首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
In the period of maturation in vivo, the chromosomes of mouse oocytes display a spectrum of unique configurations that is postulated to be related to a sequence of turnover of chromosomal proteins. Evidence on behalf of that hypothesis is provided by the following cytologic observations: The chromosomes of the diakinesis-metaphase I complement are resistant to disruption by mild treatment with trypsin. Following metaphase I, the chromosomes become exceedingly compact and display correlated increased resistance to trypsin. At telophase I, when the complements of the secondary oocyte and the first polar body have each coalesced into a “chromatin mass,” the chromosomes are greatly sensitive to trypsin. Following separation from the mass, the definitive oocyte chromosomes decompact into a “relaxed coil” conformation and display moderate trypsin sensitivity comparable to that of mitotic metaphase chromosomes. Autoradiography of [3H]-arginine and [3H]tryptophan incorporation show that while both amino acids are incorporated into the ooplasm, arginine, but not tryptophan, is incorporated into the chromosomal material. Analysis of the data indicates that incorporation takes place as two separate events, one in late dictyotene and the other post-telophase I and that the arginine-containing proteins incorporated into the dictyate chromosomes are transient and are not retained on the metaphase II chromosomes.  相似文献   

2.
Toward the end of mitosis, neighboring chromosomes gather closely to form a compact cluster. This is important for reassembling the nuclear envelope around the entire chromosome mass but not individual chromosomes. By analyzing mice and cultured cells lacking the expression of chromokinesin Kid/kinesin-10, we show that Kid localizes to the boundaries of anaphase and telophase chromosomes and contributes to the shortening of the anaphase chromosome mass along the spindle axis. Loss of Kid-mediated anaphase chromosome compaction often causes the formation of multinucleated cells, specifically at oocyte meiosis II and the first couple of mitoses leading to embryonic death. In contrast, neither male meiosis nor somatic mitosis after the morula-stage is affected by Kid deficiency. These data suggest that Kid-mediated anaphase/telophase chromosome compaction prevents formation of multinucleated cells. This protection is especially important during the very early stages of development, when the embryonic cells are rich in ooplasm.  相似文献   

3.
Cytogenetic analysis of an Idaho population of the checkerspot butterfly, Euphydryas colon, has revealed considerable inter- and intra-individual variation in chromosome number which turns out to be a classic case of B chromosome variation. The basic chromosome complement of the species is n (, )=31. The A chromosomes were aligned equatorially at mitotic metaphase and metaphase II, and axially at metaphase I, indicating a restriction of centric activity at the first meiotic division. No failure of pairing between homologous A chromosomes was observed and, although a marked asynchrony of chromatid separation was found to be characteristic of mitotic telophase and telophase II, the frequency of macrospermatid formation was low. The B chromosomes were at least partly heterochromatic but exhibited some variation in both pycnosity and size. Mitotically stable B-containing individuals showed a preponderance of unpaired Bs at first metaphase and these divided at either first or second anaphase. The presence of Bs was associated with a heightened production of abnormal spermatids particularly in individuals with high numbers of B chromosomes. Among the 25 individuals sampled, 21 carried from 1–6 B chromosomes, and of these 14 were mitotically stable. In all 7 unstable individuals the mean number of B chromosomes per cell exceeded the modal number. Assuming that the modal number represents the zygotic number, these results suggest that a mechanism to boost the number of B chromosomes exists in males of E. colon.  相似文献   

4.
We detected fully mature undescribed oocytes in Drosophila melanogaster ovaries. The fully mature oocytes were rehydrate in ovaries. In the oocyte of stage 14, chromosomes make globular mass, while the chromosome shows meiotic metaphase I in fully mature oocytes. Both mature oocytes and stage 14 oocytes were activated by hypotonic treatment. When the mature oocytes or the stage 14 oocytes were activated, telophase II figures were observed in former oocytes but meiosis in latter oocyte stopped at late metaphase I, suggesting the stage 14 activated oocyte cannot pass the second checkpoint of meiosis.  相似文献   

