首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asymmetrical introgression is an expected genetic consequence of hybridization when parental taxa differ in abundance; however, evidence for such effects in small populations is scarce. To test this prediction, we estimated the magnitude and direction of hybridization between red mulberry (Morus rubra L.), an endangered species in Canada, and the introduced and more abundant white mulberry (Morus alba L.) using nuclear (randomly amplified polymorphic DNA) and cytoplasmic (chloroplast DNA sequence) markers. Parentage of 184 trees (n = 42 using cpDNA) from four sympatric populations was estimated using a hybrid index and related to six morphological characters and population frequencies of the parental classes. Overall, the frequency of nuclear hybrids was 53.7% (n = 99) and ranged from 43% to 67% among populations. The parental and hybrid taxa differed with respect to all of the morphological traits. Sixty-seven percent of all hybrids contained more nuclear markers from M. alba than M. rubra (hybrid index x = 0.46); among populations, the degree of M. alba bias was correlated with the frequency of M. alba. In addition, the majority of hybrids (68%) contained the chloroplast genome of white mulberry. These results suggest that introgression is bidirectional but asymmetrical and is related, in part, to the relative frequency of parental taxa.  相似文献   

2.
Morphology suggests that the Californian annualMicroseris douglasii is a monophyletic sister group to the other three diploid annuals ofMicroseris. Phylogenetic analysis of 44 inbred strains ofM. douglasii derived from 23 populations with 72 RAPD markers in the nuclear DNA strongly supports this phylogeny. However, 13 chloroplast RFLPs divideM. douglasii into four distinct groups. Two of these each share one or more cpRFLPs withM. bigelovii andM. pygmaea. Several hypotheses can explain the incongruence between nuclear and chloroplast phylogeny: (1) random sorting out of chloroplasts during phylogeny from a polymorphic pool, (2) cytoplasmic introgression from the related annualM. bigelovii intoM. douglasii after hybridization followed by elimination of theM. bigelovii nuclear genome. We suggest cytoplasmic introgression as the most likely origin. Possible remnants of nuclear introgression have been found in two populations ofM. douglasii that are polymorphic for chloroplast types. In these populationsM. bigelovii type chloroplast DNA seems to be accompanied by nuclear genes for flower color and leaf shape.  相似文献   

3.
Interspecific hybridization is one of the major factors leading to phylogenetic incongruence among loci, but the knowledge is still limited about the potential of each locus to introgress between species. By directly sequencing three DNA regions: chloroplast DNAs (matK gene and trnL-F noncoding region), the nuclear ribosomal external transcribed spacer (ETS) region, and internal transcribed spacer (ITS) regions, we construct three phylogenetic trees of Asian species of Mitella (Saxifragaceae), a genus of perennials in which natural hybrids are commonly observed. Within this genus, there is a significant topological conflict between chloroplast and nuclear phylogenies and also between the ETS and the ITS, which can be attributed to frequent hybridization within the lineage. Chloroplast DNAs show the most extensive introgression pattern, ITS regions show a moderate pattern, and the ETS region shows no evidence of introgression. Nonuniform concerted evolution best explains the difference in the introgression patterns between the ETS region and ITS regions, as the sequence heterogeneity of the ITS region within an individual genome is estimated to be twice that of an ETS in this lineage. Significant gene conversion patterns between two hybridizing taxa were observed in contiguous arrays of cloned ETS-ITS sequences, further confirming that only ITS regions have introgressed bidirectionally. The relatively slow concerted evolution in the ITS regions probably allows the coexistence of multiple alleles within a genome, whereas the strong concerted evolution in the ETS region rapidly eliminates heterogeneous alleles derived from other species, resulting in species delimitations highly concordant with those based on morphology. This finding indicates that the use of multiple molecular tools has the potential to reveal detailed organismal evolution processes involving interspecific hybridization, as an individual locus varies greatly in its potential to introgress between species.  相似文献   

