首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Aims: Larvae of the red palm weevil (RPW) Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) feed inside palm stem tissues, making galleries and producing a wet fermenting frass. We characterized the culturable bacteria associated with frass produced by tunnelling larvae inside the Canary island date palms and investigated the role of frass and gut bacteria in plant polymers breakdown. Methods and Results: A culture‐dependent method was used to isolate bacteria from frass and noninfested palm tissues. Bacterial isolates were grouped into operational taxonomic units based on polymorphisms in the ITS‐PCR profiles, and representative isolates were identified by partial sequencing of the 16S rRNA gene. Frass bacteria were dominated by 2,3‐butanediol fermenter Enterobacteriaceae. None of the bacterial isolates was able to degrade cellulose; however, cellulolytic and hemicellulolytic bacteria were isolated from the larval gut enrichment cultures. Conclusions: Frass bacteria are specifically associated with the RPW larvae and might play beneficial roles for RPW, other than nutritional, that deserve further investigations. Breakdown of plant polymers probably occurs inside the larvae digestive system. Significance and Impact of the Study: Frass and gut micro‐organisms of R. ferrugineus should be included in studies of the interactions between RPW, its plant hosts, and its enemies.  相似文献   

2.
3.
This paper describes the synthesis of a series of quinolines graphted with hydrazones, pyrazoles, pyridazine, phthalazine, triazepinone, semicarbazide, and thiomorpholide moieties and four metal complexes. These derivatives were screened against Fusarium oxysporum and the red palm weevil (RPW) Rhynchophorus ferrugineus Oliver (coleopteran: Curculionidae) as palm pathogens. Only chlorinated quinolines were active against these organisms with hydrazones being good fungicides, while those modified with pyrazoles and pyrazines showed moderate insecticidal activity. A unique trihydroxylated hydrazone was active against both organisms, while another hydrazone, the most potent fungicide in this series, exhibited insecticidal activity only upon complexation with Zn2+ ions.  相似文献   

4.
《Journal of Asia》2023,26(1):102037
The red palm weevil (RPW), Rhynchophorus ferrugineus, is an important pest of palms, and difficult to control by conventional methods. Therefore, microbial control is an alternative strategy for controlling RPW. Herein, a total of 15 entomopathogenic fungi (EPFs) were subjected to primary pathogenicity screening against last stage of RPW larvae. The preliminary data showed that four Beauveria bassiana isolates (JEF-484, 158, 462 and 507) and one Isaria fumosorosea isolate (JEF-014) resulted in 100 % mortality within 5–10 days post inoculation (d.p.i.), respectively. According to the time required for RPW mortality, JEF-484, 158, 462 and 014 were further subjected to bioassays using 107 conidia/ml suspensions by spraying method. Based on the results, JEF-484 showed the highest mortality and shortest LT50 on the last stage of RPW larvae, followed by JEF-158. The two isolates also showed good conidial production and high thermal stability compared to the other isolates. Therefore, JEF-484 and JEF-158 were selected for bioassays against RPW egg and the last larval stage with different concentrations of 105, 106 and 107 conidia/ml conidial suspensions by spraying method. For the bioassay at the egg stage, JEF-158 showed a significantly higher ovicidal effect than JEF-484. In the larval bioassay, both EPF isolates showed a dosage-dependent effect on the RPW larvae. JEF-484 caused higher mortality in RPW larvae than JEF-158. In summary, the combination of the 2 promising EPF isolates might provide an opportunity for the practical microbial control of RPW at different life stages in palm tree fields.  相似文献   