5.
Gross details of the reproductive cycle and the cytology of oogenesis were studied in 155 egg clutches produced by 69 captive individuals of the triploid parthenogenetic lizard Cnemidophorus uniparens. The mean clutch cycle lasted 23 days. The mean number of ova per clutch was 3.3, and the mean number of oocytes per right and left ovaries was 1.65 and 1.70, respectively. Comparison of the size of the oocytes at ovulation (9–10 mm) with the estimated mean duration of vitellogenesis (8.8 days) gave an average of approximately 1 mm yolk deposition per day. The mean time for the retention of eggs in the oviducts was 9.3 days. The germinal disc of the oocyte consists of a series of layers formed by the arrangement of various cytoplasmic and yolk particles in the polar region. In a mature oocyte the germinal vesicle is located immediately below the vitelline membrane and lies at the center of the germinal disc. The germinal vesicle is characterized by a dense disc-like cluster of diplotene chromosomes. Diplonema extends until near ovulation when the oocytes have attained a size of about 9 mm. Diakinesis and metaphase I occur rapidly and immediately prior to ovulation. Counts of approximately as many bivalents as there are somatic chromosomes were obtained from oocytes at diakinesis and metaphase I. The second division occurs almost immediately before or at the precise moment of ovulation. The chromosomes of the first polar body consist of dyads, of which there are as many as the triploid number of 69. A metaphase II plate obtained in polar view also revealed dyad chromosomes, of which there were approximately as many as the triploid somatic number. The second telophase is normal as evidenced by formation of the second polar body. Chromosomes from the opposing telophase plates show a monad structure. The presence of as many bivalents in the first division as the triploid somatic number of 69 indicates that the 3N condition of C. uniparens was doubled prior to meiosis. This is further supported by the occurrence of two maturation divisions each giving rise to a polar body, by the dyad structure of the chromosomes in the first polar body and the second metaphase, and by the presence of monochromosomes at telophase II. Thus, parthenogenesis in these lizards is of the meiotic type. The somatic number of chromosomes is doubled early in oogenesis presumably by a premeiotic endoduplication, and the 3N level is restored by two subsequent maturation divisions.  相似文献   

6.
The kinetics of spindle and chromosomes during bovine oocyte meiosis from meiosis I to meiosis III is described. The results of this study showed that (1) oocytes began to extrude the first polar body (Pb1) at the early anaphase I stage and the Pb1 totally separated from the mother cell only when oocytes reach the MII stage; (2) the morphology of the spindle changed from barrel-shaped at the metaphase stage to cylinder-shaped at early anaphase, and then to a thin, long triangle-shaped cone at late anaphase and telophase stages; (3) chromosome morphology went from an individual visible stage at metaphase to a less defined chromatin state during anaphase and telophase stages, and then back to visible individual chromosomes at the next metaphase; (4) chromatin that connected with the floor of the cone became the polar bodies and expelled, and almost all of the microtubules (MTs) and microfilaments (MFs) composing the spindles moved towards and contributed to the polar bodies; and (5) the size of the metaphase I (MI) spindle was larger than the metaphase II (MII) and metaphase III (MIII) spindles. The MII spindle, however, is more barrel-shaped than the MI spindle. This study suggests that spindle MTs and MFs during bovine oocyte meiosis are asymmetrically divided into the polar bodies.  相似文献   

7.
Chromosome number, meiotic behavior, and pollen viability were analyzed in 15 species of two genera, Vriesea and Aechmea, native to Rio Grande do Sul, Brazil. This study is the first cytogenetic analysis of these taxa. The chromosome numbers are all n = 25, consistent with the proposed base number of x = 25 for Bromeliaceae. All examined taxa displayed regular bivalent pairing and chromosome segregation at meiosis. Observed meiotic abnormalities include univalents in metaphase I; missing or extra chromosomes and precocious division of centromeres in metaphase II; laggards in telophase I and anaphase II/telophase II. The high pollen viability (>88%) reflects a regular meiosis.  相似文献   

8.
Summary We have described a characteristic substructure of mitotic chromosomes, the chromosomal unit fibre, with lengths about five times the length of the corresponding metaphase chromosomes and a uniform diameter of 0.4 m. In order to study the relationship of chromosome banding to chromosome compaction, methods have been devised to obtain banding patterns on chromosomal unit fibres, similar to G-band patterns of intact mitotic chromosomes. The total number of bands plus interbands per haploid human karyotype is estimated at about 3000. The banding pattern of chromosomal unit fibres indicates a certain resemblance to the normal G-banding pattern of human chromosomes even if the details indicate a short-range random distribution.  相似文献   

