首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although dopamine D1 and D2 receptors belong to distinct subfamilies of dopamine receptors, several lines of evidence indicate that they are functionally linked. However, a mechanism for this linkage has not been elucidated. In this study, we demonstrate that agonist stimulation of co-expressed D1 and D2 receptors resulted in an increase of intracellular calcium levels via a signaling pathway not activated by either receptor alone or when only one of the co-expressed receptors was activated by a selective agonist. Calcium signaling by D1-D2 receptor co-activation was abolished following treatment with a phospholipase C inhibitor but not with pertussis toxin or inhibitors of protein kinase A or protein kinase C, indicating coupling to the G(q) pathway. We also show, by co-immunoprecipitation from rat brain and from cells co-expressing the receptors, that D1 and D2 receptors are part of the same heteromeric protein complex and, by immunohistochemistry, that these receptors are co-expressed and co-localized within neurons of human and rat brain. This demonstration that D1 and D2 receptors have a novel cellular function when co-activated in the same cell represents a significant step toward elucidating the mechanism of the functional link observed between these two receptors in brain.  相似文献   

2.
The effects of D1 and D2 dopaminergic agonists and antagonists on the electrically-evoked release of gamma-[3H] aminobutyric acid (3H-GABA) have been studied on rat prefrontal cortex slices. The major part of the electrically-evoked release of 3H-GABA appeared to be Ca++ dependent since a 62% decrease was observed when calcium was removed from the superfusion medium. Two specific D2 dopaminergic agonists, RU 24926 (10(-7) M) and lisuride (10(-6) M), respectively induced a 32% and a 50% inhibition of the electrically-evoked release of 3H-GABA. The selective D2 dopaminergic antagonists sulpiride (10(-5) M) totally abolished the effect of RU 24926 and partially abolished the effect of lisuride. The selective D1 agonist SKF 38393 (10(-5) M) did not affect 3H-GABA release. These results suggest that in the rat prefrontal cortex in vitro, the dopaminergic modulation of 3H-GABA release is mediated through D2 but not D1 receptors. The activation of D2 dopaminergic receptors induces an inhibition of the electrically-evoked release of 3H-GABA.  相似文献   

3.
4.
The synthesis of the two enantiomers of 3-(3,4-dimethylphenyl)-1-propylpiperidine 1, a potent and selective D4 dopaminergic ligand, was performed. The 3-(3,4-dimethylphenyl)- 1-propylpiperidine with the R configuration showed an affinity for the D4 receptors 6-fold higher than the corresponding enantiomer with the S configuration. Furthermore, the (R)-1 enantiomer proved to be highly selective for D4 receptors with respect to D2-D3 receptors, with a Ki ratio higher than 25,000, while the (S)-1 enantiomer was about 100-fold less selective than the (R)-1 one.  相似文献   

5.
Halogenation of the aporphine alkaloid boldine at the 3-position leads to increased affinity for rat brain D(1)-like dopaminergic receptors with some selectivity over D(2)-like receptors. A series of 3-halogenated and 3,8-dihalogenated (halogen=Cl, Br or I) derivatives of predicentrine (9-O-methylboldine) and glaucine (2,9-di-O-methylboldine) were prepared and assayed for binding at D(1) and D(2) sites. Halogenation of predicentrine led to strong increases in affinity for D(1)-like receptors, while the affinities for D(2)-like receptors were either practically unchanged or reduced three- to fourfold. Halogenated glaucine derivatives did not show any clear trend towards enhanced selectivity, and the affinities were poor and similar to or worse than the values previously recorded for glaucine itself. Together with earlier work on boldine derivatives, these results suggest that the 2-hydroxy group on the aporphine skeleton may determine a binding mode favoring D(1)-like over D(2)-like receptors, with enhanced affinity when the C-3 position is halogenated.  相似文献   