5.
The red palm weevil (RPW), Rhynchophorus ferrugineus, is a serious pest of date palms. Its larvae bore deep into the trunk disrupt the vascular tissues and kill the infested trees. Behavioral features of entomopathogenic nematodes (EPNs), reflected by attraction and distribution patterns, are fundamental aspect in determining their parasitic ability and potential management of RPW. We studied the attraction behavior of the EPNs Steinernema carpocapsae and Heterorhabditis bacteriophora to the RPW under simulated natural conditions in tubes to evaluate their infective potential. In all experiments, a certain proportion of infective juveniles (IJs) (16–20%) stayed near the inoculated site and a major proportion (38–48%) was attracted to the host end. Both H. bacteriophora and S. carpocapsae were efficient crawlers, climbing up and descending when locating their insect host. They were efficiently attracted to the various larval sizes and stages of the RPW life cycle. Host localization by ascending movement was more prominent in S. carpocapsae than in H. bacteriophora. In general, H. bacteriophora is classified as a cruiser forager and S. carpocapsae as an ambusher. However, in this study, we discovered a higher percentage of cruiser foragers among S. carpocapsae IJs. They dispersed much faster and their cruising behavior was prominent characteristic in controlling the cryptic RPW concealed in organic habitats.  相似文献   

6.
The red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier), was initially reported in China in the 1990s and is now considered one of the most successful invasive pests of palm plants in the country. A total of 14 microsatellite loci and one mitochondrial cytochrome oxidase subunit Ι (cox I) gene fragment were used to investigate the genetic characteristics and structure of R. ferrugineus in southern China. High levels of genetic differentiation among populations and significant correlations between genetic and geographical distances indicated an important role of geographical distance in the distribution of the RPW in southern China. High gene flow between Fujian and Taiwan province populations illustrated the increased effects of frequent anthropogenic activities on gene flow between them. Genetic similarity (i.e., haplotype similarity) indicated that RPW individuals from Taiwan and Fujian invaded from a different source than those from Hainan. To some extent, the genetic structure of the RPW in southern China correlated well with the geographic origins of this pest. We propose that geographical distance, anthropogenic activities, and the biological attributes of this pest are responsible for the distribution pattern of the RPW in southern China. The phylogenetic analysis suggests that the most likely native sources of the RPW in southern China are India, the Philippines, and Vietnam.  相似文献   

7.
Serine proteases are essential metabolic enzymes in the midgut of many pests, including the red palm weevil (RPW), Rhynchophorus ferrugineus Olivier, which has a significant impact economically, environmentally and socially worldwide especially in the middle east. Some methods have been used to manage this pest such as trapping of RPW with pheromones, chemicals, and X-rays. However, these methods are costly, not effective and negatively impact the human. The main objective of this study is to contribute to the discovery of an eco-friendly pesticide to eradicate this infection by using serine protease inhibitors (SPIs) extracted from different parts of plant resources. In this research, both in vitro and in vivo effects of SPIs activity against RPW were examined. The protease inhibitors (PIs) activity was recorded in the crude extract that was isolated from the date’s kernel (DKE), host and Calotropis latex (CLE), non-host. These PIs were partially purified by ammonium sulfate precipitation. The midgut tissue of RPW was extracted and analyzed for protases activity assay. PIs assays were consistent with the increased in the inhibitory activity against the midgut proteases after treatment with a DKE and CLE. The reduction of gut proteases by DKE solution and CLE was 39%, 18%, respectively. Partially purified DKE showed the most prominent inhibition pattern of protease activity of the gut extract. While, latex exhibited acute toxicity, imparting the least LC50 (5.132 mg/mL) against RPW larvae. Taken together, these findings provide evidence for the hypothesis that SPIs activity may play an important role in enhancing the mortality of RPW and relieving the toxicity of insecticide in palm trees.  相似文献   

