首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Growth performance, mortality and carotenoid pigmentation were studied in triplicate groups each with 1000 swim-up larvae of rainbow trout ( Oncorhynchus mykiss ), derived from five groups of female broodstock fed diets with 0.07, 12.5, 33.3, 65.1 or 92.9 mg astaxanthin kg−1, respectively. The first feeding fry (initial weight range from 113 to 148 mg) were fed a diet not supplemented with carotenoids in an experiment lasting 45 days. Fry were initially sampled for astaxanthin content and initial weight, and in subsequent 15-day intervals to determine weights, condition factors (CF), specific growth rates (SGR) and thermal growth coefficients (TGC). Total carotenoid concentration of the larvae was highly linearly correlated to that of the eggs ( r 2 = 0.97, P = 0.002). About 59–67% of fry carotenoids consisted of esterified astaxanthin, and on average 39.7% of the egg carotenoids were recovered in the fry. Overall (0–45 days) SGRs and TGCs were significantly higher (P < 0.05) in the offspring of the four groups of females fed supplemented diets (12.5–92.9 mg astaxanthin kg−1) than in offspring of females fed the non-supplemented diet. TGCs (0–45 days) within groups derived from broodstock supplemented with astaxanthin were similar (P > 0.05), but higher than in the group derived from females fed the diet not supplemented with astaxanthin (P < 0.05). Mortality (average 0.76%) was not significantly affected by treatment. The study indicates that dietary supplement of astaxanthin (>12.5 mg kg−1) to maternal broodstock diets improves offspring SGR and TGC with up to 33 and 38%, respectively.  相似文献   

2.
The only carotenoid detected in newly fertilized eggs of wild Atlantic salmon, Salmo salar, from western Scotland was astaxanthin at a concentration [μg carotenoid g?1 wet wt of eggs, mean ±S.D. (number of parental females)] of 6.2±1.2(7) in 1982, 6.4±1.8(20) in 1983, and 7.6 ± 13(6) in 1984. In eggs of farmed Atlantic salmon the only carotenoid detected was canthaxanthin at concentrations which varied significantly between farms depending on the level of synthetic canthaxanthin in the broodstock diet. Thus on two farms using feed with 50 μgg?1, the levels were 11.8 ± 3.4(7) and 12.3 ± 2.9(6), while on two farms using 75μgg?1 the levels were 18.7 ± 5.0(9) and 21.2 ± 2.7(21). The levels in eggs of one-seawinter fish (grilse) did not differ from those of two-seawinter fish reared on the same farm and diet. During development from newly fertilized egg to fry at the end of yolk-sac absorption, the quantity of carotenoid present per individual decreased, presumably as a result of metabolism. Despite large differences in quantity present, the quantity so metabolized was fairly constant at 2–4 μg carotenoid g?1 original egg weight for eggs from two-seawinter farmed and wild salmon, except that in eggs from farmed grilse it was 7 μg g?1. In fry from wild eggs, 99.14% of the remaining carotenoid was present in the integument (skin and fins) as astaxanthin, astaxanthin monoester and astaxanthin diester. In fry from farmed salmon eggs, 47 ± 8% of the carotenoid present was found in the unused yolk oil droplets and in the liver, and 37 ± 6% was found in the integument as canthaxanthin and an unidentified metabolite of canthaxanthin. These findings explain visible colour differences between fry from wild parents and fry from canthaxanthin-fed farmed parents, particularly in the fins, liver and residual oil droplets. The canthaxanthin metabolite was also found, together with canthaxanthin, in the skin of farmed adults fed canthaxanthin. Preliminary tests showed it to be unchanged by saponification but reduced by sodium borohydride. For eggs from the three farms incubated under the same conditions in the same season, percentage mortality both to the eyed stage and between hatching and first feeding varied significantly between farms, but percentage mortality between the eyed stage and hatching did not do so. Results combined from two seasons for eggs from three farms and one wild source showed that egg mortality between fertilization and the eyed stage was not significantly different between wild and farmed salmon, but mortality between the eyed stage and hatching, and between hatching and first feeding, were both significantly higher in farmed salmon than in wild salmon. Such differences could not be explained simply by the large differences in egg carotenoid content, but were almost certainly due to factors such as broodstock nutrition, broodstock management, and stripping and fertilization procedures.  相似文献   

