggests that Argentine ants may not be a serious threat to bird nests relative to other predators or parasites. However, invasive ants with the capability of overwhelming prey though stinging (specifically the red-imported fire ant, Solenopsis invicta), may have a higher impact on avian nesting success. Received 14 January 2005; revised 28 April 2005; accepted 12 May 2005.  相似文献   

13.
Abstract The Argentine ant (Linepithema humile Mayr) is a worldwide invasive pest species that has been associated with losses of native ant and non‐ant invertebrates in its introduced range. To date, few studies have investigated the effects of Argentine ants on native invertebrates in Australia. This study assessed the effects of Argentine ants on community composition of invertebrates, with particular focus on resident ant communities and functional groups. In this study, the author compared the composition and abundances of invertebrates between invaded and uninvaded locations at four paired sites in Adelaide, South Australia. The results showed that there were significantly fewer non‐Argentine ants at invaded sites than at uninvaded sites. In particular, ants from the two common and widespread genera Iridomyrmex and Camponotus showed decreased abundances at the invaded sites. Multidimensional scaling analyses revealed differences in the composition of ant communities at the invaded and uninvaded sites, with uninvaded sites characterized by a similar native ant species composition, while communities at the invaded sites displayed much greater variability in species composition. These results suggest that the presence of Argentine ants may have a negative effect on particular ant genera and functional groups, with likely disruptions to ecosystem processes.  相似文献   

14.
Argentine ants (Linepithema humile) usually actively displace native ants through a combination of rapid recruitment, high numerical dominance and intense aggressive fights. However, in some cases, native ants can offer a strong resistance. In Corsica, a French Mediterranean island, local resistance by the dominant Tapinoma nigerrimum has been proposed as a factor limiting Argentine ant invasion. With the aim of evaluating the abilities of T. nigerrimum in interference and exploitative competition, this study tested in the laboratory the aggressive interactions between this native dominant ant and the invasive Argentine ant. We used four different assays between L. humile and T. nigerrimum: (1) worker dyadic interactions, (2) symmetrical group interactions, (3) intruder introductions into an established resident colony, and (4) a competition for space and food. This study confirms the ability of Argentine ants to compete with native species, by initiating more fights, using cooperation and simultaneously deploying physical and chemical defenses. However, despite Argentine ant fighting capabilities, T. nigerrimum was more efficient in both interference and exploitative competition. Its superiority was obvious in the space and food competition assays, where T. nigerrimum dominated food in 100% of the replicates after 1 h and invaded Argentine ant nests while the reverse was never observed. The death feigning behavior exhibited by Argentine ant workers also suggests the native ant’s superiority. Our study thus demonstrates that T. nigerrimum can offer strong competition and so may be able to limit the spread of Argentine ants in Corsica. This confirms that interspecific competition from ecologically dominant native species can affect the invasion success of invaders, notably by decreasing the likelihood of incipient colony establishment and survival.  相似文献   

15.
The Argentine ant (Linepithema humile) is an invasive species that disrupts the balance of natural ecosystems by displacing indigenous ant species throughout its introduced range. The mechanisms by which Argentine ants effectively compete against native ant species have been previously addressed in field studies that centered on interference and exploitation competition at baits and mainly examined the colony-level performance of Argentine ants. Detailed behavioral observations explaining the basis for the strong competitive ability of L. humile are comparatively rare. To gain a better understanding of the mechanisms by which Argentine ants displace native ants we examined the aggressive interactions between the Argentine ants and the odorous house ant, Tapinoma sessile in four different aggression assays: (1) worker dyad interactions, (2) symmetrical group interactions, (3) intruder introductions into an established resident colony, and (4) a resource competition assay which focused on competition for food and nesting space. Our results demonstrate a clear disparity between worker-level and colony-level fighting ability of Argentine ants and provide behavioral evidence to explain the superior interference ability of Argentine ants in group assays. Argentine ants experienced mixed success in fighting against odorous house ants in dyad interactions, but gradually gained a numerical advantage in symmetrical group interactions by active cooperation among nestmates. Results of the resource competition assay indicate that Argentine ants recruit rapidly, numerically dominate food and nesting sites, and aggressively displace T. sessile from baits. Taken together, the results of these assays allow us to pinpoint the behavioral mechanisms responsible for the remarkable competitive ability of Argentine ants.  相似文献   

16.
Multiple biotic and abiotic factors influence species coexistence and co‐occurrence patterns. In a competitive environment, for example, temperature and diet variation may modify both foraging behaviour and aggression, thereby changing competitive interactions and species co‐occurrence patterns. In New Zealand, two endemic ant species (Prolasius advenus and Monomorium antarcticum) often form allopatric distributions; though also periodically do co‐occur in the same habitat. Here, we performed a long‐term laboratory experiment in an attempt to understand how diet, colony size and environmental conditions may influence these co‐occurrence patterns. The consequences of temperature and diet variation differed between P. advenus and M. antarcticum. Colonies of P. advenus exhibited increased aggression and foraging activities at higher temperatures. In addition, P. advenus colonies augmented their foraging activities when deprived of a carbohydrate‐rich food source. Conversely, small M. antarcticum colonies exhibited higher aggression than when in large colonies, and increased their foraging activities at lower temperatures. The modulation of aggression and foraging behaviour may influence the likelihood of small P. advenus and M. antarcticum colonies persisting in the long term. Our results are compatible with the hypothesis that the environment is likely to be a strong filter for the negative co‐occurrence patterns we observe between P. advenus and M. antarcticum in New Zealand. Furthermore, this study provides a mechanistic explanation for potential impacts of climate warming on community structure. Environmental modification of aggression and foraging behaviour could potentially alter competitive interactions and influence community assembly.  相似文献   