6.
The analysis of the electrophysiological features of sleep-wakefulness cycle in Wistar rats for 9h after a 6h sleep deprivation was carried out. The delay of sleep rebound (since 2.5-3 h after deprivation) was found in the form of moderate increasing of slow-wave sleep and fast-wave sleep phases. According to these sleep-wakefulness cycle changes, a quantitative immunohistochemical study of tyrosine hydroxylase: a key enzyme of dopamine synthesis--and D1 and D2 receptors in nigro-striatal projections has been performed. After sleep, an elevation of D1 receptors immunoreactivity in caudate nucleus and reduction of tyrosine hydroxylase immunoreactivity in compact part of substancia nigra was found. After postdeprivation sleep, a decrease of D1 receptors immunoreactivity and increase of D2 receptors immunoreactivity in caudate nucleus together some increase of tyrosine hydroxilase immunoreactivity in substancia nigra compacta has been observed. These data can testify about active role of dopaminergic nigrostriatal system which provide at the same time with another neurotransmitters of the central nervous system the telencephalo-diencephalic interaction in sleep-wakefulness-sleep cycle.  相似文献   

7.
The influence of two selective antagonists of the dopaminergic receptors, raclopride (D2) and SCH 23 390 (D1) on behavior of "impulsive" and "self-controlled" cats was similar directed. A selective blockade of the dopaminergic D1/D2 receptors by use of raclopride and SCH 23 390 changed a behavioural choice strategy of two different by validity and delay reinforcements in impulsive cats, but did not change it substantially in "self-controlled" animals. Increase of doses of raclopride and SCH 23 390 led to decrease of a part of the short-latency and increase of a part of the long-latency reactions (pedal pressings) in a total number of all effective responses. This occurred only in "impulsive" animals, that indicates probably the decrease of impulsive properties of their behaviour. Both compounds did not affect the choice strategy (a low quality immediate vs. a high quality delayed reinforcements) in "self-control" animals, but elicited more errors and inhibitory responses in their behavior. The data obtained are not consistent with the "dopamine" hypothesis, which predicts increase of impulsivity under influence of dopaminergic antagonists. The reasons that might lead to the data obtained are discussed.  相似文献   

8.
The biochemical properties of central nervous system (CNS) dopamine (DA) D1 and D2 receptors were examined using the specific antagonists [3H]SCH23390 and [3H]raclopride, respectively. There is a different participation of sulfhydryl (-SH) and disulfide (-SS-) groups in the binding site and/or coupling to second messenger systems of D1 and D2 receptors. The ionic studies with [3H]SCH23390 showed slight agonist and antagonist affinity shifts for the D1 receptor. On the other hand, the D2 receptor is very sensitive to cations; even if lithium and sodium influence specific [3H]raclopride binding in a similar manner, there appear to be quantitative differences between these two ions that cannot be explained by surface charge mechanisms. The distribution of D1 and D2 receptors was heterogenous in both species, with the greatest densities in the neostriatum, where the highest concentrations of DA and metabolites were measured. Regions with low endogenous DA content (cerebral cortex and hippocampus) had lower densities of DA receptors. Furthermore, these binding sites were differentially localized within the various regions, and there were substantially more D1 than D2 receptors. The functional significance and heterogeneities in the distribution of D1 and D2 receptors can be related to dopaminergic innervation and turnover.  相似文献   

