首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Specimens of an unidentified species of the freshwater green alga Spirogyra were found to have abundant cruciate cellular inclusions up to 34 micrometers long. A crystalline nature was shown by birefringence in polarized light. Despite their large size and complex shape, these inclusions did not occur free in the large central vacuole. Instead, they were associated with cytoplasmic strands that spanned the space between gyres of the parietal spiral chloroplasts and with strands that suspended the nucleus in a cytoplasmic embayment of the central vacuole. Some crystals moved directionally along the cytoplasmic strands, and their movement was arrested by cytochalasin B, suggesting that actin microfilaments had a role in crystal movement. Solubility tests showed that the inclusions were composed of calcium oxalate; they dissolved rapidly in weak hydrochloric acid without effervescence, but they were not soluble in concentrated acetic acid or sodium hypochlorite. A colorimetric enzymatic test for oxalate was used to demonstrate microscopically the presence of oxalate and to quantify the amounts. The calcium oxalate crystals were surrounded by a water-soluble organic matrix that retained the shape of the crystal even after demineralization. Scanning electron microscopy was used to examine the morphology of isolated crystals.  相似文献   

2.
TILTON  V. R.; HORNER  H. T.  JR. 《Annals of botany》1980,46(5):533-539
Crystalliferous idioblasts commonly are found in groups of twoor three cells in the peripheral region of the carpels Crystals,composed of calcium oxalate, usually are m well-organized bundleswhich develop within a matrix of protein and carbohydrate inthe vacuole of each idioblast The matrix occurs around and betweenindividual crystal chambers and contains spheres and tubules5.4 nm in diameter The matrix changes in character and locationwith age Crystals form within their own individual chambers,each comprised of a series of lamellae The number of lamellaeis variable The innermost lamella is different from the othersin that it is apparently continuous The other lamellae are platelikeand superficially resemble successive periderms. The lamellaemay begin and/or terminate abruptly or they may anastamose Eachlamella is composed of chains of spheres about 6 1 nm in diameterand is separated from adjacent lamellae by tubules 5.4 nm indiameter Both the crystals and slime body are absorbed duringlater stages of carpel maturation. Ornithogalum caudatum Ait carpel, calcium oxalate, idioblasts, ultrastructure  相似文献   

3.
The formation of calcium (Ca) oxalate crystals is considered to be a high-capacity mechanism for regulating Ca in many plants. Ca oxalate precipitation is not a stochastic process, suggesting the involvement of specific biochemical and cellular mechanisms. Microautoradiography of water lettuce (Pistia stratiotes) tissue exposed to 3H-glutamate showed incorporation into developing crystals, indicating potential acidic proteins associated with the crystals. Dissolution of crystals leaves behind a crystal-shaped matrix "ghost" that is capable of precipitation of Ca oxalate in the original crystal morphology. To assess whether this matrix has a protein component, purified crystals were isolated and analyzed for internal protein. Polyacrylamide gel electrophoresis revealed the presence of one major polypeptide of about 55 kD and two minor species of 60 and 63 kD. Amino acid analysis indicates the matrix protein is relatively high in acidic amino acids, a feature consistent with its solubility in formic acid but not at neutral pH. 45Ca-binding assays demonstrated the matrix protein has a strong affinity for Ca. Immunocytochemical localization using antibody raised to the isolated protein showed that the matrix protein is specific to crystal-forming cells. Within the vacuole, the surface and internal structures of two morphologically distinct Ca oxalate crystals, raphide and druse, were labeled by the antimatrix protein serum, as were the surfaces of isolated crystals. These results demonstrate that a specific Ca-binding protein exists as an integral component of Ca oxalate crystals, which holds important implications with respect to regulation of crystal formation.  相似文献   