9.
Mitogen-activated protein kinase (MAPK) has been reported to be involved in oocyte maturation in all animals so far examined. In the present study we investigate the expression and localisation of active phosphorylated MAPKs (p44ERK1/p42ERK2) during maturation of pig oocytes. In immunoblot analysis using anti-p44ERK1 antibody which recognised both active and inactive forms of p44ERK1 and p42ERK2, we confirmed that MAPKs were phosphorylated around the time of germinal vesicle breakdown (GVBD) and the active phosphorylated MAPKs (pMAKs) were maintained until metaphase II, as has been reported. On immunofluorescent confocal microscopy using anti-pMAPK antibody which recognised only phosphorylated forms of MAPKs, pMAPK was localised at the spindle poles in pig mitotic cells. On the other hand, in pig oocytes, no signal was detected during GV stage. After GVBD, the area around condensed chromosomes was preferentially stained at metaphase I although whole cytoplasm was faintly stained. At early anaphase I, the polar regions of the meiotic spindle were prominently stained. However, during the progression of anaphase I and telophase I pMAPK was detected at the mid-zone of the elongated spindle, gradually becoming concentrated at the centre. Finally, at the time of emission of the first polar body, pMAPK was detected as a ring-like structure between the condensed chromosomes and the first polar body, and the staining was maintained even after the metaphase II spindle was formed. The inhibition of MAPK activity with the MAPK kinase inhibitor U0126 during the meiosis I/meiosis II transition suppressed chromosome separation, first polar body emission and formation of the metaphase II spindle. From these results, we propose that the spindle-associated pMAPKs play an important role in the events occurring during the meiosis I/meiosis II transition, such as chromosome separation, spindle elongation and cleavage furrow formation in pig oocytes.  相似文献   

10.
Rotenone-induced endoreduplication was investigated in Chinese hamster CHL cells. Cell cycle analyses, using 5-bromo-2-deoxyuridine (BrdU) labeling, revealed that endoreduplicaiton was induced between the G2-phase and mitotic metaphase. Morphological studies indicated that the chromosomes of cells in metaphase at the time of rotenone exposure immediately aggregated. Within 1 h, however, the aggregated chromosomes began to decondense forming telophase nuclei. Cells with aggregated chromosomes were collected by mitotic selection using the mitotic arrestant TN-16 and then cultured for 30 h following rotenone administration. This population of cells demonstrated an extremely high frequency of endoreduplicated metaphases. Further analysis by BrdU labeling indicated that the aggregated metaphases underwent only one round of DNA replication before endoreduplicated metaphases were formed. The most sensitive period for the induction of endoreduplication by rotenone occurs during mitotic metaphase.by M.F. Trendelenburg  相似文献   

11.
Aurora-C was first identified during screening for kinases expressed in mouse sperm and eggs. Herein, we report for the first time the precise subcellular localization of endogenous Aurora-C during male meiotic division. The localization of Aurora-C was analyzed by immunofluorescence staining on chromosome spreads of mouse spermatocytes or in squashed seminiferous tubules. Aurora-C was first detected at clusters of chromocenters in diplotene spermatocytes and was concentrated at centromeres in metaphase I and II. Interestingly, Aurora-C was also found along the chromosome axes, including both the regions of centromeres and the chromosome arms in diakinesis. During the anaphase I/telophase I and anaphase II/telophase II transitions, Aurora-C was relocalized to the spindle midzone and midbody. A similar distribution pattern was also observed for Aurora-B during male meiotic divisions. Surprisingly, we detected no Aurora-C in mitotic spermatogonia. Furthermore, immunoprecipitation analyses revealed that INCENP associated with Aurora-C in the male testis. We propose that INCENP recruits Aurora-C (or some other factor(s) recruit INCENP and Aurora-C) to meiotic chromosomes, while Aurora-C may either work alone or cooperate with Aurora-B to regulate chromosome segregation during male meiosis.  相似文献   

12.
Conventional centrosomes are absent from the spindle in female meiosis in many species, but it is not clear how multiple chromosomes form one shared bipolar spindle without centrosomes. We identified a female sterile mutant in which each bivalent chromosome often forms a separate bipolar metaphase I spindle. Unlike wild type, prophase I chromosomes fail to form a single compact structure within the oocyte nucleus, although the integrity of metaphase I chromosomes appears to be normal. Molecular analysis indicates that the mutant is defective in the conserved kinase nucleosomal histone kinase-1 (NHK-1). Isolation of further alleles and RNA interference in S2 cells demonstrated that NHK-1 is also required for mitotic progression. NHK-1 itself is phosphorylated in mitosis and female meiosis, suggesting that this kinase is part of the regulatory system coordinating progression of mitosis and meiosis.  相似文献   