8.
上海地区红棕象甲的耐寒性研究   总被引:1,自引:0,他引:1  
红棕象甲Rhynchophorus ferrugineus (Olivier)是我国危害棕榈科植物的重要入侵害虫, 为探明其越冬抗寒性, 利用过冷却点测定仪测定了红棕象甲上海种群不同虫态的过冷却点, 在低温箱内测定了该虫不同虫态的耐寒性, 然后结合田间越冬模拟试验、气象资料和寄主分布情况, 初步确定了红棕象甲在我国的越冬北界。结果表明: 红棕象甲过冷却点随虫态的发育程度的升高而下降, 卵、1龄幼虫、5龄幼虫、9龄幼虫和成虫的平均过冷却点分别为-5.92, -6.42, -7.19, -7.43和-11.84℃, 过冷却点由高到低的顺序依次为: 卵>幼虫>成虫。在6, 24, 48和72 h 4个时间处理下, 各虫态在低温与存活率之间呈显著或极显著的logistic回归, 半致死温度(Ltemp50)均随处理时间的延长而上升, 不同虫态在处理72 h 后, 卵、1龄幼虫、5龄幼虫、9龄幼虫和成虫之间的Ltemp50分别为1.61, -1.67, -2.39, -2.40和-0.40℃, 各虫态耐寒性由弱到强的顺序依次为: 卵<成虫<幼虫。红棕象甲不同发育阶段的过冷却点与其耐寒性并不完全相关, 幼虫和成虫均可能是该虫的越冬虫态。连续两年的田间模拟越冬试验表明, 在上海地区, 红棕象甲的幼虫和成虫的越冬存活率均在60%以上, 说明红棕象甲在上海地区是可以越冬的。根据这些结果, 结合寄主分布情况, 初步将红棕象甲在我国的越冬北界定于北纬35°附近, 即1月份0℃等温线左右。  相似文献   

9.
The red palm weevil (RPW; Rhynchophorus ferrugineus) is a devastating pest of palms, prevalent in the Middle East as well as many other regions of the world. Here, we report a large‐scale de novo complementary DNA (cDNA) sequencing effort that acquired ~5 million reads and assembled them into 26 765 contigs from 12 libraries made from samples of different RPW developmental stages based on the Roche/454 GS FLX platform. We annotated these contigs based on the publically available known insect genes and the Tribolium castaneum genome assembly. We find that over 80% of coding sequences (CDS) from the RPW contigs have high‐identity homologs to known proteins with complete CDS. Gene expression analysis shows that the pupa and larval stages have the highest and lowest expression levels, respectively. In addition, we also identified more than 60 000 single nucleotide polymorphisms and 1 200 simple sequence repeat markers. This study provides the first large‐scale cDNA dataset for RPW, a much‐needed resource for future molecular studies.  相似文献   

10.
Insects are important for humanity; play role in crop pollination, and biocontrol of harmful pests. The red palm weevil, Rhynchophorus ferrugineus, is a major pest of date palms and has become a serious threat. Scientists needs ample numbers of insects for bioassays to explore control options. The alga Spirulina platensis, is enriched by protein, natural vitamins, minerals, and amino acids, stimulate the development of organisms that feed on it. I assessed the value of Spirulina as a nutritional supplement for red palm weevil larvae by adding its various percentages to the artificial diet. Once a week, the larvae were removed from the containers, washed with distilled water, dried, weighed using an electronic scale, returned to a new container, and supplied with Spirulina mixed fresh diet. Larvae fed with lower concentrations showed vigorous growth and significant weight gain. Particularly, larvae fed 0.5%, 1%, and 2% Spirulina powder supplementation to their diet were healthier and gained more weight than larvae reared with >5% concentration. Overall 40% mortality was recorded in larvae fed with 10% concentration. Higher concentrations were lethal, and all larvae died within two weeks when fed 20% Spirulina. The present research findings indicate that Spirulina used in concentrations from 0.5% to below 5% had a beneficial effect on red palm weevil larval growth but a detrimental effect and even mortality was recorded when used ≥5%.  相似文献   