4.
Nakata PA  McConn MM 《Plant physiology》2000,124(3):1097-1104
Plants accumulate crystals of calcium oxalate in a variety of shapes, sizes, amounts, and spatial locations. How and why many plants form crystals of calcium oxalate remain largely unknown. To gain insight into the regulatory mechanisms of crystal formation and function, we have initiated a mutant screen to identify the genetic determinants. Leaves from a chemically mutagenized Medicago truncatula population were visually screened for alterations in calcium oxalate crystal formation. Seven different classes of calcium oxalate defective mutants were identified that exhibited alterations in crystal nucleation, morphology, distribution and/or amount. Genetic analysis suggested that crystal formation is a complex process involving more than seven loci. Phenotypic analysis of a mutant that lacks crystals, cod 5, did not reveal any difference in plant growth and development compared with controls. This finding brings into question the hypothesized roles of calcium oxalate formation in supporting tissue structure and in regulating excess tissue calcium.  相似文献   

5.
The mechanisms controlling oxalate biosynthesis and calcium oxalate formation in plants remain largely unknown. As an initial step toward gaining insight into these regulatory mechanisms we initiated a mutant screen to identify plants that over-accumulate crystals of calcium oxalate. Four new mutants were identified, from an ethyl methanesulfonate (EMS)-mutagenized Medicago truncatula (cv. Jemalong genotype A17) population, that over-accumulated calcium oxalate crystals. The increased calcium oxalate content of these new mutants, as with the previously isolated mutant cod4, resulted from an increase in druse crystals accumulated within the mesophyll cells of leaves. Complementation and segregation analysis revealed that each mutant was affected at a different locus. This was confirmed through the genetic mapping of each mutation to different linkage groups. Together, these findings emphasize the complexity of factors that can contribute to oxalate biosynthesis and crystal formation in these plants. In addition, each mutant showed a common decrease in ascorbic acid content providing genetic support for ascorbic acid as a precursor in the oxalate biosynthetic pathway for druse crystal formation. Further support was obtained by the ability of an exogenous supply of ascorbate to induce druse crystal formation while other tested organic acids did not induce crystal production.  相似文献   

6.
Summary. Calcium oxalate crystals are by far the most prevalent and widely distributed mineral deposits in higher plants. In Tradescantia pallida, an evergreen perennial plant widely used as an ornamental plant, calcium oxalate crystals occur in the parenchymal tissues of stem, leaf, and root, as well as in flower organs, in the form of either raphides or tetragonal prismatic crystals or both. Energy-dispersive X-ray analysis revealed that C, O, and Ca were the main elements; and K, Cl, and Si, the minor elements. Infrared and X-ray analyses of crystals collected from these tissues detected the coexistence of two calcium oxalate chemical forms, i.e., whewellite and weddellite, as well as calcite, opal, and sylvite. Here, we show for the first time the occurrence of epitaxy in mineral crystals of plants. Epitaxy, which involves the oriented overgrowth of one crystal onto a second crystalline substrate, might explain how potassium chloride (sylvite) – one of the most water-soluble salts – stays insoluble in crystal form when coated with a calcium oxalate epilayer. The results indicate the potential role of crystals in regulating the ionic equilibrium of both calcium and potassium ions. Correspondence and reprints: Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EGA, Ciudad de Buenos Aires, Argentina.  相似文献   

