首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Abstract.  1. Floral nectar of the native Hawaiian 'ōhi'a tree, Metrosideros polymorpha , is an important food source for several native honeycreepers and yellow-faced bees, Hylaeus spp., but is also attractive to invasive ants.
2. I undertook this study to compare floral visitation patterns of two widespread invasive ants, the Argentine ant, Linepithema humile , and the big-headed ant, Pheidole megacephala , and to determine their effects on nectar volume and floral hymenopteran visitors.
3. In the first year of the study, Argentine ants visited inflorescences more frequently than big-headed ants at mid-day and in the afternoon, but did not occur in higher densities than big-headed ants at any time of day. In the following year, Argentine ants visited inflorescences both more frequently and in higher densities than big-headed ants. Argentine ant density had a stronger association with nectar concentration than big-headed ant density.
4. Nectar volume did not differ between ant-excluded and ant-visited inflorescences for either ant species. However, ant density was negatively associated with nectar volume for both species.
5.  Hylaeus spp. never visited inflorescences with big-headed ants, while non-native honeybees visited inflorescences with and without ants of either species in equal frequency.
6. Most studies of the effects of invasive ants on native arthropods have focused on interactions on the ground. Flowers should not be overlooked as microhabitats from which native arthropods may be displaced by invasive ants.  相似文献   

2.
Ants are often considered antagonists when they visit flowers because they typically steal nectar without providing pollination services. Previous research on ant–flower interactions on two species of South African Proteaceae in the Cape Floral Kingdom revealed that the invasive Argentine ant (Linepithema humile), but not native ants, displace other floral arthropod visitors. To determine how common Argentine ant use of inflorescences is, how Argentine and native ant visits differ in the numbers they recruit to inflorescences, and what factors may affect Argentine and native ant foraging in inflorescences, I surveyed 723 inflorescences in 10 species in the genera Protea and Leucospermum across 16 sites and compared ant presence and abundance in inflorescences with abundance at nearby cat food and jam baits. Argentine ants were the most commonly encountered ant of the 22 observed. Argentine ants, as well as six species of native ants were present in all inflorescences for which they were present at nearby baits. Mean Argentine ant abundance per inflorescence was 4.4 ± 0.84 (SE) ants and similar to that of Anoplolepis custodiens and Crematogaster peringueyi, but higher than observed for the other most commonly encountered native ants, Camponotus niveosetosus and Lepisiota capensis. Both Argentine ants and A. custodiens were more likely to be found foraging in spring and under humid conditions, and in inflorescences closer to the ground, with lower sucrose concentrations, and with a greater proportion of open flowers. Argentine ants were more likely to be found in Protea inflorescences, whereas A. custodiens and L. capensis more often visited Leucospermum inflorescences. Considering its displacement of floral arthropods and widespread use of Proteaceae inflorescences, the Argentine ant could be posing a serious threat to plant and pollinator conservation in this biodiversity hotspot.  相似文献   

3.
1. Sympatric flower visitor species often partition nectar and pollen and thus affect each other's foraging pattern. Consequently, their pollination service may also be influenced by the presence of other flower visiting species. Ants are solely interested in nectar and frequent flower visitors of some plant species but usually provide no pollination service. Obligate flower visitors such as bees depend on both nectar and pollen and are often more effective pollinators. 2. In Hawaii, we studied the complex interactions between flowers of the endemic tree Metrosideros polymorpha (Myrtaceae) and both, endemic and introduced flower‐visiting insects. The former main‐pollinators of M. polymorpha were birds, which, however, became rare. We evaluated the pollinator effectiveness of endemic and invasive bees and whether it is affected by the type of resource collected and the presence of ants on flowers. 3. Ants were dominant nectar‐consumers that mostly depleted the nectar of visited inflorescences. Accordingly, the visitation frequency, duration, and consequently the pollinator effectiveness of nectar‐foraging honeybees (Apis mellifera) strongly decreased on ant‐visited flowers, whereas pollen‐collecting bees remained largely unaffected by ants. Overall, endemic bees (Hylaeus spp.) were ineffective pollinators. 4. The average net effect of ants on pollination of M. polymorpha was neutral, corresponding to a similar fruit set of ant‐visited and ant‐free inflorescences. 5. Our results suggest that invasive social hymenopterans that often have negative impacts on the Hawaiian flora and fauna may occasionally provide neutral (ants) or even beneficial net effects (honeybees), especially in the absence of native birds.  相似文献   