4.
The amplified fragment length polymorphism (AFLP) method was used to evaluate genetic diversity and to assess genetic relationships within the section Mentha in order to clarify the taxonomy of several interspecific mint hybrids with molecular markers. To this end, genetic diversity of 62 Mentha accessions from different geographic origins, representing five species and three hybrids, was assessed. Three EcoRI/MseI AFLP primer combinations generated an average of 40 AFLP markers per primer combination, ranging in size from 50 to 500 base pairs (bp). The percentage of markers polymorphic ranged from 50% to 60% across all accessions studied. According to phenetic and cladistic analysis, the 62 mint accessions were grouped into two major clusters. Principal coordinates analysis separated species into well-defined groups, and clear relationships between species and hybrids could be described. Our AFLP analysis supports taxonomic classification established among Mentha species by conventional (morphological, cytological, and chemical) methods. It allows the assessment of phenetic relationships between species and the hybrids M. spicata and M. × piperita, largely cultivated all over the world for their menthol source, and provides new insights into the subdivision of M. spicata, based for the first time on molecular markers.  相似文献   

5.
Twyford AD  Ennos RA 《Heredity》2012,108(3):179-189
Hybridization has a major role in evolution-from the introgression of important phenotypic traits between species, to the creation of new species through hybrid speciation. Molecular studies of hybridization aim to understand the class of hybrids and the frequency of introgression, detect the signature of ancient hybridization, and understand the behaviour of introgressed loci in their new genomic background. This often involves a large investment in the design and application of molecular markers, leading to a compromise between the depth and breadth of genomic data. New techniques designed to assay a large sub-section of the genome, in association with next-generation sequencing (NGS) technologies, will allow genome-wide hybridization and introgression studies in organisms with no prior sequence data. These detailed genotypic data will unite the breadth of sampling of loci characteristic of population genetics with the depth of sequence information associated with molecular phylogenetics. In this review, we assess the theoretical and methodological constraints that limit our understanding of natural hybridization, and promote the use of NGS for detecting hybridization and introgression between non-model organisms. We also make recommendations for the ways in which emerging techniques, such as pooled barcoded amplicon sequencing and restriction site-associated DNA tags, should be used to overcome current limitations, and enhance our understanding of this evolutionary significant process.  相似文献   

6.
Bleeker W 《Molecular ecology》2003,12(7):1831-1841
Introgressive hybridization between the invasive Rorippa austriaca and the native R. sylvestris in Germany has been studied using chloroplast DNA (trnL intron) and amplified fragment length polymorphism. Three hybrid zones between the invasive and native species were located in the Ruhr Valley (Mülheim) and at the River Main near Würzburg (Randersacker, Winterhausen). In each hybrid zone hybridization was indicated by additivity of region-specific amplified fragment length polymorphism markers proving independent hybridization events. The hybrids were either morphologically intermediate (R. x armoracioides) or were close to R. sylvestris. The trnL intron of R. austriaca is characterized by a species-specific deletion. This diagnostic chloroplast marker of R. austriaca was detected in three individuals of R. sylvestris providing evidence for introgression of the invasive chloroplast into the native species. Bidirectional introgression of R. austriaca markers into R. sylvestris and of R. sylvestris markers into R. austriaca was detected in the amplified fragment length polymorphism analysis. Some of the invasive R. austriaca populations showed high within-population variation. A possible association among introgression, within-population variation and invasion success is discussed. The morphologically intermediate hybrid R. x armoracioides is currently spreading in northern Germany. It forms large populations without its parent species R. austriaca and R. sylvestris. It is concluded that hybridization between invasive R. austriaca and native R. sylvestris may lead to the evolution of a new invasive species R. x armoracioides.  相似文献   

7.
Symmetric and asymmetric somatic hybrids were produced via protoplast fusion between common wheat ( TRITICUM AESTIVUM L.) cv. "Jinan 177" and Italian ryegrass ( LOLIUM MULTIFLORUM Lam.). The ryegrass without or with UV irradiation was used as a donor, providing a small amount of chromatin. In these somatic hybrids, most ryegrass chromosomes have been confirmed preferential elimination and the somatic hybrid calli and plants showed wheat-like morphology. Some of the hybrid lines were used for the analysis of distribution and heredity of donor DNA in the hybrid genome and the possibility of establishing a radiation hybrid (RH) panel of the ryegrass in the present experiment. These hybrids, subcultured for two and three years, retained the ryegrass DNA examined by RFLP and GISH analysis, respectively. Distribution of the ryegrass DNA in the wheat genomes of 20 single-cell individuals, randomly selected from hybrid cell lines produced, were analyzed by 21 ryegrass genome specific SSR markers. The average frequencies of molecular marker retention in symmetric hybrid lines (UV 0), as well as asymmetric hybrid lines from UV 30 s and 1 min were 10.88, 15.48 and 33.86, respectively. It was suggested that the UV dose increased the introgression of donor DNA into wheat genome. The ryegrass SSR fragments in most asymmetric hybrid cell lines remained stable over a period of 2 approximately 3 years. This revealed that those asymmetric somatic hybrids are suitable for the introgression of ryegrass DNA into wheat, and for RH panel and RH mapping.  相似文献   