7.
Matrix Gla protein (MGP) is a phosphorylated and γ-carboxylated protein that has been shown to prevent the deposition of hydroxyapatite crystals in the walls of blood vessels. MGP is also expressed in kidney and may inhibit the formation of kidney stones, which mainly consist of another crystalline phase, calcium oxalate monohydrate. To determine the mechanism by which MGP prevents soft-tissue calcification, we have synthesized peptides corresponding to the phosphorylated and γ-carboxylated sequences of human MGP in both post-translationally modified and non-modified forms. The effects of these peptides on hydroxyapatite formation and calcium oxalate crystallization were quantified using dynamic light scattering and scanning electron microscopy, respectively. Peptides YGlapS (MGP1-14: YγEpSHEpSMEpSYELNP), YEpS (YEpSHEpSMEpSYELNP), YGlaS (YγESHESMESYELNP) and SK-Gla (MGP43-56: SKPVHγELNRγEACDD) inhibited formation of hydroxyapatite in order of potency YGlapS > YEpS > YGlaS > SK-Gla. The effects of YGlapS, YEpS and YGlaS on hydroxyapatite formation were on both crystal nucleation and growth; the effect of SK-Gla was on nucleation. YGlapS and YEpS significantly inhibited the growth of calcium oxalate monohydrate crystals, while simultaneously promoting the formation of calcium oxalate dihydrate. The effects of these phosphopeptides on calcium oxalate monohydrate formation were on growth of crystals rather than nucleation. We have shown that the use of dynamic light scattering allows inhibitors of hydroxyapatite nucleation and growth to be distinguished. We have also demonstrated for the first time that MGP peptides inhibit the formation of calcium oxalate monohydrate. Based on the latter finding, we propose that MGP function not only to prevent blood-vessel calcification but also to inhibit stone formation in kidney.  相似文献   

8.
Calcium oxalate (CaOx) is the most common component of human kidney stones. Heterogeneous nucleation is regarded as the key mechanism in this process. In this study, we have used an imprinted 6-methacrylamidohexanoic acid/divinylbenzene co-polymer as a biomimetic surface to nucleate CaOx crystal formation. The polymer was imprinted with either calcium oxalate monohydrate (COM) or dihydrate (COD) template crystals. These were washed out of the polymer, which was then immersed in various test solutions. The test solutions were an aqueous solution of calcium chloride and sodium oxalate, artificial urine and a sample of real urine. Crystals that formed on the polymer surface were characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy, atomic absorption spectroscopy and scanning electron microscopy. Results showed that in the aqueous solution the COM-imprinted polymer induced the nucleation of COM. The COD-imprinted polymer induced only trace amounts of COD crystallization, together with larger quantities of COM. In artificial and real urines, COM also specifically precipitated on the COM-imprinted surface. The results show that, at least to some extent, the imprinted polymers direct formation of their morphologically matched crystals. In the case of COD, however, it appears that either rapid hydrate transformation of COD to COM occurs, or the more stable COM polymorph is directly co-precipitated by the polymer. Our results support the hypothesis that heterogeneous nucleation plays a key role in CaOx stone formation and that the imprinted polymer model could provide an additional and superior diagnostic tool for stone researchers to assess stone-risk in urine.Abbreviations COD calcium oxalate dihydrate - COM calcium oxalate monohydrate - COT calcium oxalate trihydrate - dvb divinylbenzene - 6-maaha 6-methylacrylamidohexanoic acid  相似文献   

9.
Biological mineralization processes are extremely diverse and, to date, it is an act of faith rather than an established principle that organisms utilize common mechanisms for forming crystals. A systematic analysis of the structural organization, as far as possible at the molecular level, of five different extracellularly mineralized tissues is presented to demonstrate that at least these mineralization processes are all part of the same continuum. The degrees of control exercised over crystal nucleation and crystal growth modulation are the basic variables. The five tissues, extracellularly mineralizing algae, radial and granular foraminifera, mammalian bone, mammalian enamel, and mollusk shell nacre, probably span the entire spectrum. Their crystal shapes, sizes, and the relations between the mineral phase and the organic phase, are primarily used to assess probable degrees of control exercised over crystal nucleation and modulation. Three different types of nucleation processes can be recognized: nonspecific, stereochemical, and epitaxial. Modulation of crystal growth after nucleation is either absent, achieved by adsorption of macromolecules onto specific crystal faces, or occurs by the prepositioning of matrix surfaces which interrupt crystal growth. The tissues in which active control is exercised over crystal growth all contain similar types of acidic matrix macromolecules. Significantly, the framework matrix macromolecules are all quite different and hence probably perform some tissue-specific functions. The study shows that there is a common basis for understanding these mineralization processes which is reflected in the nature of the protein-crystal interactions which occur in each tissue.  相似文献   

