首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.

Background

In endothelial cells, activation of the AMP-activated protein kinase (AMPK) has been linked with anti-inflammatory actions but the events downstream of kinase activation are not well understood. Here, we addressed the effects of AMPK activation/deletion on the activation of NFκB and determined whether the AMPK could contribute to the anti-inflammatory actions of nitric oxide (NO).

Methodology/Principal Findings

Overexpression of a dominant negative AMPKα2 mutant in tumor necrosis factor-α-stimulated human endothelial cells resulted in increased NFκB activity, E-selectin expression and monocyte adhesion. In endothelial cells from AMPKα2-/- mice the interleukin (IL)-1β induced expression of E-selectin was significantly increased. DETA-NO activated the AMPK and attenuated NFκB activation/E-selectin expression, effects not observed in human endothelial cells in the presence of the dominant negative AMPK, or in endothelial cells from AMPKα2-/- mice. Mechanistically, overexpression of constitutively active AMPK decreased the phosphorylation of IκB and p65, indicating a link between AMPK and the IκB kinase (IKK). Indeed, IKK (more specifically residues Ser177 and Ser181) was found to be a direct substrate of AMPKα2 in vitro. The hyper-phosphorylation of the IKK, which is known to result in its inhibition, was also apparent in endothelial cells from AMPKα2+/+ versus AMPKα2-/- mice.

Conclusions

These results demonstrate that the IKK is a direct substrate of AMPKα2 and that its phosphorylation on Ser177 and Ser181 results in the inhibition of the kinase and decreased NFκB activation. Moreover, as NO potently activates AMPK in endothelial cells, a portion of the anti-inflammatory effects of NO are mediated by AMPK.  相似文献   

2.
AMPK regulates circadian rhythms in a tissue- and isoform-specific manner   总被引:1,自引:0,他引:1  

Background

AMP protein kinase (AMPK) plays an important role in food intake and energy metabolism, which are synchronized to the light-dark cycle. In vitro, AMPK affects the circadian rhythm by regulating at least two clock components, CKIα and CRY1, via direct phosphorylation. However, it is not known whether the catalytic activity of AMPK actually regulates circadian rhythm in vivo.

Methodology/Principal Finding

The catalytic subunit of AMPK has two isoforms: α1 and α2. We investigate the circadian rhythm of behavior, physiology and gene expression in AMPKα1−/− and AMPKα2−/− mice. We found that both α1−/− and α2−/− mice are able to maintain a circadian rhythm of activity in dark-dark (DD) cycle, but α1−/− mice have a shorter circadian period whereas α2−/− mice showed a tendency toward a slightly longer circadian period. Furthermore, the circadian rhythm of body temperature was dampened in α1−/− mice, but not in α2−/− mice. The circadian pattern of core clock gene expression was severely disrupted in fat in α1−/− mice, but it was severely disrupted in the heart and skeletal muscle of α2−/− mice. Interestingly, other genes that showed circadian pattern of expression were dysreguated in both α1−/− and α2−/− mice. The circadian rhythm of nicotinamide phosphoryl-transferase (NAMPT) activity, which converts nicotinamide (NAM) to NAD+, is an important regulator of the circadian clock. We found that the NAMPT rhythm was absent in AMPK-deficient tissues and cells.

Conclusion/Significance

This study demonstrates that the catalytic activity of AMPK regulates circadian rhythm of behavior, energy metabolism and gene expression in isoform- and tissue-specific manners.  相似文献   

3.
Park MT  Song MJ  Lee H  Oh ET  Choi BH  Jeong SY  Choi EK  Park HJ 《PloS one》2011,6(10):e25976

Background

β-lapachone (β-lap), has been known to cause NQO1-dependnet death in cancer cells and sensitize cancer cells to ionizing radiation (IR). We investigated the mechanisms underlying the radiosensitization caused by β-lap.