9.
A mechanism underlying the effects of neuromodulators on long-term changes in the efficacy of excitatory and inhibitory inputs to dopaminergic and inhibitory cells of the substantia nigra and ventral tegmental area is suggested. According to this mechanism, activation of Gi/0 protein-coupled dopamine D2 autoreceptors and opioid kappa (mu) receptors on dopaminergic (inhibitory) cells promotes the LTD of excitatory inputs to these cells and decrease in their activity. Activation of Gq/11 protein-coupled alpha1 adrenoreceptors, muscarinic M1, neurokinin NK3 (alpha1, M3, NK1, serotonin 5-HT2) receptors on dopaminergic (inhibitory) cells as well as activation of Gs protein-coupled D1 receptors on inhibitory cells promotes the LTP of excitatory inputs to these cells and increase in their activity. Augmenting (lowering) GABA release can be provided by activation of presynaptic D1 and M3 receptors (mu, 5-HT1, and adenosine A1) receptors. Increase (decrease) in GABA concentration due to modulation of inhibitory cell activity and/or GABA release will promote the induction of LTD (LTP) of excitatory inputs to target dopamine cells. The model agree with known experimental data describing the involvement of neuromodulators in modification of dopamine cell activity and dopamine release. The suggested model can be useful in understanding the operation of neuronal networks, which include the basal ganglia.  相似文献   

10.
The dopamine transporter (DAT) regulates the temporal and spatial actions of dopamine by reuptaking this neurotransmitter into the presynaptic neurons. We recently generated transgenic mice overexpressing DAT (DAT-tg) that have a 3-fold increase in DAT protein levels which results in a 40% reduction of the extracellular DA concentration in the striatum. The aim of this study was to examine the effect of this reduction in dopaminergic tone on postsynaptic responses mediated by dopamine receptors. We report here that DAT-tg mice have increased levels of striatal D1 (30%) and D2 (approximately 60%) dopamine receptors with D1 receptor signaling components not significantly altered, as evidenced by unaffected basal or stimulated levels of phospho-GluR1 (Ser845) and phospho-ERK2. However, the novel D2 mediated Akt signaling is markedly altered in DAT-tg animals. In particular, there is a 300% increase in the basal levels of phospho-Akt in the striatum of DAT-tg, reflecting the reduced extracellular dopamine tone in these animals. This increase in basal pAkt levels can be pharmacologically recapitulated by partial dopamine depletion in WT mice treated with the selective tyrosine hydroxylase inhibitor alpha-methyl-para-tyrosine (alpha-MPT). Behaviorally, DAT-tg animals demonstrate an augmented synergistic interaction between up-regulated D1 and D2 receptors, which results in increased climbing behavior in transgenic mice after stimulation with either apomorphine or a co-administration of selective D1 and D2 receptor agonists. In sum, our study reveals that hypodopaminegia caused by up-regulation of DAT results in significant alterations at postsynaptic receptor function with most notable dysregulation at the level of D2 receptor signaling.  相似文献   

11.
Ja-Hyun Baik 《BMB reports》2013,46(11):519-526
Dopamine (DA) regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DA signaling in mesolimbic neurotransmission are widely believed to modify reward-related behaviors and are therefore closely associated with drug addiction. Recent evidence now suggests that as with drug addiction, obesity with compulsive eating behaviors involves reward circuitry of the brain, particularly the circuitry involving dopaminergic neural substrates. Increasing amounts of data from human imaging studies, together with genetic analysis, have demonstrated that obese people and drug addicts tend to show altered expression of DA D2 receptors in specific brain areas, and that similar brain areas are activated by food-related and drug-related cues. This review focuses on the functions of the DA system, with specific focus on the physiological interpretation and the role of DA D2 receptor signaling in food addiction. [BMB Reports 2013; 46(11): 519-526]  相似文献   

12.
D(1) dopamine receptors are primary mediators of dopaminergic signaling in the CNS. These receptors internalize rapidly following agonist-induced activation, but the functional significance of this process is unknown. We investigated D(1) receptor endocytosis and signaling in HEK293 cells and cultured striatal neurons using real-time fluorescence imaging and cAMP biosensor technology. Agonist-induced activation of D(1) receptors promoted endocytosis of receptors with a time course overlapping that of acute cAMP accumulation. Inhibiting receptor endocytosis blunted acute D(1) receptor-mediated signaling in both dissociated cells and striatal slice preparations. Although endocytic inhibition markedly attenuated acute cAMP accumulation, inhibiting the subsequent recycling of receptors had no effect. Further, D(1) receptors localized in close proximity to endomembrane-associated trimeric G protein and adenylyl cyclase immediately after endocytosis. Together, these results suggest a previously unanticipated role of endocytosis, and the early endocytic pathway, in supporting rapid dopaminergic neurotransmission.  相似文献   