3.
Growth performance, carcass quality, survival and hematological responses of Oncorhynchus mykiss juveniles (initial weight 8.4 ± 0.1 g) fed diets containing thymol‐carvacrol powder at the levels of 0, 1.0, 2.0, 3.0 g kg?1 were tested. Thymol‐carvacrol powder originated from Origanum vulgare, a Mediterranean plant, added to diets. Each diet was fed to triplicate groups of fish for 45 days. Fish fed diets containing thymol‐carvacrol had significantly higher final weight and growth than the control group. Food conversion ratio in fish fed diets containing 2.0 and 3.0 g kg?1 thymol‐carvacrol was statistically better than in other treatments. Survival was not different among all treatments. The number of lymphocytes increased when thymol‐carvacrol was used at higher levels. Furthermore, whole body lipid content was higher in fish fed 1.0 and 2.0 g kg?1 thymol‐carvacrol than the other groups, but body protein in the group fed 3.0 g kg?1 was higher than in other groups. Also, body ash in control and 1.0 g kg?1 was higher than in other groups. Whole body dry matter was not affected by dietary treatments. These results indicated that dietary administration of thymol‐carvacrol can influence some growth, hematological parameters and tissue composition in rainbow trout juveniles.  相似文献   

4.
The objective of this study was to maintain the viability of chilled rainbow trout (Oncorhynchus mykiss) eyed eggs during storage using oxygenated perfluorochemical (PFC). Three trials were conducted using eggs at 161, 180 or 217 degree days (days from fertilization x incubation temperature in degrees C). A separate trial was conducted for 147 degree day eggs that were not at the eyed stage. For each trial, eggs were stored in a moisture-saturated atmosphere at 1 degrees C in PFC, water, and 1:1 combinations of PFC and PBS, PFC and 0.3 M glucose, PFC and mineral oil, or PFC and water. The PFC was oxygenated before each trial and all media were oxygenated at weekly intervals during the storage period. Eggs from each trial were also incubated without storage to provide Day 0 results. After 3 and 5 weeks of storage, eggs from each medium were incubated at 10 degrees C until hatch. Hatching percentage was expressed as a percentage of Day 0 results. The percentage of normal alevins that hatched was also determined. There were interactions (P < 0.01) between stage of development and treatment for hatching percentage after 3 and 5 weeks of storage. After 3 weeks of storage, eggs stored at 161, 180, or 217 degree days without PFC had hatching rates of 0-14.3% but eggs stored in any medium with PFC had hatching percentages from 75.1 to 106.4% of Day 0 values. After 5 weeks of storage, eggs stored at 161 degree days in PFC plus PBS or PFC plus water, and eggs stored at 217 degree days in PFC or PFC plus water, had higher (P < 0.05) hatching percentages than eggs stored in any of the other media. Eggs stored at 161 degree days for 5 weeks in PFC and water had a higher (P < 0.05) percentage of normal alevins hatching than eggs stored in PFC and PBS. Because of their early developmental stage, eggs stored at 147 degree days had low hatching percentages, except eggs stored for 3 weeks in PFC or PFC plus PBS. Chilling eyed eggs of rainbow trout to 1 degrees C and storing them in water with PFC as an oxygen carrier can preserve their viability for 5 weeks.  相似文献   