Methodology/Principal Findings

β-lap enhanced the effect of IR to cause clonogenic cells in NQO1+-MDA-MB-231 cells but not in NQO1-MDA-MB-231 cells. β-lap caused apoptosis only in NQO1+ cells and not in NQO1 cells and it markedly increased IR-induced apoptosis only in NQO1+ cells. Combined treatment of NQO1+ cells induced ROS generation, triggered ER stress and stimulated activation of ERK and JNK. Inhibition of ROS generation by NAC effectively attenuated the activation of ERK and JNK, induction of ER stress, and subsequent apoptosis. Importantly, inhibition of ERK abolished ROS generation and ER stress, whereas inhibition of JNK did not, indicating that positive feedback regulation between ERK activation and ROS generation triggers ER stress in response to combined treatment. Furthermore, prevention of ER stress completely blocked combination treatment-induced JNK activation and subsequent apoptotic cell death. In addition, combined treatment efficiently induced the mitochondrial translocation of cleaved Bax, disrupted mitochondrial membrane potential, and the nuclear translocation of AIF, all of which were efficiently blocked by a JNK inhibitor. Caspases 3, 8 and 9 were activated by combined treatment but inhibition of these caspases did not abolish apoptosis indicating caspase activation played a minor role in the induction of apoptosis.

Conclusions/Significance

β-lap causes NQO1-dependent radiosensitization of cancer cells. When NQO1+ cells are treated with combination of IR and β-lap, positive feedback regulation between ERK and ROS leads to ER stress causing JNK activation and mitochondrial translocation of cleaved Bax. The resultant decrease in mitochondrial membrane leads to translocation of AIF and apoptosis.  相似文献   

4.

Introduction

AMP-activated protein kinase (AMPK) maintains cultured chondrocyte matrix homeostasis in response to inflammatory cytokines. AMPK activity is decreased in human knee osteoarthritis (OA) chondrocytes. Liver kinase B1 (LKB1) is one of the upstream activators of AMPK. Hence, we examined the relationship between LKB1 and AMPK activity in OA and aging cartilages, and in chondrocytes subjected to inflammatory cytokine treatment and biomechanical compression injury, and performed translational studies of AMPK pharmacologic activation.

Methods

We assessed activity (phosphorylation) of LKB1 and AMPKα in mouse knee OA cartilage, in aging mouse cartilage (6 to 24 months), and in chondrocytes after mechanical injury by dynamic compression, via immunohistochemistry or western blot. We knocked down LKB1 by siRNA transfection. Nitric oxide, matrix metalloproteinase (MMP)-3, and MMP-13 release were measured by Griess reaction and ELISA, respectively.

Results

Knockdown of LKB1 attenuated chondrocyte AMPK activity, and increased nitric oxide, MMP-3 and MMP-13 release (P <0.05) in response to IL-1β and TNFα. Both LKB1 and AMPK activity were decreased in mouse knee OA and aged knee cartilage, and in bovine chondrocytes after biomechanical injury. Pretreatment of bovine chondrocytes with AMPK activators AICAR and A-769662 inhibited both AMPKα dephosphorylation and catabolic responses after biomechanical injury.

Conclusion

LKB1 is required for chondrocyte AMPK activity, thereby inhibiting matrix catabolic responses to inflammatory cytokines. Concurrent loss of LKB1 and AMPK activity in articular chondrocytes is associated with OA, aging and biomechanical injury. Conversely, pharmacologic AMPK activation attenuates catabolic responses to biomechanical injury, suggesting a potentially novel approach to inhibit OA development and progression.  相似文献   

5.

Aim

Activation of the master energy-regulator AMP-activated protein kinase (AMPK) in the heart reduces the severity of ischemia-reperfusion injury (IRI) but the role of AMPK in renal IRI is not known. The aim of this study was to determine whether activation of AMPK by acute renal ischemia influences the severity of renal IRI.

Methods

AMPK expression and activation and the severity of renal IRI was studied in mice lacking the AMPK β1 subunit and compared to wild type (WT) mice.