17.
Food availability during the breeding season plays a critical role in reproductive success of insectivorous birds. Given that the invasive Argentine ant (Linepithema humile) is known to alter arthropod communities, we predicted that its invasion may affect the availability of food resources for coexisting foliage-gleaning birds. With this aim we studied, for 3 years, foliage arthropods occurring on cork oaks (Quercus suber) and tree heaths (Erica arborea) in invaded and non-invaded secondary forests of the northeastern Iberian Peninsula. Our results show that Argentine ants interact with arboreal foliage arthropods in a different manner than the native ants they displace do. The invasive ant impacted the arthropod community by reducing order diversity and ant species richness and by causing extirpation of most native ant species. Arthropod availability for foliage gleaners’ nestlings diminished in invaded cork oaks, mainly responding to the abundance and biomass depletion of caterpillars. Results suggest that the reproduction of canopy-foraging foliage-gleaning species that mostly rely on caterpillars to feed their young could be compromised by the Argentine ant invasion. Thus, the Argentine ant could be promoting bottom-up effects in the trophic web through its effects on the availability of arthropod preys for insectivorous birds.  相似文献   

18.
David A. Holway 《Oecologia》1998,115(1-2):206-212
Predicting the success of biological invasions is a major goal of invasion biology. Determining the causes of invasions, however, can be difficult, owing to the complexity and spatio-temporal heterogeneity of the invasion process. The purpose of this study was to assess factors influencing rate of invasion for the Argentine ant (Linepithema humile), a widespread invasive species. The rate of invasion for 20 independent Argentine ant populations was measured over 4 years in riparian woodlands in the lower Sacramento River Valley of northern California. A priori predictors of rate of invasion included stream flow (a measure of abiotic suitability), disturbance, and native ant richness. In addition, baits were used to estimate the abundance of Argentine ants and native ants at the 20 sites. A multiple regression model accounted for nearly half of the variation in mean rate of invasion (R 2 = 0.46), but stream flow was the only significant factor in this analysis. Argentine ants spread, on average, 16 m year−1 at sites with permanent stream flow and retreated, on average, −6 m year−1 at sites with intermittent stream flow. Rate of invasion was independent of both disturbance and native ant richness. Argentine ants recruited to more baits in higher numbers in invaded areas than did native ants in uninvaded areas. In addition, rate of invasion was positively correlated with the proportion of baits recruited to by native ants in uninvaded areas. Together, these findings suggest that abiotic suitability is of paramount importance in determining rate of invasion for the Argentine ant. Received: 16 September 1997 / Accepted: 8 February 1998  相似文献   

19.
Habitat complexity facilitates coexistence in a tropical ant community   总被引:1,自引:0,他引:1  
Sarty M  Abbott KL  Lester PJ 《Oecologia》2006,149(3):465-473
The role of habitat complexity in the coexistence of ant species is poorly understood. Here, we examine the influence of habitat complexity on coexistence patterns in ant communities of the remote Pacific atoll of Tokelau. The invasive yellow crazy ant, Anoplolepis gracilipes (Smith), exists in high densities on Tokelau, but still coexists with up to seven other epigeic ant species. The size-grain hypothesis (SGH) proposes that as the size of terrestrial walking organisms decreases, the perceived complexity of the environment increases and predicts that: (1) leg length increases allometrically with body size in ants, and (2) coexistence between ant species is facilitated by differential habitat use according to body size. Analysis of morphological variables revealed variation inconsistent with the morphological prediction of the SGH, as leg length increased allometrically with head length only. We also experimentally tested the ability of epigeic ants in the field to discover and dominate food resources in treatments of differing rugosity. A. gracilipes was consistently the first to discover food baits in low rugosity treatments, while smaller ant species were consistently the first to discover food baits in high rugosity treatments. In addition, A. gracilipes dominated food baits in planar treatments, while smaller ant species dominated baits in rugose treatments. We found that the normally predictable outcomes of exploitative competition between A. gracilipes and other ant species were reversed in the high rugosity treatments. Our results support the hypothesis that differential habitat use according to body size provides a mechanism for coexistence with the yellow crazy ant in Tokelau. The SGH may provide a mechanism for coexistence in other ant communities but also in communities of other terrestrial, walking insects that inhabit a complex landscape.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

20.
The Argentine ant (Linepithema humile) is an invasive species that disrupts the balance of natural ecosystems by displacing indigenous ant species throughout its introduced range. Previous studies that examined the mechanisms by which Argentine ants attain ecological dominance showed that superior interference and exploitation competition are key to the successful displacement of native ant species. The objective of this research was to test the hypothesis that effective interference competition by Argentine ants may also be detrimental to the survival of Argentine ant colonies where Argentine ants and native ants compete at toxic baits used to slow the spread of Argentine ants. To study this hypothesis, we examined the competitive interactions between Argentine ants and native odorous house ants, Tapinoma sessile, in the presence and absence of toxic baits. Results showed that Argentine ants aggressively outcompete T. sessile from toxic baits through efficient interference competition and monopolize bait resources. This has severe negative consequences for the survival of Argentine ants as colonies succumb to the toxic effects of the bait. In turn, T. sessile avoid areas occupied by Argentine ants, give up baits, and consequently suffer minimal mortality. Our results provide experimental evidence that highly efficient interference competition may have negative consequences for Argentine ants in areas where toxic baits are used and may provide a basis for designing innovative management programs for Argentine ants. Such programs would have the double benefit of selectively eliminating the invasive species while simultaneously protecting native ants from the toxic effects of baits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号