8.
Hybridization between roach Rutilus rutilus , bream Abramis brama and rudd Scardinius erythrophthalmus was investigated using morphological and genetic analysis employing both nuclear (ITS1) and mitochondrial (cytochrome b ) markers. Allele-specific amplification (ASA) reactions for both markers were developed and ITS1 sequence data for all three species are presented. Sequencing detected two ITS1 haplotypes within both roach and bream which most likely evolved in isolation and were subsequently brought together as a result of restocking by anglers. Analysis of cloned hybrid nuclear ribosomal DNA revealed evidence of recombination between parental ITS1 sequences. ASA proved to be an effective method for identifying hybrids and detected multiple ITS1 copies in fishes identified as purebred by morphological analysis. In addition this suggests post-F1 hybridization and introgression may be occurring between roach and bream, and rudd and bream, although some barriers appear to be suppressing backcrosses within the hybrid population. Analysis of the hybrid population demonstrated that hybridization has occurred in both directions.  相似文献   

9.
The phylogeny of baobab trees was analyzed using four data sets: chloroplast DNA restriction sites, sequences of the chloroplast rpl16 intron, sequences of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA, and morphology. We sampled each of the eight species of Adansonia plus three outgroup taxa from tribe Adansonieae. These data were analyzed singly and in combination using parsimony. ITS and morphology provided the greatest resolution and were largely concordant. The two chloroplast data sets showed concordance with one another but showed significant conflict with ITS and morphology. A possible explanation for the conflict is genealogical discordance within the Malagasy Longitubae, perhaps due to introgression events. A maximum-likelihood analysis of branching times shows that the dispersal between Africa and Australia occurred well after the fragmentation of Gondwana and therefore involved overwater dispersal. The phylogeny does not permit unambiguous reconstruction of floral evolution but suggests the plausible hypothesis that hawkmoth pollination was ancestral in Adansonia and that there were two parallel switches to pollination by mammals in the genus.  相似文献   

10.
The identity of plants morphologically intermediate betweenPotamogeton crispus andP. perfoliatus from two recently discovered sites, one in Moravia, Czech Republic and another in Wales, United Kingdom, was investigated with molecular markers. Evidence from restriction fragment length polymorphism analysis of the nuclear internal transcribed spacer region of ribosomal DNA and of thetrnK-trnQ chloroplast DNA intergenic spacer confirmed the morphology-based determination of two putative hybrid samples asP. ×cooperi. The hybrids showed the ITS variants of both parental taxa, consistent with the expected biparental inheritance of nuclear DNA. The chloroplast DNA markers indicateP. crispus as the female parent in both hybridization events. The hybrid origin of another dubious sample was excluded by the molecular data, in accordance with previous detailed morphological examination. This plant represented an extreme, narrow-leaved form ofP. perfoliatus, imitatingP. ×cooperi in some characters. The results of the molecular analyses are discussed in relation to the morphology of the plants. They underline that somePotamogeton hybrids could indeed be identified by careful and detailed morphological examination and also that these identifications were reliable and confirmed by molecular markers. This study exemplifies that long-term taxonomic expertise usually generates very well-founded specific questions suitable for straightforward treatment by appropriate molecular methods. The process and ecological implications of hybrid formation are also discussed  相似文献   