5.
Two-year-old 1·5-kg rainbow trout were held in cages and conditioned by feeding either on low-fat chopped herring (H trout) or dry pellets (P trout) for 15 weeks. Their satiation amounts were then determined under standard conditions. On a wet weight basis H trout ate 2·5-3·5 times more food than P trout; this was sufficient to compensate for the high water content of herring and thereby maintain the dry matter intake. When P trout were offered herring (PH trout) they consumed more food than when offered dry pellets but not as much as H trout. Stomach capacity restricted the intake and their dry matter intake was reduced by c. 40%. When H trout were offered dry pellets (HP trout) they adjusted their intake immediately close to the level of P trout although their larger stomachs could have accommodated more than twice this volume of dry food. The return of appetite after a satiation meal was almost linear with time. Appetite increased at c. 556 mg g-1 body weight h-1 for H trout and at 142 mg g-1 bw h-1 for P trout. The return of appetite in PH trout was significantly slower (c. 370 mg g-1 bw h-1) than in H trout; the previous dietary history of the PH trout limited their capacity to process larger volumes of wet food in a single meal. Fish offered dry diet (P and HP trout) had similar rates of appetite return despite their previous feeding history suggesting that the property of the dry feed itself might limit meal size. The total gastric emptying time of diets of similar dry matter content (with and without large amounts of water) was similar, but the delay time before gastric emptying starts tended to be longer for dry diets. Dry pellets appear to impose a demand for water that prolongs the gastric delay. This water demand is met partly by drinking since the trout fed on dry pellets drank significantly more (436 ± 189 mg kg-1 h-1) than unfed and herring-fed trout which drank little or not at all (65 ± 113 and 70 ± 66 mg kg-1 h-1 respectively). Dietary water facilitated food processing and increased daily dry matter intake of trout when fed four times a day. When only one satiation meal per day was allowed, dietary water had no effect. It is concluded from this work that, in addition to gastric volume, a short-term limitation on the size of satiation meals in the rainbow trout is the availability of water to moisturize the food and thus to promote gastric digestion and emptying.  相似文献   

6.
The study was conducted to evaluate the effects of different extenders, cryoprotectants and glycerol additions on the post‐thaw fertility and interactions between extenders and cryoprotectants during cryopreservation. Semen was collected by abdominal stripping from 30 adult male rainbow trout (Oncorhynchus mykiss Walbaum, 1792) and diluted with three different extenders (Erdahl–Graham, Lahnsteiner, glucose‐based) containing 15% DMA, 15% DMSO, 15% DMA + 1% glycerol and 15% DMSO + 1% glycerol at a ratio of 1 : 2. Diluted samples were frozen as 0.1 ml pellets directly on dry ice (solid CO2, −79°C). Eggs were pooled from 10 females. Fertilization was applied in plastic dishes and 600 eggs were used in each fertilization trial. Pellets were thawed in their own extenders (30°C) at a ratio of 1 : 10. 0.3% NaCl was used for activating motility. Sperm–egg ratio was approximately 3 × 106 sp per egg. Experimental success was determined as the percentage of eyed‐eggs 25 days after fertilization. The highest eyed‐egg rate (49.3%) was obtained from semen frozen with glucose‐based extender containing 15% DMSO + 1% glycerol. Our results indicate that the glucose‐based extender containing DMSO is a useful combination, but that the addition of glycerol does not have a positive effect on post‐thaw fertility, and that interaction of the extender‐cryoprotectant is also important in the cryopreservation of rainbow trout semen.  相似文献   