4.
Plants bearing extrafloral nectaries (EFNs) vary the secretion of nectar between day and night, which creates turnover in the composition of interacting ant species. Daily variation in the composition of ant species foraging on vegetation is commonly observed, but its mechanisms are poorly understood. We evaluated the daily variation in nectar availability and interspecific aggressiveness between ants as possible regulatory mechanisms of the turnover in ant–plant interactions. We hypothesized that (i) plants would interact with more ant species during periods of higher secretion of nectar and that (ii) aggressive ant species would compete for nectar, creating a daily turnover of species collecting nectar. We tested this hypothesis by measuring the production of nectar during the day and night and by experimentally removing EFNs of Bionia coriacea (=Camptosema coriaceum) (Nees & Mart.) Benth. (Fabaceae: Faboideae) plants in a Brazilian savanna (Cerrado). We then compared the abundance and composition of ant species between those treatments and during the day. Our results indicate that more ant workers forage on plants during the day, when nectar was sugary, while more ant species forage at night, when aggressiveness between ant species was lower. We also detected a day/night turnover in ant species composition. Ant species foraging for nectar during the day were not the same at night, and this turnover did not occur on plants without EFNs. Both dominant ant species, diurnal Camponotus crassus (Hymenoptera: Formicidae) and nocturnal Camponotus rufipes (Hymenoptera: Formicidae), were the most aggressive species, attacking other ants in their specific periods of forage while also being very aggressive toward each other. However, this aggressiveness did not occur in the absence of nectar, which allowed non‐aggressive nocturnal ant species to forage only during the daytime, disrupting the turnover. We conclude that extrafloral‐nectar presence and interspecific aggressiveness between ants, along with other environmental factors, are important mechanisms creating turnovers in ants foraging on plants.  相似文献   

5.
L. Lach 《Insectes Sociaux》2005,52(3):257-262
Summary. Plant and insect exudates are known to play a key role in structuring tropical ant communities, but less is known about the utilization of these resources in communities dominated by invasive ants. Invasive ants are thought to require large amounts of carbohydrates such as honeydew or nectar to maintain their high abundances. Invasive ants that consume floral nectar may compete with legitimate floral visitors through interference or exploitation competition. I compared the nectar-thieving behavior of three widespread invasive ant species: long-legged ants (Anoplolepis gracilipes), Argentine ants (Linepithema humile), and big-headed ants (Pheidole megacephala) in inflorescences of the native Hawaiian ‘ōhi’a tree, an important food source for native fauna. A. gracilipes was least likely to leave inflorescences unvisited and visited inflorescences in higher numbers than both L. humile and P. megacephala. A. gracilipes and L. humile visited more flowers in an inflorescence and were less likely to retreat from a flower with a competitor than P. megacephala. A. gracilipes was able to take 5.5 and 11.3 times the amount of nectar than L. humile and P. megacephala, respectively. Thus, A. gracilipes may be effective at both interference and exploitation competition against other nectarivores, L. humile may be effective at interference competition, and P. megacephala may be relatively weak at both types of competition against other nectarivores. Ascertaining the competitive abilities of invasive ants against legitimate floral visitors will be especially important in agricultural and other systems that are nectar or pollinator limited.Received 6 December 2004; revised 13 January 2005; accepted 14 January 2005.  相似文献   