11.
Hybridization and introgression play important roles in plant evolution, and their occurrence on the oceanic islands provides good examples of plant speciation and diversification. Restriction fragment length polymorphisms (RFLPs) and trnL (UAA) 3'exon-trnF (GAA) intergenic spacer (IGS) sequences of chloroplast DNA (cpDNA), and the sequences of internal transcribed spacer (ITS) of nuclear ribosomal DNA were examined to investigate the occurrence of gene transfer in Ilex species on the Bonin Islands and the Ryukyu Islands in Japan. A gene phylogeny for the plastid genome is in agreement with the morphologically based taxonomy, whereas the nuclear genome phylogeny clusters putatively unrelated endemics both on the Bonin and the Ryukyu Islands. Intersectional hybridization and nuclear gene flow were independently observed in insular endemics of Ilex on both sets of islands without evidence of plastid introgression. Gene flow observed in these island systems can be explained by ecological features of insular endemics, i.e., limits of distribution range or sympatric distribution in a small land area.  相似文献   

12.
There is growing evidence that hybridization not only by means of allopolyploidy but also at the homoploidy level was a major driving force of plant diversification. While allopolyploidy is known to be a common mode of speciation in Paeonia (Paeoniaceae), hybrid speciation at the diploid level needs further evaluation. Paeonia anomala was previously considered to be an interspecific hybrid but with an unknown ploidy level. In this study P. anomala is identified as a diploid (2n = 10). With increased sampling of populations and molecular markers, we showed that P. anomala is a homoploid hybrid that originated from a cross between P. veitchii and P. lactiflora. Five populations of P. anomala were sequenced for the following molecular markers: the matK gene and two intergenic spacers, psbA-trnH and rps16-trnQ, of the chloroplast genome; the internal transcribed spacers (ITS) of nuclear ribosomal DNA; and three low-copy nuclear genes, Adh1, Adh2, and Gpat. The populations of P. anomala were grouped together with P. veitchii on the ITS and Gpat phylogenies but with P. lactiflora on the chloroplast phylogeny. Sequence polymorphism was found at the Adh1 and Adh2 loci within individuals of P. anomala. These polymorphic sequences were grouped with P. veitchii and P. lactiflora, respectively. Phenetic analysis indicated that P. anomala is morphologically similar to P. veitchii. Phenotypic evolution resulting from the combination of two diverged genomes might have occurred primarily at the physiological level and allowed P. anomala to adapt to geographic regions different from those of its parents.  相似文献   

13.
Hybrid populations selectively filter gene introgression between species   总被引:12,自引:0,他引:12  
Hybrids have long been recognized as a potential pathway for gene flow between species that can have important consequences for evolution and conservation biology. However, few studies have demonstrated that genes from one species can introgress or invade another species over a broad geographic area. Using 35 genetically mapped restriction fragment length polymorphism (RFLP) markers of two species of cottonwoods (Populus fremontii x P. angustifolia) and their hybrids (n = 550 trees), we showed that the majority of the genome is prohibited from introgressing from one species into the other. However, this barrier was not absolute; Fremont cpDNA and mtDNA were found throughout the geographic range of narrowleaf cottonwood, and 20% of the nuclear markers of Fremont cottonwood introgressed varying distances (some over 100 km) into the recipient species' range. Rates of nuclear introgression were variable, but two nuclear markers introgressed as fast as the haploid, cytoplasmically inherited chloroplast and mitochondrial markers. Our genome-wide analysis provides evidence for positive, negative, and neutral effects of introgression. For example, we predict that DNA fragments that introgress through several generations of backcrossing will be small, because small fragments are less likely to contain deleterious genes. These results argue that recombination will be important, that introgression can be very selective, and that evolutionary forces within the hybrid population to effectively "filter" gene flow between species. A strong filter may make introgression adaptive, prevent genetic assimilation, lead to relaxed isolating mechanisms, and contribute to the stability of hybrid zones. Thus, rather than hybridization being a negative factor as is commonly argued, natural hybridization between native species may provide important genetic variation that impacts both ecological and evolutionary processes. Finally, we propose two hypotheses that contrast the likelihood of contemporary versus ancient introgression in this system.  相似文献   