13.
Dopamine has a central role in the regulation of a variety of brain functions, ranging from locomotion to motivated behaviors, to learning and memory. Absence or alteration of the dopaminergic control profoundly affects human physiology leading to neurological and neuropsychiatric disorders, such as Parkinson's disease and schizophrenia. Dopamine acts through the interaction with membrane receptors of the G-protein coupled receptor family. We have approached the study of D2 receptor (D2R) mediated signaling. Interestingly, two D2R isoforms are present in all vertebrates including humans, D2L and D2S, generated by alternative splicing of the same gene. Genetically engineered mice lacking both D2 isoforms show several deficits, among those, motor impairments and aberrant responses to drugs of abuse. Mice lacking only D2L show altered postsynaptic functions while preserve the control of dopamine release, which is mainly regulated by D2S. This functional difference indicates that regulation of splicing constitutes a key step in the control of D2-mediated functions.  相似文献   

14.
Effects of D2 dopamine receptor selective agonists: quinpirole (0.1, 0.3 and 1 mg/kg, i. p.), pergolide (0.3 mg/kg, i. p.), lisuride (0.1 mg/kg, i. p.) and antagonist raclopride (1.2 mg/kg, i. p.) on the metabolism and synthesis of DA and serotonin in the rat brain striatum and nucleus accumbens after GBL treatment were studied. GBL as well as dopamine D2 receptor selective drugs were shown not only to change neurochemical parameters of dopaminergic brain systems, but also to modulate serotonin metabolism without affecting its biosynthesis.  相似文献   

15.
The review summarizes current literature data on the structure of heteromeric complexes of dopamine receptors and their possible role in physiological and pathological processes in the brain. It includes analysis of studies on dopamine D1–D2 receptor complexes, their localization in the brain and the functional role. Functionally, these receptor complexes employ a principally different pathway of signal transduction as compared to the parent homomeric receptors. Investigation of dopamine receptor heteromers extends our understanding of the mechanisms of ligand-receptor interaction and opens new opportunities for the development of pharmacological agents for the treatment of psychiatric disorders associated with impaired dopaminergic neurotransmission, particularly, drug dependence.  相似文献   

16.
Olesen KM  Auger AP 《PloS one》2008,3(5):e2177
Steroid receptor activation in the developing brain influences a variety of cellular processes that endure into adulthood, altering both behavior and physiology. Recent data suggests that dopamine can regulate expression of progestin receptors within restricted regions of the developing rat brain by activating estrogen receptors in a ligand-independent manner. It is unclear whether changes in neuronal activity induced by dopaminergic activation of estrogen receptors are also region specific. To investigate this question, we examined where the dopamine D1-like receptor agonist, SKF 38393, altered Fos expression via estrogen receptor activation. We report that dopamine D1-like receptor agonist treatment increased Fos protein expression within many regions of the developing female rat brain. More importantly, prior treatment with an estrogen receptor antagonist partially reduced D1-like receptor agonist-induced Fos expression only within the bed nucleus of the stria terminalis and the central amygdala. These data suggest that dopaminergic activation of estrogen receptors alters neuronal activity within restricted regions of the developing rat brain. This implies that ligand-independent activation of estrogen receptors by dopamine might organize a unique set of behaviors during brain development in contrast to the more wide spread ligand activation of estrogen receptors by estrogen.  相似文献   