13.
PKCβI, a member of the classical protein kinase C family, plays key roles in regulating cell cycle transition. Here, we report the expression, localization and functions of PKCβI in mouse oocyte meiotic maturation. PKCβI and p-PKCβI (phosphor-PKCβI) were expressed from germinal vesicle (GV) stage to metaphase II (MII) stage. Confocal microscopy revealed that PKCβI was localized in the GV and evenly distributed in the cytoplasm after GV breakdown (GVBD), and it was concentrated at the midbody at telophase in meiotic oocytes. While, p-PKCβI was concentrated at the spindle poles at the metaphase stages and associated with midbody at telophase. Depletion of PKCβI by specific siRNA injection resulted in defective spindles, accompanied with spindle assembly checkpoint activation, metaphase I arrest and failure of first polar body (PB1) extrusion. Live cell imaging analysis also revealed that knockdown of PKCβI resulted in abnormal spindles, misaligned chromosomes, and meiotic arrest of oocytes arrest at the Pro-MI/MI stage. PKCβI depletion did not affect the G2/M transition, but its overexpression delayed the G2/M transition through regulating Cyclin B1 level and Cdc2 activity. Our findings reveal that PKCβI is a critical regulator of meiotic cell cycle progression in oocytes.

Abbreviations: PKC, protein kinase C; COC, cumulus-oocyte complexes; GV, germinal vesicle; GVBD, germinal vesicle breakdown; Pro-MI, first pro-metaphase; MI, first metaphase; Tel I, telophase I; MII, second metaphase; PB1, first polar body; SAC, spindle assembly checkpoint  相似文献   


14.
Details of mitosis in the chloromonadophycean alga Vacuolaria virescens Cienk. have been studied with the light microscope. The chromosomes are relatively large (up to μ in length at metaphase) and so mitotic stages are readily distinguishable. Chromosomes can be recognized in interphase nuclei as fine strands of chromatin. Contraction of these chromosomes marks the beginning of mitosis and continues progressively until the transition from metaphase to anaphase. Disintegration of nucleoli is complete by late prophase and nucleolar reformation begins in telophase. Some chromosomes exhibit less densely stained regions; centromeres are also present as indicated by their differential staining and by the behavior of chromosomes at metaphase and anaphase. At anaphase progeny chromosomes move apart parallel to the division axis of the nucleus. As anaphase progresses the chromosomes fuse at the polar surface of the progeny chromosome groups. This process continues in telophase and the chromosome groups become more spherical. By the end of telophase nucleolar reformation has begun and the chromosomes have relaxed to their interphase condition.  相似文献   

15.
The mechanism of origin of Robertsonian translocations was investigated in plants monosomic for chromosome 1A of wheat and 1H(t) of Elymus trachycaulus by GISH. Chromosomes 1A and 1H(t) stayed univalent in all metaphase I cells analyzed, suggesting that Robertsonian translocations do not originate from meiotic recombination in centromeric regions with shared DNA sequence homology. At ana-/telophase I, the 1H(t) and 1A univalents underwent either chromosome or chromatid segregation and misdivided in 6-7% of the pollen mother cells. None of the ana-/telophases I analyzed had Robertsonian translocations, which were only observed in 2% of the "half tetrads" at ana-/telophase II. The frequency of Robertsonian translocations observed at ana-/telophase II corresponds well with the number of Robertsonian translocations (1-4%) detected in progenies derived from plants monosomic for group-1 chromosomes of wheat (1A, 1B, and 1D) and 1H(t) of E. trachycaulus. Our data suggest that Robertsonian translocations arise from centric misdivision of univalents at ana-/telophase I, followed by segregation of the derived telocentric chromosomes to the same nucleus, and fusion of the broken ends during the ensuing interkinesis.  相似文献   

16.
Preovulatory mouse oocytes were cultured in vitro up to each subsequent stages of maturation: germinal vesicle (GV), germinal vesicle breakdown (GVBD), groups of not yet individualized bivalents, circular bivalents, late prometaphase I, metaphase I, anaphase I and telophase I. The stages were identified in living oocytes by fluorescence microscopy using Hoechst 33342 as a specific vital dye. Oocytes from each stage of development developed in vitro and ovulated metaphase II oocytes were subsequently cultured in the presence of puromycin or 6-dimethylaminopurine (6-DMAP), an inhibitor of protein phosphorylation. The effects on chromatin of these drugs were studied during and at the end of culture by fluorescence and electron microscopy. We found that puromycin and 6-DMAP stop meiosis when applied at all stages of oocyte maturation, except for metaphase II. Oocytes at this stage are activated by puromycin. Reaction of the oocytes to the two drugs is different at GV and at metaphase II. All of the other stages react to the drugs by chromatin compaction, which can be followed by chromatin decondensation to form a nucleus. Our results suggest that late prophase chromatin condensation, bivalent individualization and retention of their individuality, as well as individualization of monovalents from telophase and retention of their individuality at metaphase II, are dependent on protein phosphorylation. The events occurring between metaphase I and telophase I are independent of protein synthesis and phosphorylation. The events occurring between metaphase II and formation of the nucleus are independent of protein synthesis.by U. Scheer  相似文献   