14.
Recent molecular phylogenetic studies on Elymus have added to our understanding of the origination of Elymus species. However, evolutionary dynamics and speciation of most species in Elymus are unclear. Molecular phylogeny has demonstrated that reticulate evolution has occurred extensively in the genus, as an example, the largest subunit of RNA polymerase II (rpb2) and phosphoenolpyruvate carboxylase (pepC) data revealed two versions of the St genome, St1 and St2contributing to speciation of E. caninus. Phylogenetic analyses of E. pendulinus uncovered additional genome-level complexity. Our data indicated that both chloroplast and nuclear gene introgression have occurred in the evolutionary process of E. pendulinus. Non-donor species genomes have been detected in severalElymus species, such as in allohexaploid E. repens (StStStStHH), a Taeniatherum-like (Ta genome in Triticeae) GBSSI sequence, Bromus- (Bromeae) and Panicum-like (Paniceae) ITS sequences have been detected. The chloroplast DNA data indicated that Pseudoroegneria is the maternal genome donor to Elymus species, but whether different Elymus species originated from different St donors remains an open question. The origin of the Y genome in Elymus is puzzling. It is clear that the Ygenome is distinct from the St genome, but unclear on the relationships of Y to other genomes in Triticeae. Introgressive hybridization may be an important factor complicating the evolutionary history of the species in Elymus. The extent of introgression and its role in creating diversity in Elymus species should be the objective of further investigations.  相似文献   

15.
Natural hybridization can lead to various evolutionary outcomes in plants, including hybrid speciation and interspecific gene transfer. It can also cause taxonomic problems, especially in plant genera containing multiple species. In this study, the hybrid status of Melastoma affine, the most widespread taxon in this genus, and introgression between its putative parental species, M. candidum and M. sanguineum, were assessed on two sites, Hainan and Guangdong, using 13 SSR markers and sequences of a chloroplast intergenic spacer. Bayesian-based STRUCTURE analysis detected two most likely distinct clusters for the three taxa, and 76.0% and 73.9% of the morphologically identified individuals of M. candidum and M. sanguineum were correctly assigned, respectively. 74.5% of the M. affine individuals had a membership coefficient to either parental species between 0.1 and 0.9, suggesting admixture between M. candidum and M. sanguineum. Furthermore, NewHybrids analysis suggested that most individuals of M. affine were F2 hybrids or backcross hybrids to M. candidum, and that there was extensive introgression between M. candidum and M. sanguineum. These SSR data thus provides convincing evidence for hybrid origin of M. affine and extensive introgression between M. candidum and M. sanguineum. Chloroplast DNA results were consistent with this conclusion. Much higher hybrid frequency on the more disturbed Guangdong site suggests that human disturbance might offer suitable habitats for the survival of hybrids, a hypothesis that is in need of further testing.  相似文献   

16.
Wheat-aegilops hybrid plants Triticum aestivum L. (2n = 42) x Aegilops cylindrica Host (2n = 28) were investigated with using microsatellite markers. In two BC1F9 lines some genome modifications connected with losing DNA fragments of initial variety or appearing of Aegilops genome elements were detected. In some investigated hybrids new amplicons lacking in parental plants were found. Substitution of wheat chromosomes for aegilops chromosomes was not revealed. Analysis of microsatellite loci in BC2F5 plants showed stable introgression of aegilops genetic elements into wheat; elimination of some transferred aegilops DNA fragments in the course of backcrossing; decreasing size of introgressive elements after backcrossing. Introgressive lines were classified according to genome changes.  相似文献   

17.
Phylogenetic relationships for Hieracium subgen. Pilosella were inferred from chloroplast (trnT-trnL, matK) and nuclear (ITS) sequence data. Chloroplast markers revealed the existence of two divergent haplotype groups within the subgenus that did not correspond to presumed relationships. Furthermore, chloroplast haplotypes of the genera Hispidella and Andryala nested each within one of these groups. In contrast, ITS data were generally in accord with morphology and other evidence and were therefore assumed to reflect the true phylogeny. They revealed a sister relationship between Pilosella and Hispidella and a joint clade of Hieracium subgenera Hieracium and Chionoracium (Stenotheca) while genus Andryala represented a third major lineage of the final ingroup cluster. Detailed analysis of trnT-trnL character state evolution along the ITS tree suggested two intergeneric hybridization events between ancestral lineages that resulted in cytoplasmic transfer (from Hieracium/Chionoracium to Pilosella, and from the introgressed Pilosella lineage to Andryala). These chloroplast capture events, the first of which involved a now extinct haplotype, are the most likely explanation for the observed incongruencies between plastid and nuclear DNA markers.  相似文献   