6.
David A. Holway 《Oecologia》1998,116(1-2):252-258
Although the Argentine ant (Linepithema humile) is a widespread invasive species that displaces native ants throughout its introduced range, the effects of these invasions on arthropods other than ants remain poorly known. This study documents the consequences of Argentine ant invasions on ants and other ground-dwelling arthropods in northern California riparian woodlands. Baits and unbaited pitfall traps were used to sample different components of the arthropod communities at five pairs of uninvaded and invaded sites. Sites occupied by Argentine ants supported almost no native epigeic ants except for the winter-active Prenolepis imparis. Sites with Argentine ants averaged four to ten times more ant workers than did sites with native ants, but ant worker biomass did not differ between uninvaded and invaded sites. Argentine ants recruited to baits in invaded areas, on average, in less than half the time of native ants in uninvaded areas. Despite the loss of epigeic native ants, higher Argentine ant worker abundance, and faster recruitment by Argentine ants at invaded sites, pitfall trap samples from uninvaded and invaded areas contained similar abundances and diversities of non-ant arthropods. These findings suggest that Argentine ants and the native ants they displace interact with the ground-dwelling arthropods of these habitats in a similar manner. Received: 24 February 1997 / Accepted: 9 November 1997  相似文献   

7.
Ascertaining the costs and benefits of mutualistic interactions is important for predicting their stability and effect on community dynamics. Despite widespread designation of the interaction between ants and extrafloral nectaries (EFNs) as a mutualism and over 100 years of studies on ant benefits to plants, the benefits to ants have never been experimentally quantified. The success of invasive ants is thought to be linked to the availability of carbohydrate-rich resources, though reports of invasive ant visits to EFNs are mixed. In two laboratory experiments, we compared worker survival of one native (Iridomyrmex chasei) and two invasive ant species (Linepithema humile and Pheidole megacephala) exposed to herbivorized or non-herbivorized EFN-bearing plants (Acacia saligna) or positive and negative controls. We found that non-herbivorized plants did not produce any measurable extrafloral nectar, and ants with access to non-herbivorized plants had the same survival as ants with access to an artificial plant and water (unfed ants). Ants given herbivorized plants had 7–11 times greater worker survival relative to unfed ants, but there were no differences in survival between native and invasive ants exposed to herbivorized plants. Our results reveal that ants cannot induce A. saligna extrafloral nectar production, but workers of both native and invasive ant species can benefit from extrafloral nectar as much as they benefit from sucrose.  相似文献   

8.
When aphids parasitize plants with extrafloral nectaries (EFNs) and aphid colony size is small, ants frequently use EFNs but hardly tend aphids. However, as the aphid colony size increases, ants stop using EFNs and strengthen their associations with aphids. Although the shift in ant behavior is important for determining the dynamics of the ant–plant–aphid interaction, it is not known why this shift occurs. Here, we test two hypotheses to explain the mechanism responsible for this behavioral shift: (1) Extrafloral nectar secretion changes in response to aphid herbivory, or (2) plants do not change extrafloral nectar secretion, but the total reward to ants from aphids will exceed that from EFNs above a certain aphid colony size. To judge which mechanism is plausible, we investigated secretion patterns of extrafloral nectar produced by plants with and without aphids, compared the amount of sugar supplied by EFNs and aphids, and examined whether extrafloral nectar or honeydew was more attractive to ants. Our results show that there was no inducible extrafloral secretion in response to aphid herbivory, but the sugar concentration in extrafloral nectar was higher than in honeydew, and more ant workers were attracted to an artificial extrafloral nectar solution than to an artificial aphid honeydew solution. These results indicate that extrafloral nectar is a more attractive reward than aphid honeydew per unit volume. However, even an aphid colony containing only two individuals can supply a greater reward to ants than EFNs. This suggests that the ant behavioral shift may be explained by the second hypothesis.  相似文献   