7.
Astaxanthin enters circulation in salmonid fishes upon intraperitoneal injection (IP) of small doses. Blood uptake and tissue distribution of geometrical E/Z astaxanthin isomers were determined in tissues and plasma of duplicated groups of rainbow trout (Oncorhynchus mykiss, initial weight 550 g) some of which were administered high doses of astaxanthin by IP in a trial lasting for 8 weeks. Doses of 10 (IP10), 50 (IP50) or 100 mg (IP100) astaxanthin (Lucantin Pink, BASF, Germany), respectively, dispersed in phosphate buffered saline were tested in comparison with diets containing 10 (Control) or 60 (Fed 60) mg astaxanthin kg(-1). Astaxanthin concentrations in all examined tissues and plasma were significantly higher in IP50 and IP100 than in controls and Fed 60 (p<0.05). In IP50, 11 mg astaxanthin kg(-1) muscle was detected after 4 weeks, compared to 4 mg kg(-1) in rainbow trout fed 60 mg kg(-1). Concentrations up to 80 and 100 mg astaxanthin kg(-1) were detected in liver and kidney after IP, respectively, whereas fish only fed astaxanthin contained about 2 mg astaxanthin kg(-1). No increase in muscle astaxanthin concentration was found between 4 and 8 weeks in fish given IP, and the muscle astaxanthin concentration in IP50 and IP100 were similar. Muscle concentration and injected dose were curvilinearly correlated and the proportion of ingested dose retained by the muscle was negatively correlated with the amount of injected astaxanthin. Plasma and muscle concentrations of astaxanthin were highly correlated (p<0.0001). Astaxanthin Z-isomers accumulated selectively in the various tissues after IP, whereas all-E-astaxanthin was preferably absorbed into plasma when administered via the diet. There was a selective uptake of all-E-astaxanthin in the muscle of all fish. Mortality was not affected by treatment, but a dose-dependent reduction in SGR was evident after IP. In conclusion, a more rapid and higher uptake of astaxanthin in plasma, muscle, kidney and liver of rainbow trout takes place after IP compared to when astaxanthin is fed via the diet.  相似文献   

8.
This study aims to determine the production characteristics and performance of rainbow trout hatcheries in Seydikemer, Mu?la, Turkey where over half of the total production of eyed eggs and juveniles take place. For this purpose six hatcheries with different production scales were selected and coded A, B, C, D, E and F (with capacities of 60, 15, 5.6, 4, 0.95 and 0.6 million juveniles per year, respectively). From each hatchery, 20 females were selected and their egg qualities (egg number, diameter and weight, fertilization, eyed egg, hatching, swim‐up fry and survival rates at 120 days after hatching) and juvenile growth rates were monitored until the 120th day after hatching under each farms own conditions. The sperm characteristics of 10 broodstock males from each hatchery were also examined. Although fertilization and eyed egg rates were similar among the farms, hatching, swim‐up fry, and survival rates at the 120th day after hatching differed significantly. The average eyed egg, hatching and survival rates (calculated from selected 20 females) were 72, 55, and 32%, respectively. While sperm characteristics except duration of motility (s), were significantly different among the farms, average sperm concentration (per ml), motility (%) and duration of motility (s) in the region were 11.8 × 109, 55.3, and 56.4, respectively. The best hatchery performance was observed in Farm A because of better records and management applications than in the other farms.  相似文献   

9.
The aim of the study was to compare the physico‐chemical parameters of milt from sea trout (Salmo trutta m. trutta), brook trout (Salvelinus fontinalis) and rainbow trout (Oncorhynchus mykiss). Milt was collected by stripping and spermatozoa concentrations, were determined and compared with sperm motility and spermatocrit values along with seminal plasma indices (pH, osmolality, sodium, potassium, chlorine, calcium, magnesium, glucose and protein concentrations). The highest spermatozoa concentration of 22.3 ± 6.7 × 109 ml?1 was found in the sea trout milt, and was significantly different of those observed in brook trout (11.9 ± 3.3 × 109 ml?1) and rainbow trout (10.7 ± 4.4 × 109 ml?1). The values for pH and K+ did not differ significantly among species. The mean pH was 8.0 in the milt of each species and the K+ concentrations ranged from 24.8 ± 7.2 to 30.5 ± 7.6 mm L?1. Considerable differences were determined for the Ca2+ ions concentrations. The highest value was found in sea trout (1.7 ± 0.3 mm L?1), while in the rainbow trout it was 0.7 ± 0.5 and in the brook trout 0.4 ± 0.1 mm L?1. The most pronounced differences were found in the glucose concentration cause of its unnaturally low concentration in rainbow trout of the mean value of 6.0 ± 15.2 mg L?1. The mean value in sea trout and brook trout was 185.0 ± 172.4 and 231.2 ± 148.4 mg L?1 respectively. For all species, protein mean values were below 1.3 g L?1. The mean osmolality was between 230.6 ± 98.6 and 272.0 ± 26.4 mOsm kg?1 in the species studied. No correlation was found between any components determined in milt and the spermatozoa motility (P > 0.05). The sperm concentration was positively correlated with the protein content in the milt of the three species studied, other less exhibited correlation was found.  相似文献   