18.
BACKGROUND AND AIMS: Vasconcellea x heilbornii is believed to be of natural hybrid origin between V. cundinamarcensis and V. stipulata, and is often difficult to discriminate from V. stipulata on morphological grounds. The aim of this paper is to examine individuals of these three taxa and of individuals from the closely related species V. parviflora and V. weberbaueri, which all inhabit a hybrid zone in southern Ecuador. METHODS: Molecular data from mitochondrial, chloroplast and nuclear DNA from 61 individuals were analysed. KEY RESULTS: Molecular analysis confirmed occasional contemporary hybridization between V. stipulata, V. cundinamarcensis and V. x heilbornii and suggested the possible involvement of V. weberbaueri in the origin of V. x heilbornii. In addition, the molecular data indicated unidirectional introgression of the V. cundinamarcensis nuclear genome into that of V. stipulata. Several of the individuals examined with morphology similar to that of V. stipulata had genetic traces of hybridization with V. cundinamarcensis, which only seems to act as pollen donor in interspecific hybridization events. Molecular analyses also strongly suggested that most of the V. x heilbornii individuals are not F(1) hybrids but instead are progeny of repeated backcrosses with V. stipulata. CONCLUSIONS: The results of the present study point to the need for re-evaluation of natural populations of V. stipulata and V. x heilbornii. In general, this analysis demonstrates the complex patterns of genetic and morphological diversity found in natural plant hybrid zones.  相似文献   

19.
Reticulate evolution is a common and important driving force in angiosperm evolution. In this study, we analyzed the phylogenetic signals of genomic regions with different inheritance patterns to understand the evolutionary process of organisms using species-rich Himalaya–Hengduan taxa of bamboos (Fargesia Franchet and Yushania Keng). We constructed phylogenetic trees using different sampling strategies and reconstruction methods based on genome skimming and double digest restriction-site-associated DNA sequencing data. We assessed the congruence of topologies generated from different datasets and employed several approaches to reveal the causes of phylogenetic incongruence, including the detection of hybridization and introgression using PhyloNetworks and the D-statistic test (ABBA-BABA test). We found that, in the plastome-based phylogeny, Fargesia bamboos can be clustered into three groups and Yushania was nested within one of them, which contradicts the nuclear–double digest restriction-site-associated DNA sequencing-based phylogeny. Moreover, the genetic variation of chloroplast DNA is significantly correlated with geographical distribution. The strong signal of incomplete lineage sorting, hybridization, introgression, and cytoplasmic gene flow found among genera and species suggests that reticulate evolution is the main cause for the phylogenetic incongruence between nuclear and chloroplast datasets. Our results add evidence that genomes with different inheritance patterns can reveal distinct evolutionary histories of species and suggest that reticulate evolution is prevalent in rapidly diversifying groups.  相似文献   

20.
Reproductive isolation is of fundamental importance for maintaining species boundaries in sympatry. In orchids, the wide variety of pollination systems and highly diverse floral traits have traditionally suggested a prominent role for pollinator isolation, and thus for prezygotic isolation, as an effective barrier to gene flow among species. Here, we examined the nature of reproductive isolation between Anacamptis morio and Anacamptis papilionacea, two sister species of Mediterranean food-deceptive orchids, in two natural hybrid zones. Comparative analyses of the two hybrid zones that are located on soils with volcanic origin and have different and well-dated ages consistently revealed that all hybrid individuals were morphologically and genetically intermediate between the parental species, but had strongly reduced fitness. Molecular analyses based on nuclear ITS1 and (amplified fragment length polymorphism) AFLP markers clearly showed that all examined hybrids were F1 hybrids, and that no introgression occurred between parental species. The maternally inherited plastid DNA markers indicated that hybridization between A. morio and A. papilionacea was bidirectional, as confirmed by the molecular analysis of seed families. The genetic architecture of the two hybrid zones suggests that the two parental species easily and frequently hybridize in sympatry as a consequence of partial pollinator overlap but that strong postzygotic barriers reduce hybrid fitness and prevent gene introgression. These results corroborate that chromosomal divergence is instrumental for reproductive isolation between these food-deceptive orchids and suggest that hybridization is of limited importance for their diversification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号