Results

Basal expression of activated AMPK, phosphorylayed at αThr172, was markedly reduced by 96% in AMPK-β1−/− mice. Acute renal ischaemia caused a 3.2-fold increase in α1-AMPK activity and a 2.5-fold increase in α2-AMPK activity (P<0.001) that was associated with an increase in AMPK phosphorylation of the AMPK-α subunit at Thr172 and Ser485, and increased inhibitory phosphorylation of the AMPK substrate acetyl-CoA carboxylase. After acute renal ischemia AMPK activity was reduced by 66% in AMPK-β1−/− mice compared with WT. There was no difference, however, in the severity of renal IRI at 24-hours between AMPK-β1−/− and WT mice, as measured by serum urea and creatinine and histological injury score. In the heart, macrophage migration inhibitory factor (MIF) released during IRI contributes to AMPK activation and protects from injury. In the kidney, however, no difference in AMPK activation by acute ischemia was observed between MIF−/− and WT mice. Compared with the heart, expression of the MIF receptor CD74 was found to be reduced in the kidney.

Conclusion

The failure of AMPK activation to influence the outcome of IRI in the kidney contrasts with what is reported in the heart. This difference might be due to a lack of effect of MIF on AMPK activation and lower CD74 expression in the kidney.  相似文献   

6.
Yang SJ  Choi JM  Chae SW  Kim WJ  Park SE  Rhee EJ  Lee WY  Oh KW  Park SW  Kim SW  Park CY 《PloS one》2011,6(2):e17057

Background

Sirt6 has been implicated in the regulation of hepatic lipid metabolism and the development of hepatic steatosis. The aim of this study was to address the potential role of Sirt6 in the protective effects of rosiglitazone (RGZ) on hepatic steatosis.

Methods

To investigate the effect of RGZ on hepatic steatosis, rats were treated with RGZ (4 mg·kg−1·day−1) by stomach gavage for 6 weeks. The involvement of Sirt6 in the RGZ''s regulation was evaluated by Sirt6 knockdown in AML12 mouse hepatocytes.

Results

RGZ treatment ameliorated hepatic lipid accumulation and increased expression of Sirt6, peroxisome proliferator-activated receptor gamma coactivtor-1-α (Ppargc1a/PGC1-α) and Forkhead box O1 (Foxo1) in rat livers. AMP-activated protein kinase (AMPK) phosphorylation was also increased by RGZ, accompanied by alterations in phosphorylation of LKB1. Interestingly, in free fatty acid-treated cells, Sirt6 knockdown increased hepatocyte lipid accumulation measured as increased triglyceride contents (p = 0.035), suggesting that Sirt6 may be beneficial in reducing hepatic fat accumulation. In addition, Sirt6 knockdown abolished the effects of RGZ on hepatocyte fat accumulation, mRNA and protein expression of Ppargc1a/PGC1-α and Foxo1, and phosphorylation levels of LKB1 and AMPK, suggesting that Sirt6 is involved in RGZ-mediated metabolic effects.

Conclusion

Our results demonstrate that RGZ significantly decreased hepatic lipid accumulation, and that this process appeared to be mediated by the activation of the Sirt6-AMPK pathway. We propose Sirt6 as a possible therapeutic target for hepatic steatosis.  相似文献   

7.

Background

Ursolic acid (UA) is a triterpenoid compound with multiple biological functions. This compound has recently been reported to possess an anti-obesity effect; however, the mechanisms are less understood.

Objective

As adipogenesis plays a critical role in obesity, the present study was conducted to investigate the effect of UA on adipogenesis and mechanisms of action in 3T3-L1 preadipocytes.

Methods and Results

The 3T3-L1 preadipocytes were induced to differentiate in the presence or absence of UA for 6 days. The cells were determined for proliferation, differentiation, fat accumulation as well as the protein expressions of molecular targets that regulate or are involved in fatty acid synthesis and oxidation. The results demonstrated that ursolic acid at concentrations ranging from 2.5 µM to 10 µM dose-dependently attenuated adipogenesis, accompanied by reduced protein expression of CCAAT element binding protein β (C/EBPβ), peroxisome proliferator-activated receptor γ (PPARγ), CCAAT element binding protein α (C/EBPα) and sterol regulatory element binding protein 1c (SREBP-1c), respectively. Ursolic acid increased the phosphorylation of acetyl-CoA carboxylase (ACC) and protein expression of carnitine palmitoyltransferase 1 (CPT1), but decreased protein expression of fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Ursolic acid increased the phosphorylation of AMP-activated protein kinase (AMPK) and protein expression of (silent mating type information regulation 2, homolog) 1 (Sirt1). Further studies demonstrated that the anti-adipogenic effect of UA was reversed by the AMPK siRNA, but not by the Sirt1 inhibitor nicotinamide. Liver kinase B1 (LKB1), the upstream kinase of AMPK, was upregulated by UA. When LKB1 was silenced with siRNA or the inhibitor radicicol, the effect of UA on AMPK activation was diminished.