10.
V. R. Franceschi 《Protoplasma》1984,120(3):216-223
Summary Sugar beet (Beta vulgaris L.) leaf has a layer of cells extended laterally between the palisade parenchyma and spongy mesophyll that develop numerous small crystals (crystal sand) within their vacuoles. Solubility studies and histochemical staining indicate the crystals are calcium oxalate. The crystals are deposited within the vacuoles early during leaf development, and at maturity the cells are roughly spherical in shape and 2 to 3 times larger than other mesophyll cells. Crystal deposition is preceeded by formation of membrane vesicles within the vacuole. The membranes are synthesizedde novo in the vacuole and have a typical trilaminate structure as viewed with the TEM. The membranes are formed within paracrystalline aggregates of tubular particles (6–8nm outer diameter) as membrane sheets, but are later organized into chambers or vesicles. Calcium oxalate is then precipitated within the membrane chambers. The tubular particles involved in membrane synthesis are usually present in the vacuoles of mature crystal cells, but in very small amounts.  相似文献   

11.
Biogenic minerals found in teeth and bones are synthesized by precise cell-mediated mechanisms. They have superior mechanical properties due to their complex architecture. Control over biomineral properties can be accomplished by regulation of particle size, shape, crystal orientation, and polymorphic structure. In many organisms, biogenic minerals are assembled using a transient amorphous mineral phase. Here we report that organic constituents of bones and teeth, namely type I collagen and dentin matrix protein 1 (DMP1), are effective crystal modulators. They control nucleation of calcium phosphate polymorphs and the assembly of hierarchically ordered crystalline composite material. Both full-length recombinant DMP1 and post-translationally modified native DMP1 were able to nucleate hydroxyapatite (HAP) in the presence of type I collagen. However, the N-terminal domain of DMP1 (amino acid residues 1-334) inhibited HAP formation and stabilized the amorphous phase that was formed. During the nucleation and growth process, the initially formed metastable amorphous calcium phosphate phase transformed into thermodynamically stable crystalline hydroxyapatite in a precisely controlled manner. The organic matrix-mediated controlled transformation of amorphous calcium phosphate into crystalline HAP was confirmed by x-ray diffraction, selected area electron diffraction pattern, Raman spectroscopy, and elemental analysis. The mechanical properties of the protein-mediated HAP crystals were also determined as they reflect the material structure. Such understanding of biomolecule controls on biomineralization promises new insights into the controlled synthesis of crystalline structures.  相似文献   

12.
Characterization of calcium oxalates generated as biominerals in cacti   总被引:5,自引:0,他引:5  
Monje PV  Baran EJ 《Plant physiology》2002,128(2):707-713
The chemical composition and morphology of solid material isolated from various Cactaceae species have been analyzed. All of the tested specimens deposited high-purity calcium oxalate crystals in their succulent modified stems. These deposits occurred most frequently as round-shaped druses that sometimes coexist with abundant crystal sand in the tissue. The biominerals were identified either as CaC(2)O(4).2H(2)O (weddellite) or as CaC(2)O(4).H(2)O (whewellite). Seven different species from the Opuntioideae subfamily showed the presence of whewellite, and an equal number of species from the Cereoideae subfamily showed the deposition of weddellite. The chemical nature of these deposits was assessed by infrared spectroscopy. The crystal morphology of the crystals was visualized by both conventional light and scanning electron microscopy. Weddellite druses were made up of tetragonal crystallites, whereas those from whewellite were most often recognized by their acute points and general star-like shape. These studies clearly demonstrated that members from the main traditional subfamilies of the Cactaceae family could synthesize different chemical forms of calcium oxalate, suggesting a definite but different genetic control. The direct relationship established between a given Cactaceae species and a definite calcium oxalate biomineral seems to be a useful tool for plant identification and chemotaxonomy.  相似文献   