9.
Sambucus javanica is a perennial herb with extrafloral nectaries (EFNs) on its inflorescences. To explore the ecological functions of EFNs, a factorial combination experiment of ant (access or exclusion) and EFNs (with or without) at the plant level was created in two populations. The role of EFNs in the attraction of ants and flying pollinators, the defensive role of ants against foliar herbivores, the effects of ants on pollinator visitation and the effects of ant–pollinator interactions on fruit production in one or both populations were assessed. Ants were common on the ant-access plants with EFNs, but absent from the ant-access plants without EFNs. Foliar herbivory was independent of ant and EFN treatments and their interactions. The visitation frequency of flying pollinators (honeybees and syrphid flies) and fruit set were significantly higher for plants with EFNs than plants without EFNs, but were not affected by ant treatments or their interactions with EFN treatments. These results suggest that EFNs in S. javanica attracted both ants and flying pollinators, but ants did not present a defensive role against herbivores, did not deter flying pollinators from visiting inflorescences and had no effects on fruit production. In addition, ants were not significant pollen vectors.  相似文献   

10.
Ecological dominance in ants is often fuelled by carbohydrate intake. Most studies have focused on the importance of invasive ant mutualistic associations with trophobionts whereas few studies have investigated the importance of floral nectar on invasion success. In this study, utilisation of temporarily available floral nectar by the invasive Argentine ant, Linepithema humile, was compared to that of the dominant native ant, Anoplolepis custodiens, within the Cape Floristic Region (CFR), a biodiversity hotspot. The effect of these two focal ant species on species composition and abundance of ground foraging ants as well as floral arthropod visitors in inflorescences of Proteacea species was assessed. Foraging activity, and trophic ecology inferred from the abundance of natural stable isotopes of Carbon (δ13C) and Nitrogen (δ15N), and the ratio of Carbon to Nitrogen (C:N) were compared between the two ant species during three flowering periods. Linepithema humile significantly reduced the abundance and species diversity of both above-ground and floral arthropod species abundance and composition. Linepithema humile increased its foraging activity with increasing nectar availability, switching its diet to a more herbivorous one. Anoplolepis custodiens did not respond as effectively to increasing floral nectar or negatively impact floral arthropod visitors. This study showed that the availability of floral nectar and ability of L. humile to more effectively utilise this temporarily available resource than native ants, can contribute significantly to the further spread and persistence of L. humile in natural environments in the CFR.  相似文献   

11.
Galen C 《Oecologia》2005,144(1):80-87
According to the distraction hypothesis, extrafloral nectaries (EFN) evolved under selection to entice ants away from floral nectaries, reducing ant-mediated damage to flowers and/or interference with pollinators. Predator-satiation, through production of nectar in either surplus flowers or EFN, provides an alternative mechanism for reducing the impact of ants as flower visitors. I tested these two hypotheses by experimentally adding EFN to flowering plants of the alpine wildflower, Polemonium viscosum, and by surveying the relationship between ant visitation and nectary number in nature. Plants of P. viscosum lack EFN and experience flower damage by ants of Formica neorufibarbus gelida. Ant behavior was compared on plants with five flowers and three experimental EFN and on controls with equal floral display, but no EFN. Addition of EFN increased flower visitation by ants. The effect of EFN on flower visitation did not depend on proximity of EFN to flowers or attractiveness of EFN to ants. Findings suggest that ants perceived patch quality on a whole plant basis, rather than responding to EFN and flowers as distinct nectar patches. Ant visitation did not keep pace with nectary number in nature. The relationship between ant visitation and nectary number per plant was weak and shallow as predicted under satiation. Ant foraging choices on experimental inflorescences showed that ants bypass flowers avoided by earlier ants, enhancing probability of escape via satiation. Results do not support the idea that EFN evolve to reduce flower visitation by ants, but show instead that nectar in surplus flowers can satiate ants and reduce their negative impacts on flower function and integrity.  相似文献   