11.
12.
The red palm weevil(RPW; Rhynchophorus ferrugineus) is spreading worldwide and severely harming many palm species. However, most studies on RPW focused on insect biology, and little information is available about the plant response to the attack. In the present experiment, we used metabolomics to study the alteration of the leaf metabolome of Phoenix canariensis at initial(1st stage) or advanced(2nd stage)attack by RPW compared with healthy(unattacked) plants.The leaf metabolome significantly varied among treatments. At the 1st stage of attack, plants showed a reprogramming of carbohydrate and organic acid metabolism; in contrast, peptides and lipid metabolic pathways underwent more changes during the 2nd than 1st stage of attack. Enrichment metabolomics analysis indicated that RPW attack mostly affected a particular group of compounds rather than rearranging plant metabolic pathways. Some compounds selectively affected during the 1st rather than 2nd stage(e.g. phenylalanine; tryptophan; cellobiose;xylose; quinate; xylonite; idonate; and iso-threonate; cellobiotol and arbutine) are upstream events in the phenylpropanoid,terpenoid and alkaloid biosynthesis. These compounds could be designated as potential markers of initial RPW attack. However,further investigation is needed to determine efficient early screening methods of RPW attack based on the concentrations of these molecules.  相似文献   

13.
The palm weevil, Rhynchophorus palmarum (L.), was collected in cocoons from red ring-diseased coconut palms (Cocos nucifera L.) in Trinidad and Tobago. Juveniles of five species of nematodes were extracted from the genitalia and macerated bodies of newly emerged adults of the palm weevil: Rhadinaphelenchus cocophilus (Cobb) Goodey (the red ring nematode), Teratorhabditis sp., Diplogasteritus sp., Mononchoides sp., and Bursaphelenchus sp. Over 90% of newly emerged weevil females and males were infested internally with red ring nematode juveniles, and over 47% of the weevils contained more than 1,000 red ring nematodes each. There was no significant correlation between weevil body length and the number of red ring nematodes carried internally by each weevil. Teratorhabditis sp. and Diplogasteritus sp. were extracted from over 50% of the palm weevils, and Monochoides sp. and Bursaphelenchus sp. were found in a small proportion of the weevils. Field-collected adult weevils were also internally and externally infested with a Rhabditis sp., which was not observed in or on weevils allowed to emerge from field-collected cocoons.  相似文献   

14.
Rhynchophorus ferrugineus is a tropical pest of palms that has recently invaded Japan, where winter temperatures fall below 0°C. Because activities of the weevil at temperatures <13°C are extremely limited, it appears difficult for them to overwinter in Japan. However, the temperature of palm tissues damaged by this weevil has been observed to be higher than air temperature. Here, we looked for the cause of this temperature increase. First, we measured the temperature of damaged palm tissues and showed it to be between 30°C and 40°C, even in winter. Next, we isolated yeasts from the body of weevils and infested palm tissues and obtained 36 yeast strains, mostly Candida tropicalis and C. ethanolica. Then, we analyzed the soluble sugar composition in palm tissues and found that it included glucose, sucrose, and fructose. Because at least C. tropicalis can ferment some of these sugars, the temperature increase may be attributed to fermentation of microbes, including yeasts.  相似文献   

15.
Aim of this study was to investigate relationships between the red palm weevil (RPW) Rhynchophorus ferrugineus (Olivier) and the entomopathogenic nematode Steinernema carpocapsae (EPN); particularly, the work was focused on the immune response of the insect host in naive larvae and after infection with the EPN. Two main immunological processes have been addressed: the activity and modulation of host prophenoloxidase‐phenoloxidase (proPO) system, involved in melanization of not‐self and hemocytes recognition processes responsible for not‐self encapsulation. Moreover, immune depressive and immune evasive strategies of the parasite have been investigated. Our results suggest that RPW possess an efficient immune system, however in the early phase of infection, S. carpocapsae induces a strong inhibition of the host proPO system. In addition, host cell‐mediated mechanisms of encapsulation, are completely avoided by the parasite, the elusive strategies of S. carpocapsae seem to be related to the structure of its body‐surface, since induced alterations of the parasite cuticle resulted in the loss of its mimetic properties. S. carpocapsae before the release of its symbiotic bacteria, depress and elude RPW immune defenses, with the aim to arrange a favorable environment for its bacteria responsible of the septicemic death of the insect target.  相似文献   