13.
Calcium (Ca) oxalate crystals occur in many plant species and in most organs and tissues. They generally form within cells although extracellular crystals have been reported. The crystal cells or idioblasts display ultrastructural modifications which are related to crystal precipitation. Crystal formation is usually associated with membranes, chambers, or inclusions found within the cell vacuole(s). Tubules, modified plastids and enlarged nuclei also have been reported in crystal idioblasts. The Ca oxalate crystals consist of either the monohydrate whewellite form, or the dihydrate weddellite form. A number of techniques exist for the identification of calcium oxalate. X-ray diffraction, Raman microprobe analysis and infrared spectroscopy are the most accurate. Many plant crystals assumed to be Ca oxalate have never been positively identified as such. In some instances, crystals have been classified as whewellite or weddellite solely on the basis of their shape. Certain evidence indicates that crystal shape may be independent of hydration form of Ca oxalate and that the vacuole crystal chamber membranes may act to mold crystal shape; however, the actual mechanism controlling shape is unknown. Oxalic acid is formed via several major pathways. In plants, glycolate can be converted to oxalic acid. The oxidation occurs in two steps with glyoxylic acid as an intermediate and glycolic acid oxidase as the enzyme. Glyoxylic acid may be derived from enzymatic cleavage of isocitric acid. Oxaloacetate also can be split to form oxalate and acetate. Another significant precursor of oxalate in plants is L-ascorbic acid. The intermediate steps in the conversion of L-ascorbic acid to oxalate are not well defined. Oxalic acid formation in animals occurs by similar pathways and Ca oxalate crystals may be produced under certain conditions. Various functions have been attributed to plant crystal idioblasts and crystals. There is evidence that oxalate synthesis is related to ionic balance. Plant crystals thus may be a manifestation of an effort to maintain an ionic equilibrium. In many plants oxalate is metabolized very slowly or not at all and is considered to be an end product of metabolism. Plant crystal idioblasts may function as a means of removing the oxalate which may otherwise accumulate in toxic quantities. Idioblast formation is dependent on the availability of both Ca and oxalate. Under Ca stress conditions, however, crystals may be reabsorbed indicating a storage function for the idioblasts for Ca. In addition, it has been suggested that the crystals serve purely as structural supports or as a protective device against foraging animals. The purpose of this review is to present an overview of plant crystal idioblasts and Ca oxalate crystals and to include the most recent literature.  相似文献   

14.
The Isolation and Properties of Oxalate Crystals from Plants   总被引:2,自引:0,他引:2  
A method of isolation of crystalline inclusions of plant cellsis described. The crystals consist mainly of calcium oxalatein plants grown under normal conditions, but when calcium isreplaced by magnesium, barium, or strontium in the culture solutionthese elements substitute for calcium in the crystals; evenunder normal conditions magnesium occurs in the crystals tothe extent of about 2 per cent. The crystal morphology vanesin the species examined from raphides to complex conglomeratesand X-ray diffraction demonstrates an association of raphideswith calcium oxalate monohydrate whilst other solitary formsand conglomerates are associated with calcium oxalate 2.25H2O.On this basis the species examined can be divided mto threegroups.  相似文献   