10.
Acute injections of different hormones to induce ovulation in mature ocellated puffer, Takifugu ocellatus, collected from natural waters during the spawning season, were carried out to develop a reliable protocol for mass production of seed in this species. All experimental fish were divided into seven groups treated with: a saline injection (control), single or two injections of luteinizing hormone‐releasing hormone analog (LHRH‐a; single injection: 50 μg kg?1, two injections: 10 and 40 μg kg?1), single or two injections of pituitary (single injection: 6 mg kg?1, two injections: 1 and 5 mg kg?1) and single or two injections of human chorionic gonadotropin (hCG; single injection: 2500 IU kg?1, two injections: 500 and 2000 IU kg?1), respectively. The percentage of fish that ovulated in six hormonal treatments reached 100%, either with a single injection or with two injections whereas the fish in control group failed to spawn. There were no significant differences among all hormonal treatments in egg production, fertilization rate, or hatch rate (P > 0.05) except time to ovulation between a single injection group and the two‐injection group (P < 0.05). The fertilized eggs of ocellated puffer were spherical, demersal, and adhesive. They had a mean oocyte diameter of 1.487 ± 0.106 mm (range: 1.404–1.560). The egg membrane was transparent and yolk was buff in color, containing a cluster of small oil globules. Thirty‐four successive stages of embryonic development were identified and characterized. Fertilized eggs incubated at 18–20°C generally commenced hatching at 144 h after fertilization. Newly hatched larvae were about 3.26–3.45 mm in length. The induced ovulation technique using acute injections of hormones is an important step in the development of the culture of the ocellated puffer.  相似文献   

11.
Oocytes from three female rainbow trout Oncorhynchus mykiss were inseminated separately with untreated or cryopreserved semen, which had been produced using either untreated (three males) or cryopreserved (three males) spermatozoa. In half of variants, the cryopreservation did not significantly affect fertilization efficiency. Regardless of whether the sperm donors were produced from cryopreserved or intact semen, insemination of oocytes with their intact sperm resulted in the same percentage of eyed embryos (94.4 and 94.3%, respectively). When eggs were inseminated with cryopreserved semen, the use of sperm from males produced with cryopreserved spermatozoa resulted in a significantly higher percentage of eyed eggs than in case of donors produced with intact sperm (89.6 and 81.7%, respectively). The production of rainbow trout using cryopreserved sperm does not appear to negatively affect reproductive abilities of male progeny and semen from donors, which were produced using cryopreserved sperm, is more suitable for cryopreservation than the semen from donors produced with intactspermatozoa.  相似文献   

12.
The effects of dietary l ‐carnitine on growth performance, whole body composition and feed utilization were studied in beluga, Huso huso. Fish were randomly allocated in 15 tanks (30 fish per tank) and triplicate groups were fed to satiety during 84 days one of five isonitrogenous (41% CP) and isoenergetic (20 MJ kg?1) diets, each differing in l ‐carnitine content [0 (control), 300, 600, 900 and 1200 mg kg?1 diet]. At the end of the trial, fish grew from 19‐ to 23‐fold in weight, from 8.4 g to a maximum of 191 g. Fish fed 300–600 mg l ‐carnitine had the highest specific growth rate (SGR, 3.69 and 3.72% day?1) and protein efficiency ratio (PER, 0.95 and 0.99), and the lowest feed conversion ratio (FCR, 1.4 and 1.3) than the other groups (P < 0.0001). SGR, PER and FCR were the poorest for fish fed 1200 mg l ‐carnitine, while fish fed the unsupplemented and 900 mg l ‐carnitine supplemented diet showed intermediate performance. Body lipid concentration decreased significantly from 5.8 to 5.1% (P < 0.0001) with dietary l ‐carnitine supplementation increasing from 0 to 300 mg. Energy content was significantly lower in fish fed the 900 and 1200 mg l ‐carnitine diet (5.8 MJ kg?1), when compared with the other treatment groups (6.4–6.6 MJ kg?1). The results indicated that feeding sturgeon on diets supplemented with 300 mg l ‐carnitine kg?1 diet improved growth performance, and stimulated protein‐sparing effects from lipids.  相似文献   