12.
Summary Qualea grandiflora is a typical tree of Brazilian cerrados (savanna-like vegetation) that bears paired extrafloral nectaries (EFNs) along its stems. Results show that possession of EFNs increases ant density on Q. grandiflora shrubs over that of neighbouring non-nectariferous plants. Frequency of ant occupancy and mean number of ants per plant were much higher on Qualea than on plants lacking EFNs. These differences resulted in many more live termitebaits being attacked by foraging ants on Qualea than on neighbours without EFNs. Termites were attacked in equal numbers and with equal speeds on different-aged leaves of Qualea. The greatest potential for herbivore deterrence was presented by Camponotus ants (C. crassus, C. rufipes and C. aff. blandus), which together attacked significantly more termites than nine other ant species grouped. EFNs are regarded as important promoters of ant activity on cerado plants.  相似文献   

13.
Vetches (Vicia spp.) were studied in the San Francisco Bay Area of California in the spring of 1978. The stipular nectaries of the vetches are visited by the Argentine ant, Iridomyrmex humilis Mayr. The nectaries were removed to exclude ants in controlled experiments to determine if these ants protect the vetches from herbivores or seed predators. Plants with excised nectaries suffered substantially greater damage to their foliage than control plants, indicating that ants protect the foliage. There was no indication that ants protect the vetches from seed predators, but fruit set was substantially lower in plants with excised nectaries. Analysis of sugar and amino acid composition of extrafloral nectar served as a basis for feeding tests with Argentine ants by using artificial nectar solutions. Ants preferred sucrose and glucose solutions over fructose. They showed no preference for any one sugar mixture over another, nor did they exhibit differential recruitment to artificial nectar solutions containing only sugars or sugars and amino acids.  相似文献   

14.
Abstract The association between visiting ants and the extrafloral nectaries (EFN)‐bearing shrub Hibiscus pernambucensis Arruda (Malvaceae) was investigated in two different coastal habitats – a permanently dry sandy forest and a regularly inundated mangrove forest. In both habitats the frequency of plants with ants and the mean number of ants per plant were much higher on H. pernambucensis than on non‐nectariferous neighbouring plants. In the sandy forest the proportion of live termite baits attacked by ants on H. pernambucensis was much higher than on plants lacking EFNs. In the mangrove, however, ants attacked equal numbers of termites on either plant class. Ant attendance to tuna/honey baits revealed that overall ant activity in the sandy forest is higher than in the mangrove area. The vertical distribution (ground vs. foliage) of ant activity also differed between habitats. While in the mangrove foraging ants were more frequent at baits placed on foliage, in the sandy forest ant attendance was higher at ground baits. Plants housing ant colonies were more common in the mangrove than in the sandy forest. Frequent flooding in the mangrove may have resulted in increased numbers of ant nests on vegetation and scattered ant activity across plant foliage, irrespective of possession of EFNs. Thus plants with EFNs in the mangrove may not experience increased ant aggression towards potential herbivores relative to plants lacking EFNs. The study suggests that the vertical distribution of ant activity, as related to different nest site distribution (ground vs. foliage) through a spatial scale, can mediate ant foraging patterns on plant foliage and probably affect the ants’ potential for herbivore deterrence on an EFN‐bearing plant species.  相似文献   