15.
During enamel formation, the organic enamel protein matrix interacts with calcium phosphate minerals to form elongated, parallel, and bundled enamel apatite crystals of extraordinary hardness and biomechanical resilience. The enamel protein matrix consists of unique enamel proteins such as amelogenin, ameloblastin, and enamelin, which are secreted by highly specialized cells called ameloblasts. The ameloblasts also facilitate calcium and phosphate ion transport toward the enamel layer. Within ameloblasts, enamel proteins are transported as a polygonal matrix with 5 nm subunits in secretory vesicles. Upon expulsion from the ameloblasts, the enamel protein matrix is re-organized into 20 nm subunit compartments. Enamel matrix subunit compartment assembly and expansion coincide with C-terminal cleavage by the MMP20 enamel protease and N-terminal amelogenin self-assembly. Upon enamel crystal precipitation, the enamel protein phase is reconfigured to surround the elongating enamel crystals and facilitate their elongation in C-axis direction. At this stage of development, and upon further amelogenin cleavage, central and polyproline-rich fragments of the amelogenin molecule associate with the growing mineral crystals through a process termed “shedding”, while hexagonal apatite crystals fuse in longitudinal direction. Enamel protein sheath-coated enamel “dahlite” crystals continue to elongate until a dense bundle of parallel apatite crystals is formed, while the enamel matrix is continuously degraded by proteolytic enzymes. Together, these insights portrait enamel mineral nucleation and growth as a complex and dynamic set of interactions between enamel proteins and mineral ions that facilitate regularly seeded apatite growth and parallel enamel crystal elongation.  相似文献   

16.
为探讨香樟(Cinnamomum camphora)叶肉含晶细胞超微结构的季节变化,阐明香樟叶肉中草酸钙晶体在春夏秋冬的变化规律。该研究以多年生香樟(C. camphora)叶片为材料,分别于春夏秋冬四个季节露地取样,制作超薄切片,用透射电子显微镜(TEM)观察叶肉含晶细胞超微结构的变化。结果表明:春季时香樟叶肉中只有少数细胞有草酸钙晶体,数量较少,晶体结构多为柱状晶、方晶; 夏季时香樟叶肉细胞中随机分布于液泡的草酸钙晶体明显比春季的数量多、体积大、形态丰富,晶体多为柱状晶、方晶、针晶、簇晶; 秋季时香樟叶肉细胞草酸钙晶体和夏季的类似,数量较多,形态多样,以方晶和柱状晶针晶为主,伴有晶簇; 冬季时香樟叶肉含晶细胞晶体形态为柱状晶、方晶、针晶,数量比夏季和秋季的数量略有减少。该研究结果表明在一年四季中香樟叶肉细胞液泡中均有草酸钙晶体结构存在。  相似文献   

17.
Background and Aims: Species of Araceae accumulate calcium oxalate in the form ofcharacteristically grooved needle-shaped raphide crystals andmulti-crystal druses. This study focuses on the distributionand development of raphides and druses during leaf growth inten species of Amorphophallus (Araceae) in order to determinethe crystal macropatterns and the underlying ultrastructuralfeatures associated with formation of the unusual raphide groove. Methods: Transmission electron microscopy (TEM), scanning electron microscopy(SEM) and both bright-field and polarized-light microscopy wereused to study a range of developmental stages. Key Results: Raphide crystals are initiated very early in plant development.They are consistently present in most species and have a fairlyuniform distribution within mature tissues. Individual raphidesmay be formed by calcium oxalate deposition within individualcrystal chambers in the vacuole of an idioblast. Druse crystalsform later in the true leaves, and are absent from some species.Distribution of druses within leaves is more variable. Drusesinitially develop at leaf tips and then increase basipetallyas the leaf ages. Druse development may also be initiated incrystal chambers. Conclusions: The unusual grooved raphides in Amorphophallus species probablyresult from an unusual crystal chamber morphology. There aremultiple systems of transport and biomineralization of calciuminto the vacuole of the idioblast. Differences between raphideand druse idioblasts indicate different levels of cellular regulation.The relatively early development of raphides provides a defensivefunction in soft, growing tissues, and restricts build-up ofdangerously high levels of calcium in tissues that lack theability to adequately regulate calcium. The later developmentof druses could be primarily for calcium sequestration.  相似文献   

18.

Background

The increasing number of patients suffering from urolithiasis represents one of the major challenges which nephrologists face worldwide today. For enhancing therapeutic outcomes of this disease, the pathogenic basis for the formation of renal stones is the need of hour. Proteins are found as major component in human renal stone matrix and are considered to have a potential role in crystal–membrane interaction, crystal growth and stone formation but their role in urolithiasis still remains obscure.