13.
Rainbow trout were fed a diet supplemented with astaxanthin (89 mg/kg) or canthaxanthin (116 mg/kg) in two different experiments: experiment 1 was designed to measure the kinetics of the appearance and disappearance of carotenoids in the serum; experiment 2 was undertaken to establish the serum dose-response to synthetic astaxanthin and canthaxanthin for immature rainbow trout. The serum carotenoid concentrations of immature rainbow trout increased when fish were fed carotenoid supplemented feed and then reached a plateau after 1 day of intake for astaxanthin and after 2 days for canthaxanthin. Circulating astaxanthin represented a value 2.3 times that of canthaxanthin. After dietary supplementation was discontinued, the serum carotenoid concentrations decreased within 3 days for both carotenoids. The average decreasing slopes for the two carotenoid pigments were parallel, indicating a similarity in the rate of which astaxanthin and canthaxanthin are utilized by rainbow trout. The serum dose-response of trout that received dietary keto-carotenoids increased with increasing pigment levels. The hypothesis that absorption of dietary carotenoids in 12.5–200 mg/kg range of concentration across the gut wall may be by passive diffusion is proposed.  相似文献   

14.
The present study was conducted to assess the influence of dietary zinc nanoparticles (size 50 nm) on the growth, biochemical constituents, enzymatic antioxidant levels and the nonspecific immune response of the freshwater prawn, Macrobrachium rosenbergii post larvae (PL). The concentrations of dietary supplement zinc nanoparticles (ZnNPs) were 0, 10, 20, 40, 60 and 80 mg kg?1 with the basal diet, and the level of Zn in ZnNP-supplemented diets were 0.71, 10.61, 20.73, 40.73, 60.61 and 80.60 mg kg?1, respectively. ZnNP-incorporated diets were fed to M. rosenbergii PL (initial body weight, 0.18?±?0.02 g) in a triplicate experimental setup for a period of 90 days. ZnNP supplemented feed fed PL up to 60 mg kg?1 showed significantly (P?<?0.05) improved performance in survival, growth and activities of digestive enzymes (protease, amylase and lipase). The concentrations of biochemical constituents (total protein, total amino acid, total carbohydrate and total lipid), total haemocyte count and differential haemocyte count were elevated in 10–60 mg kg?1 ZnNP supplemented feed fed PL. However, the PL fed with 80 mg ZnNPs kg?1 showed negative results. Activities of enzymatic antioxidants [superoxide dismutase (SOD) and catalase (CAT)], metabolic enzymes [glutamate–oxaloacetate transaminase (GOT) and glutamate–pyruvate transaminase (GPT)] and the process of lipid peroxidation (LPO) in the hepatopancreas and muscle showed no significant alterations in 10–60 mg kg?1 ZnNP supplemented feed fed PL. Whereas, 80 mg ZnNPs kg?1 supplemented feed fed PL showed significant elevations in SOD, CAT, LPO, GOT and GPT. Therefore, 80 mg ZnNPs kg?1 was found to be toxic to M. rosenbergii PL. Thus, the study suggests that up to 60 mg ZnNPs kg?1 can be supplemented for regulating survival, growth and immunity of M. rosenbergii.  相似文献   