15.
Mounting evidence indicates that trade-offs between plant defense and reproduction arise not only from resource allocation but also from interactions among mutualists. Indirect costs of plant defense by ants, for example, can outweigh benefits if ants deter pollinators. Plants can dissuade ants from occupying flowers, but such arrangements may break down when novel ant partners infiltrate mutualisms. Here, we examine how floral visitation by ants affects pollination services when the invasive Argentine ant (Linepithema humile) replaces a native ant species in a food-for-protection mutualism with the coast barrel cactus (Ferocactus viridescens), which, like certain other barrel cacti, produces extrafloral nectar. We compared the effects of floral visitation by the Argentine ant with those of the most prevalent native ant species (Crematogaster californica). Compared to C. californica, the Argentine ant was present in higher numbers in flowers. Cactus bees (Diadasia spp.), the key pollinators in this system, spent less time in flowers when cacti were occupied by the Argentine ant compared to when cacti were occupied by C. californica. Presumably as a consequence of decreased duration of floral visits by Diadasia, cacti occupied by L. humile set fewer seeds per fruit and produced fewer seeds overall compared to cacti occupied by C. californica. These data illustrate the importance of mutualist identity in cases where plants balance multiple mutualisms. Moreover, as habitats become increasingly infiltrated by introduced species, the loss of native mutualists and their replacement by non-native species may alter the shape of trade-offs between plant defense and reproduction.  相似文献   

16.
Nicklen EF  Wagner D 《Oecologia》2006,148(1):81-87
Many plant species attract ants onto their foliage with food rewards or nesting space. However, ants can interfere with plant reproduction when they visit flowers. This study tests whether Acacia constricta separates visiting ant species temporally or spatially from newly opened inflorescences and pollinators. The diurnal activity patterns of ants and A. constricta pollinators peaked at different times of day, and the activity of pollinators followed the daily dehiscence of A. constricta inflorescences. In addition to being largely temporally separated, ants rarely visited open inflorescences. A floral ant repellent contributes to the spatial separation of ants and inflorescences. In a field experiment, ants of four species were given equal access to inflorescences in different developmental stages. On average, the frequency with which ants made initial, antennal contact with the floral stages did not differ, but ants significantly avoided secondary contact with newly opened inflorescences relative to buds and old inflorescences, and old inflorescences relative to buds. Ants also avoided contact with pollen alone, indicating that pollen is at least one source of the repellent. The results suggest A. constricta has effectively resolved the potential conflict between visiting ants and plant reproduction.  相似文献   

17.
Thousands of plant species throughout tropical and temperate zones secrete extrafloral nectar to attract ants, whose presence provides an indirect defense against herbivores. Extrafloral nectaries are located close to flowers and may modify competition between ants and pollinators. Here, we used Lima bean (Phaseolus lunatus L.) to study the plants interaction between ants and flower visitors and its consequences for plant fitness. To test these objectives, we carried out two field experiments in which we manipulated the presence of ants and nectar production via induction with jasmonic acid (JA). We then measured floral and extrafloral nectar production, the number of patrolling ants and flower visitors as well as specific plant fitness traits. Lima bean plants under JA induction produced more nectar in both extrafloral nectaries and flowers, attracted more ants and produced more flowers and seeds than non‐induced plants. Despite an increase in floral nectar in JA plants, application of this hormone had no significant effects on flower visitor attraction. Finally, ant presence did not result in a decrease in the number of visits, but our results suggest that ants could negatively affect pollination efficiency. In particular, JA‐induced plants without ants produced a greater number of seeds compared with the JA‐treated plants with ants.  相似文献   

18.
  • Analyses of resource presentation, floral morphology and pollinator behaviour are essential for understanding specialised plant‐pollinator systems. We investigated whether foraging by individual bee pollinators fits the floral morphology and functioning of Blumenbachia insignis, whose flowers are characterised by a nectar scale‐staminode complex and pollen release by thigmonastic stamen movements.
  • We described pollen and nectar presentation, analysed the breeding system and the foraging strategy of bee pollinators. We determined the nectar production pattern and documented variations in the longevity of floral phases and stigmatic pollen loads of pollinator‐visited and unvisited flowers.
  • Bicolletes indigoticus (Colletidae) was the sole pollinator with females revisiting flowers in staminate and pistillate phases at short intervals, guaranteeing cross‐pollen flow. Nectar stored in the nectar scale‐staminode complex had a high sugar concentration and was produced continuously in minute amounts (~0.09 μl·h?1). Pushing the scales outward, bees took up nectar, triggering stamen movements and accelerating pollen presentation. Experimental simulation of this nectar uptake increased the number of moved stamens per hour by a factor of four. Flowers visited by pollinators received six‐fold more pollen on the stigma than unvisited flowers, had shortened staminate and pistillate phases and increased fruit and seed set.
  • Flower handling and foraging by Bicolletes indigoticus were consonant with the complex flower morphology and functioning of Blumenbachia insignis. Continuous nectar production in minute quantities but at high sugar concentration influences the pollen foraging of the bees. Partitioning of resources lead to absolute flower fidelity and stereotyped foraging behaviour by the sole effective oligolectic bee pollinator.
  相似文献   