Methods

Proteins were isolated from the matrix of human CaOx containing kidney stones. Proteins having MW>3 kDa were subjected to anion exchange chromatography followed by molecular-sieve chromatography. The effect of these purified proteins was tested against CaOx nucleation and growth and on oxalate injured Madin–Darby Canine Kidney (MDCK) renal epithelial cells for their activity. Proteins were identified by Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF MS) followed by database search with MASCOT server. In silico molecular interaction studies with CaOx crystals were also investigated.

Results

Five proteins were identified from the matrix of calcium oxalate kidney stones by MALDI-TOF MS followed by database search with MASCOT server with the competence to control the stone formation process. Out of which two proteins were promoters, two were inhibitors and one protein had a dual activity of both inhibition and promotion towards CaOx nucleation and growth. Further molecular modelling calculations revealed the mode of interaction of these proteins with CaOx at the molecular level.

Conclusions

We identified and characterized Ethanolamine-phosphate cytidylyltransferase, Ras GTPase-activating-like protein, UDP-glucose:glycoprotein glucosyltransferase 2, RIMS-binding protein 3A, Macrophage-capping protein as novel proteins from the matrix of human calcium oxalate stone which play a critical role in kidney stone formation. Thus, these proteins having potential to modulate calcium oxalate crystallization will throw light on understanding and controlling urolithiasis in humans.  相似文献   

19.
Cell culture methods and models are key investigative tools for cell and molecular biology studies. Fetal bovine serum (FBS) is commonly used as an additive during cell culture since its constituents promote cell survival, proliferation and differentiation. Here we report that commercially available FBS from different major suppliers consistently contain precipitated, calcium oxalate crystals-either in the monohydrate (COM) or dihydrate (COD) form. Mineral structure and phase identification of the crystals were determined by X-ray diffraction, chemical composition by energy-dispersive X-ray microanalysis, and imaging and measurement of crystal growth steps by atomic force microscopy-all identified and confirmed crystallographic parameters for COM and COD. Proteins binding to the crystals were identified by immunoblotting, revealing the presence of osteopontin and fetuin-A (alpha(2)HS-glycoprotein)--known regulators of crystal growth found in serum. Macrophage cell cultures exposed to calcium oxalate crystals showed internalization of the crystals by phagocytosis in a process that induced disruption of cell-cell adhesion, release of reactive oxygen species and membrane damage, events that may be linked to the release of inflammatory cytokines by these cells into the culture media. In conclusion, calcium oxalate crystals found in commercially available FBS are toxic to cells, and their presence may confound results from in vitro studies where, amongst others, phagocytosis, biomineralization, renal cell and molecular biology, and drug and biomaterial testing are being examined.  相似文献   

20.
The establishment of new approaches to control chewing insects has been sought not only for direct use in reducing crop loss but also in managing resistance to the pesticides already in use. Engineered formation of calcium oxalate crystals is a potential strategy that could be developed to fulfill both these needs. As a step toward this development, this study investigates the effects of transforming a non-calcium oxalate crystal accumulating plant, Arabidopsis thaliana, into a crystal accumulating plant. Calcium oxalate crystal accumulating A. thaliana lines were generated by ectopic expression of a single bacterial gene encoding an oxalic acid biosynthetic enzyme. Biochemical and cellular studies suggested that the engineered A. thaliana lines formed crystals of calcium oxalate in a manner similar to naturally occurring crystal accumulating plants. The amount of calcium oxalate accumulated in leaves also reached levels similar to those measured in the leaves of Medicago truncatula in which the crystals are known to play a defensive role. Visual inspection of the different engineered lines, however, suggested a phenotypic consequence on plant growth and development with higher calcium oxalate concentrations. The restoration of a near wild-type plant phenotype through an enzymatic reduction of tissue oxalate supported this observation. Overall, this study is a first to provide initial insight into the potential consequences of engineering calcium oxalate crystal formation in non-crystal accumulating plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号