17.
Meiosis is a specialized cell division essential for sexual reproduction. During meiosis the chromosomes are highly organized, and correct chromosome architecture is required for faithful segregation of chromosomes at anaphase I and II. Condensin is involved in chromosome organization during meiotic and mitotic cell divisions. Three condensin subunits, AtSMC4 and the condensin I and II specific subunits AtCAP‐D2 and AtCAP‐D3, respectively, have been studied for their role in meiosis. This has revealed that both the condensin I and condensin II complexes are required to maintain normal structural integrity of the meiotic chromosomes during the two nuclear divisions. Their roles appear functionally distinct in that condensin I is required to maintain normal compaction of the centromeric repeats and 45S rDNA, whereas loss of condensin II was associated with extensive interchromosome connections at metaphase I. Depletion of condensin is also associated with a slight reduction in crossover formation, suggesting a role during meiotic prophase I.  相似文献   

18.
19.
To elucidate the possible mechanism of disturbances in chromosome segregation leading to the increase in aneuploidy in oocytes of aged females we examined the meiotic spindles of CBA/Ca mice. Employing immunofluorescence with an anti-tubulin antibody, and human scleroderma serum, as well as 4-6-diamidino-2-phenylindole (DAPI) staining of chromosomes the microtubular cytoskeleton could be visualized, and the behaviour of chromosomes and centromeres of oocytes spontaneously maturing in vitro could be studied. The morphology of spindles during the first meiotic division was not conspiciously different in oocytes from young and aged mice as far as the cytoskeletal elements were concerned. Neither multipolar spindles nor pronounced cytoplasmic asters appeared in oocytes of mice approaching the end of their reproductive life (9 months and older). Oocytes of aged females also did not exhibit any sign of premature separation of parental chromosomes at prophase, obvious malorientations of bivalents, or significant lagging of chromosomes during ana and telophase. Metaphase I with all bivalents aligned at the spindle equator appeared to be a relatively brief stage in oocyte development compared with pro-and prometaphase. Therefore, already slight disturbances occuring in the timing of the developmental programme which leads to a premature anaphase transition may be responsible for the high incidence of chromosomally unbalanced gametes in aged females, rather than non-separation and lagging of chromosomes during late ana-and telophase. In a second set of experiments we compared the metaphase II spindles of spontaneously ovulated oocytes obtained from animals at different ages. Previous studies have shown that spindle length and chromosome alignment may be altered in cells predisposed to aneuploidy. To distinguish between the significance of the chronological age of the female and the physiological age of the ovaries (as indicated by the total number of oocytes remaining) we examined the spindle apparatus in young (3–4 months old) and aged (9 months and older) mice as well as CBA females which had been unilaterally ovariectomized (uni-ovx) early in adult life and were approaching the end of their reproductive life at 6–7 months of age. Measurements of the pole-to-pole distance implied that spindle length may be related to maternal age. In oocytes of aged (9 month), uni-ovx (6 month) as well as 6-month-old sham-operated controls the metaphase II spindle was significantly shorter than in oocytes of young mice. By contrast, chromosome disorder and displacement was most pronounced in the aged and uni-ovx mice whilst most oocytes from young mice and moderately aged shamtreated controls exhibited a more regular alignment of chromosomes. These results, which are consistent with recent findings in CBA mice of an increased rate of aneuploidy in females approaching the end of their reproductive life, are discussed with respect to the hypothesis that the aetiology of aneuploidy rests on the critical timing of different events in oocyte development.  相似文献   

20.
Summary The first pollen grain mitosis in Scilla sibirica takes place within three weeks after the completion of meiosis. Within one anther the duration of the first pollen grain mitotic cycle varies substantially. The duration of the mitotic cycle affects the length of chromosomes at metaphase of the first pollen grain mitosis. In grains which divide early the chromosomes at metaphase are longer, up to twice the length, of the chromosomes in grains dividing late. The diminution in length with increase in the mitotic cycle is due to more intensive coiling which, in turn, is explained by a lengthening of G2 and of prophase. The relationship between the duration of the mitotic cycle and chromosome length at metaphase would account, at least largely, for the variation in chromosome length between different tissues within organisms. It explains also why the chromosome at metaphase of mitosis are shorter in polyploids than in their diploid ancestors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号