16.
The wild tree tobacco (Nicotiana glauca) is an alien species that invaded vast areas of the Southwestern region of Saudi Arabia. While, the Red Palm Weevil (RPW) (Rhynchophorus ferrugineus) is considered to be the most damaging invasive insect species of palm trees all over the kingdom of Saudi Arabia, causing major economic losses to farmers and the economy of the country. Using conventional insecticides to control harmful insects such as RPW has undesirable effects on the environment and human health. Alternatively, using biocontrol agents such as poisonous extracts from N. glauca might be a better approach in pest management and can be considered as an eco-friendly, cost-effective, and safe alternative. Therefore, the current study aimed to evaluate the larvicidal effect of N. glauca aqueous extracts against the red palm weevil larvae. The plant specimens were collected from Al-Baha region in the Southwest of Saudi Arabia. Each single test consisted of 20 larvae, and N. glauca preparations were; 1, 1.5, 2, 2.5, and 3 ml, besides the control test. Results obtained for the effect of botanical extracts; leaf, flower, stem and root against R. ferrugineus larvae for an exposure period of 24 hr. at the concentrations of 2.8, 4.2, 6.0, 7.0 and 8.0 ppm. The concentrations for N. glauca extracts reflected an LC50 of 2.7 ppm for leave, 2.6 ppm for flower, 2.8 ppm for stem and 7.00 ppm for root. While, the same concentrations extracts reflected an LC95of 11 ppm for leaf, 9.6 ppm for flower, 8.9 ppm for stem and 13.00 ppm for root. These results showed that N. glauca extracts have a remarkable potentiality as insecticidal substances that can be used as an ecofriendly integrated approach for the management of R. ferrugineus.  相似文献   

17.
The red palm weevil (RPW), Rhynchophorus ferrugineus, is one of the worst palm pests worldwide. Our study aims to assess its internal and external morphological response to a sudden but transient decrease in the environmental temperature. Wild pre-pupae were subjected for 7 days to either low (5.0 ± 0.5 °C) or ambient temperature (23 ± 1 °C). Such conditions mimic a thermal anomaly happening in the larval stage most exposed to environmental factors. We quantified the changes undergone at: 1) the internal morphology, by X-Ray Computer Tomography (CT); 2) the 3-D integument’ architecture, by Digital Holographic Microscopy (DHM); and 3) the glucose in hemolymph as a potential endogenous cryoprotectant. From X-ray CT we found that both pre-pupae subjected to cold and those remaining at ambient temperature follow a development where their fat body content decreases while a thick and dense cuticle is formed. There was no difference between both groups in the rate of change of fat body/dense tissues. Nevertheless, the cold group presents a slight developmental delay at the level of hemolymph content. Through DHM we again obtained that pre-pupae subjected to cold have not experienced a stop in their development. However, a more obvious developmental delay is now observed in this group at the level of the integumental roughness. Finally, regarding glucose, we found similar levels in control and ambient temperature larvae, while it was clearly increased in 51,7% of those subjected to cold. Our whole results provide morphological and biochemical evidence showing that the larval-pupal transition of the RPW continues almost undisturbed even during the quiescent state induced by a sudden and severe cold event. Nevertheless, a certain developmental delay is observed in both internal and external morphology. Additionally, the increased glucose level only found in the cold group suggests that glucose is part of the RPW cold tolerance strategy.  相似文献   