17.
In spite of intensive research, the problem of treating antidepressant-resistant depressive patients has not yet been solved. Our previous studies demonstrated that joint administration of a tricyclic antidepressant drug, imipramine (IMI) with the uncompetitive antagonist of NMDA receptors, amantadine (AMA), produced stronger "antidepressant" effect in the forced swimming test (Porsolt's test) than the treatment with either drug alone given. Since it has been suggested that dopamine receptors, among others, may play a role in anti-immobility effect of IMI, in the present study we examined the effect of AMA (10 mg/kg) and IMI (5 and 10 mg/kg) given separately or jointly, as a single dose or repeatedly (twice daily for 14 days) on the dopamine D2 and D3 receptors in the rat brain, using receptor autoradiography. Following repeated administration of AMA alone or given in combination with IMI (5 mg/kg), the binding of [3H]quinpirole (dopamine D2/D3 receptors agonist) was increased, and similar changes were observed at the level of mRNA encoding dopamine D2 receptors. We used [3H]7-OH-DPAT to selectively label the dopamine D3 receptors. This experiment has shown that AMA given repeatedly did not induce statistically significant changes in the D3 receptor binding, while IMI at both used doses, increased the [3H]7-OH-DPAT binding, and this effect was still observed after repeated joint administration of AMA with both doses of IMI. However, using both radioligands, we did not observe any synergistic or even additive effects in the binding studies after joint administration of AMA and IMI. Nevertheless, we can conclude that repeated administration of AMA, given together with IMI, induces the up-regulation of dopamine D2 and D3 receptors in the rat brain, and this effect may explain their synergistic action observed in the behavioral studies involving dopaminergic transmission.  相似文献   

18.
SCH 23390, an apparently selective antagonist of central D1 dopamine receptors, produced profound catalepsy at low doses (0.1 mg/kg, s.c.). Pretreatment with the selective D2 receptor agonists LY 141865, RU 24213 or LY 171555, the active (-) enantiomer of LY 141865, elicited a dose-dependent inhibition of the cataleptic response. Pergolide and apomorphine were also effective. This effect was not due to altered disposition or penetration of SCH 23390 into the brain since pretreatment with a dose of LY 171555 which completely blocked catalepsy had no effect on the ID50 of SCH 23390 to inhibit 3H-cis-piflutixol binding to D1 receptors measured ex vivo. Alternative mechanisms are considered to explain the results, which offer new insights into striatal dopaminergic regulation of motor activity.  相似文献   

19.
The analysis of the immune response changes in Wistar rats has shown that bilateral electrolytic lesions of the nucleus accumbens characterized by a high density of D1 an D2 dopamine (DA) receptors resulted in a decrease of the immune response to SRBC. Administration of selective agonists of D1 and D2 DA receptors to sham-operated animal: 20 mg/kg of SKF 38393 or 1.0 mg/kg of quinpirol, respectively, produced significant enhancement of plaque- and rosette-formation. However, the immune response level in the damaged rats did not increase following quinpirol administration, but was maintained at control values, rather. At the same time, activation of D1 DA receptors in rats with destructed nucleus accumbens did not affect the immune response level as compared to that of sham-operated animals receiving SKF 38393. The data obtained give evidence of involvement of D2 DA receptors of the nucleus accumbens in immunomodulation, although D2 DA receptors of other brain structures may also contribute to this process. D1 DA receptors of this localization seem not to play any important role in the immune response control.  相似文献   

20.
We have previously shown, through the use of selective D1 and D2 dopamine receptor interactive drugs, that repetitive jaw movements in rats can be produced by activation of the D1 system or blockade of the D2 system. In the present study we have shown that genetic or developmental factors resulting in a lesser number of D2--relative to D1--receptors is associated with repetitive jaw movements. We have found in two strains of rats with different striatal D2 to D1 ratios, the strain with fewer D2 sites had more jaw movements. We also found that experimental reduction of D2 receptors via prenatal intervention resulted in an increase in spontaneous jaw movements, as did aging, which is accompanied by a decrease in the number of D2 receptors. The findings of these studies carried out in rats, parallel, in a number of ways, findings in human oral dyskinesia associated with either aging or neuroleptic treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号