15.
This experiment was conducted to evaluate the effects of supplementing exogenous enzymes on growth, feed conversion ratio (FCR) and apparent nutrient digestibility in rainbow trout (Oncorhynchus mykiss) fry diets containing 32% canola meal. Five experimental diets (including a control diet containing no enzymes) were prepared as isonitrogenous (44% crude protein) and isocaloric (4000 kcal DE kg1). The four other diets contained either cellulase, phytase, pectinase or an enzyme mix (a mixture of cellulase, phytase and pectinase in the same ratio). The feeding trial was conducted in triplicate for 12 weeks in 15 tanks (100‐L). At the beginning of the experiment 20 rainbow trout fry (initial weight 1.23 g) were stocked into each tank. Mean water temperature in the rearing tanks was 11°C and water flow in each tank was 6 L min?1. At the end of the experiment the growth parameters and FCR displayed no significant differences in enzyme supplementation (P > 0.05). In addition, no differences were observed in dry matter, protein, or lipid digestibility with enzyme supplementation (P > 0.05). The results of this study showed that the addition of pectinase, phytase, cellulase or an enzyme mix to a diet containing 32% canola meal had no effect on growth, feed efficiency or dry matter, protein, or lipid digestibility in rainbow trout fry.  相似文献   

16.

The present study was conducted to assess the effects of combined and singular dietary administration of PrimaLac® and potassium diformate (KDF) on growth performance, feed utilization, digestive enzymes activity, and some physiological parameters of rainbow trout (Oncorhynchus mykiss) juvenile. Three hundred sixty rainbow trout juveniles (25 ± 1.8 g) were randomly stocked in 300-L tanks (30 fish/tank), and fed three times daily on a basal diet (control), diets incorporated with 12 g kg−1 KDF (FT1), 1.5 g kg−1 PrimaLac® (FT2), and combination of 1.5 g kg−1 probiotic and 12 g kg−1 KDF (FT3) in triplicates, for 8 weeks. At the end of feeding trial, growth performance, body composition, digestive enzymes, liver enzymes, and biochemical parameters were measured. Our results revealed that combined administration of PrimaLac® and KDF (FT3) exhibited significantly higher weight gain and specific growth rate (SGR) compared to other groups (P < 0.05). Glucose and cortisol levels showed no significant differences between fish fed different test diets (P > 0.05). The highest lipase, protease and amylase activity were observed in group of fish fed FT3 followed by FT2 and FT1. Besides, the diets FT2 and FT3 led to significantly lower of ALP, ALT, and AST compared to control group. The present results indicated that combined administration of PrimaLac® and KDF can be considered as a beneficial feed additive and growth promotor for O. mykiss juvenile.

  相似文献   

17.
Deoxynivalenol (DON) is one of the most frequently detected mycotoxins in agricultural commodities used as animal feedstuff in Central Europe. This study focuses on determining effects of diets containing DON on oxidative stress markers and detoxifying enzymes in rainbow trout (Oncorhynchus mykiss). The fish were fed with commercial pellets containing DON at a concentration of 2 mg kg?1. Selected enzymes were measured in liver, gill and caudal kidney of the fish after 23 and 32 days of the experiment. Significant differences between the control and experimental groups were observed concerning activities of glutathione peroxidase (GPx) in kidney, glutathione reductase (GR) in gill and kidney, catalase (CAT) in kidney and liver and glutathione S‐transferase (GST) in gill and liver. No significant differences were found for superoxide dismutase (SOD) gene expression, lipid peroxidation (TBARS) and the ferric reducing ability of plasma (FRAP). The data show that DON in the diet at the concentration below EC recommendation (2006/576/EC) induces oxidative stress in the rainbow trout.  相似文献   