18.
Recent studies have provided an unprecedented view of the microbial communities colonizing captive mice; yet the host and environmental factors that shape the rodent gut microbiota in their natural habitat remain largely unexplored. Here, we present results from a 2-year 16 S ribosomal RNA gene sequencing-based survey of wild wood mice (Apodemus sylvaticus) in two nearby woodlands. Similar to other mammals, wild mice were colonized by 10 bacterial phyla and dominated by the Firmicutes, Bacteroidetes and Proteobacteria. Within the Firmicutes, the Lactobacillus genus was most abundant. Putative bacterial pathogens were widespread and often abundant members of the wild mouse gut microbiota. Among a suite of extrinsic (environmental) and intrinsic (host-related) factors examined, seasonal changes dominated in driving qualitative and quantitative differences in the gut microbiota. In both years examined, we observed a strong seasonal shift in gut microbial community structure, potentially due to the transition from an insect- to a seed-based diet. This involved decreased levels of Lactobacillus, and increased levels of Alistipes (Bacteroidetes phylum) and Helicobacter. We also detected more subtle but statistically significant associations between the gut microbiota and biogeography, sex, reproductive status and co-colonization with enteric nematodes. These results suggest that environmental factors have a major role in shaping temporal variations in microbial community structure within natural populations.  相似文献   

19.
Originally from tropical Asia, the Red Palm Weevil (RPW Rhynchophorus ferrugineus (Olivier)) is the most dangerous and deadly pest of many palm trees, and there have been reports of its recent detection in France, Greece and Italy. At present, emphasis is on the development of integrated pest management based on biological control rather than on chemical insecticides, however the success of both systems is often insufficient. In this regard, RPW appears to be one pest that is very difficult to control. Thus investigations into the natural defences of this curculionid are advisable. RPW hemocytes, the main immunocompetent cells in the insect, are described for the first time. We identified five hemocyte cell types from the hemolymph of R. ferrugineus: plasmatocytes (∼50%), granulocytes (∼35%), prohemocytes (∼8%), oenocytes (∼4%) and spherulocytes (∼3%). SEM observations were also carried out. Some aspects of RPW interaction with non-self organisms, such as Saccharomyces cerevisiae and the entomopathogen bacterium, Bacillus thuringiensis (Bt), are discussed. Plasmatocytes and granulocytes were involved in nodules and capsule formation as well as in the phagocytosis of yeast. The hemocyte response of RPW larvae to sub-lethal doses of commercial products containing Bt was examined. In vivo assays were carried out and Bt in vegetative form was found in the hemolymph. After a diet containing Bt, the number of total hemocytes, mainly plasmatocytes, in the RPW larva hemolymph declined sharply (∼12%) and then remained at a low level, while the number of other circulating cells was almost unchanged.  相似文献   

20.
Several studies demonstrated that in insects cuticle melanism is interrelated with pathogen resistance, as melanin‐based coloration and innate immunity possess similar physiological pathways. For some insects, higher pathogen resistance was observed in darker individuals than in individuals with lighter cuticular coloration. Here, we investigated the difference in immune response between two color morphs (black and red) and between the life stages (pupa and adult) of the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Here in this study, cuticle thickness, microbial test (antimicrobial activity, phenoloxidase activity, and hemocyte density), and immune‐related gene expression were evaluated at different stages of RPW. Study results revealed that cuticle thickness of black phenotype was thicker than red phenotype at old‐pupa stage, while no significant difference found at adult stage. These results may relate to the development processes of epidermis in different stages of RPW. The results of antimicrobial activity, phenoloxidase (PO) activity, and hemocyte density analyses showed that adults with a red phenotype had stronger pathogen resistance than those with a black phenotype. In addition to antimicrobial activity and PO activity, we tested relative gene expression in the fat body of old pupae. The results of hemolymph antimicrobial analysis showed that old pupae with a red phenotype were significantly different from those with a black phenotype at 12 hr after Staphylococcus aureus injection, suggesting that red phenotype pupae were more sensitive to S. aureus. Examination of gene expression in the fat body also revealed that the red phenotype had a higher immune response than the black phenotype. Our results were inconsistent with the previous conclusion that dark insects had increased immune function, suggesting that the relationship between cuticle pigmentation and immune function in insects was not a direct link. Additional possible factors that are associated with the immune response, such as life‐history, developmental, physiological factors also need to be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号