19.
1. Ant–plant mutualisms have been the focus of considerable empirical research, but few studies have investigated how introduced ants affect these interactions. Using 2 years of survey data, this study examines how the introduced Argentine ant [Linepithema humile (Mayr)] differs from native ants with respect to its ability to protect the extrafloral nectary‐bearing coast barrel cactus (Ferocactus viridescens) in Southern California. 2. Eighteen native ant species visited cacti in uninvaded areas, but cacti in invaded areas were primarily visited by the Argentine ant. The main herbivore of the coast barrel cactus present at the study sites is a leaf‐footed bug (Narnia wilsoni). 3. Herbivore presence (the fraction of surveys in which leaf‐footed bugs were present on individual cacti) was negatively related to ant presence (the fraction of surveys in which ants were present on individual cacti). Compared with cacti in uninvaded areas, those in invaded areas were less likely to have herbivores and when they did had them less often. 4. Seed mass was negatively related to herbivore presence, and this relationship did not differ for cacti in invaded areas versus those in uninvaded areas. 5. Although the Argentine ant might provide superior protection from herbivores, invasion‐induced reductions in ant mutualist diversity could potentially compromise plant reproduction. The cumulative number of ant species on individual cacti over time was lower in invaded areas and was associated with a shortened seasonal duration of ant protection and reduced seed mass. These results support the hypothesis that multiple partners may enhance mutualism benefits.  相似文献   

20.
Aim Invasive ants can have substantial and detrimental effects on co‐occurring community members, especially other ants. However, the ecological factors that promote both their population growth and their negative influences remain elusive. Opportunistic associations between invasive ants and extrafloral nectary (EFN)‐bearing plants are common and may fuel population expansion and subsequent impacts of invasive ants on native communities. We examined three predictions of this hypothesis, compared ant assemblages between invaded and uninvaded sites and assessed the extent of this species in Samoa. Location The Samoan Archipelago (six islands and 35 sites). Methods We surveyed abundances of the invasive ant Anoplolepis gracilipes, other ant species and EFN‐bearing plants. Results Anoplolepis gracilipes was significantly more widely distributed in 2006 than in 1962, suggesting that the invasion of A. gracilipes in Samoa has progressed. Furthermore, (non‐A. gracilipes) ant assemblages differed significantly between invaded and uninvaded sites. Anoplolepis gracilipes workers were found more frequently at nectaries than other plant parts, suggesting that nectar resources were important to this species. There was a strong, positive relationship between the dominance of EFN‐bearing plants in the community and A. gracilipes abundance on plants, a relationship that co‐occurring ants did not display. High abundances of A. gracilipes at sites dominated by EFN‐bearing plants were associated with low species richness of native plant‐visiting ant species. Anoplolepis gracilipes did not display any significant relationships with the diversity of other non‐native ants. Main conclusions Together, these data suggest that EFN‐bearing plants may promote negative impacts of A. gracilipes on co‐occurring ants across broad spatial scales. This study underscores the potential importance of positive interactions in the dynamics of species invasions. Furthermore, they suggest that conservation managers may benefit from explicit considerations of potential positive interactions in predicting the identities of problematic invaders or the outcomes of species invasions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号