18.
This study investigated the effects of elevated dietary levels of vitamin E (α‐tocopherol) on growth performance, proximate composition and fatty acid profiles of juvenile silver pomfret, Pampus argenteus. Three semi‐purified experimental diets were formulated to contain 49% protein and 16% lipid. High docosahexaenoic acid (DHA) tuna oil was added to the diets to supplement DHA. A graded level of vitamin E (0‐, 50‐, and 100 mg kg?1) was added to experimental diets 1 to 3, respectively. Analyzed vit. E levels were 155.2, 195.3 and 236.4 mg kg?1 in diets 1, 2 and 3, respectively. The experiment was conducted for 12 weeks with juvenile silver pomfret (29.6 ± 7.6 g) using a flow‐through system consisting of nine 1‐m3 tanks. Each treatment had three replicates and fish were stocked at the rate of 20 m?3. Growth performance and feed utilization parameters of fish fed diets 2 and 3 were significantly (P < 0.05) higher than in fish fed diet 1, but the parameters in diets 2 and 3 did not differ significantly (P > 0.05). Although whole body protein levels were not influenced by the dietary vit. E levels, whole body lipid in fish fed diet 2 was significantly higher than in fish fed the other diets. The whole body vit. E levels in fish fed diet 2 (22.6 mg kg?1) and diet 3 (24.1 mg kg?1) were significantly (P < 0.05) higher than in those fed diet 1 (18.2 mg kg?1). Whole body total saturated fatty acids were significantly lower, and DHA levels higher in fish fed diets 2 and 3 than those fed diet 1. The results of the present study suggest that increasing dietary supplementation of vit. E in high lipid diets enhances the growth performance of fish and that a dietary level of 196 mg kg?1 vit. E is suitable for the growth of silver pomfret.  相似文献   

19.
The effect of diets containing sodium alginate at 0, 0.5, 1.0, and 2.0 g kg?1 following challenge with Streptococcus iniae in kelp grouper Epinephelus bruneus were assessed with reference to survival rate and innate immune parameters such as alternative complement, lysozyme, natural haemagglutination, respiratory burst, superoxide dismutase, and phagocytic activities on week 1, 2, and 4. Fish fed with sodium alginate containing diet at 1.0 and 2.0 g kg?1 after being challenged with S. iniae had higher survival rates of 75% and 60%, respectively than those fed with control diet (0 g kg?1). With any enriched diet the percentage of macrophages significantly decreased from week 1–4, while the percentage of neutrophils and lymphocytes significantly increased. The alternate complement activity, natural haemagglutination, and phagocytic activities of infected fish fed with sodium alginate containing diet at 1.0 g kg?1 on week 2 and 1.0 and 2.0 g kg?1 diets on week 4 were significantly higher when compared to the control. The lysozyme, respiratory bursts, and superoxide dismutase activities of fish fed with enriched diets at 1.0 and 2.0 g kg?1 were significantly increased on week 2 and 4. We therefore recommend that at 1.0 or 2.0 g kg?1 dietary administration of sodium alginate can enhance innate immunity and disease resistance in kelp grouper against S. iniae.  相似文献   

20.
Natural carotenoids from astaxanthin containing alga Haematococcus pluvialis (H) and a non-astaxanthin carotenoid-containing alga Spirulina pacifica (S), and a synthetic astaxanthin Carophyll Pink (A) were supplemented in formulated diets at two concentrations, 50 (I) and 100 (II) mg kg−1, resulting in seven pigmented diets HI, SI, AI, HII, SII, AII, and HS (H-50 mg kg−1+S-50 mg kg−1). Formulated diet without carotenoid supplementation served as a control (C). The different diets were fed to juvenile kuruma prawn Marsupenaeus japonicus for 9 weeks. Dietary carotenoid effects on survival, growth, and pigmentation were compared by the treatment individually or collectively. A low dissolved oxygen stress test was conducted 2 weeks later and prawns' survival time and oxygen consumption rate were also compared among treatments. After 9 weeks' rearing, C-fed prawn had significantly lower survival rate than the pigmented diets-fed prawns. No difference in weight gain was found among all prawns. C-fed prawn had 66.4% less flesh astaxanthin (FA) and 75.5% less shell astaxanthin (SA) than the pigmented diets-fed prawns. I-fed (AI, HI, and SI) prawns had 31.1% less FA and 29.6% less SA than II-fed (AII, HII, SII, and HS) prawns. No significant differences were found in the comparisons by other categories. The use of these three sources of carotenoids for pigmentation in crustacean was discussed along carotenoid conversion, deposition, digestibility, and absorption. When subjected to low dissolved oxygen stress, C-fed prawn had higher oxygen consumption rate (OCR) and shorter survival time (ST) than the prawns fed the pigmented diets. No differences in OCR or ST were found in the comparisons by other categories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号