Conclusions

Ursolic acid inhibited 3T3-L1 preadipocyte differentiation and adipogenesis through the LKB1/AMPK pathway. There is potential to develop UA into a therapeutic agent for the prevention or treatment of obesity.  相似文献   

8.
The binding of the adaptor protein APPL1 to adiponectin receptors is necessary for adiponectin-induced AMP-activated protein kinase (AMPK) activation in muscle, yet the underlying molecular mechanism remains unknown. Here we show that in muscle cells adiponectin and metformin induce AMPK activation by promoting APPL1-dependent LKB1 cytosolic translocation. APPL1 mediates adiponectin signaling by directly interacting with adiponectin receptors and enhances LKB1 cytosolic localization by anchoring this kinase in the cytosol. Adiponectin also activates another AMPK upstream kinase Ca2+/calmodulin-dependent protein kinase kinase by activating phospholipase C and subsequently inducing Ca2+ release from the endoplasmic reticulum, which plays a minor role in AMPK activation. Our results show that in muscle cells adiponectin is able to activate AMPK via two distinct mechanisms as follows: a major pathway (the APPL1/LKB1-dependent pathway) that promotes the cytosolic localization of LKB1 and a minor pathway (the phospholipase C/Ca2+/Ca2+/calmodulin-dependent protein kinase kinase-dependent pathway) that stimulates Ca2+ release from intracellular stores.Adiponectin, an adipokine abundantly expressed in adipose tissue, exhibits anti-diabetic, anti-inflammatory, and anti-atherogenic properties and hence is a potential therapeutic target for various metabolic diseases (13). The beneficial effects of adiponectin are mediated through the direct interaction of adiponectin with its cell surface receptors, AdipoR1 and AdipoR2 (4, 5). Adiponectin increases fatty acid oxidation and glucose uptake in muscle cells by activating AMP-activated protein kinase (AMPK)3 (4, 6), which depends on the interaction of AdipoR1 with the adaptor protein APPL1 (Adaptor protein containing Pleckstrin homology domain, Phosphotyrosine binding domain, and Leucine zipper motif) (5). However, the underlying mechanisms by which APPL1 mediates adiponectin signaling to AMPK activation and other downstream targets remain unclear.AMPK is a serine/threonine protein kinase that acts as a master sensor of cellular energy balance in mammalian cells by regulating glucose and lipid metabolism (7, 8). AMPK is composed of a catalytic α subunit and two noncatalytic regulatory subunits, β and γ. The NH2-terminal catalytic domain of the AMPKα subunit is highly conserved and contains the activating phosphorylation site (Thr172) (9). Two AMPK variants, α1 and α2, exist in mammalian cells that show different localization patterns. AMPKα1 subunit is localized in non-nuclear fractions, whereas the AMPKα2 subunit is found in both nucleus and non-nuclear fractions (10). Biochemical regulation of AMPK activation occurs through various mechanisms. An increase in AMP level stimulates the binding of AMP to the γ subunit, which induces a conformational change in the AMPK heterotrimer and results in AMPK activation (11). Studies have shown that the increase in AMPK activity is not solely via AMP-dependent conformational change, rather via phosphorylation by upstream kinases, LKB1 and CaMKK. Dephosphorylation by protein phosphatases is also important in regulating the activity of AMPK (12).LKB1 has been considered as a constitutively active serine/threonine protein kinase that is ubiquitously expressed in all tissues (13, 14). Under conditions of high cellular energy stress, LKB1 acts as the primary AMPK kinase through an AMP-dependent mechanism (1517). Under normal physiological conditions, LKB1 is predominantly localized in the nucleus. LKB1 is translocated to the cytosol, either by forming a heterotrimeric complex with Ste20-related adaptor protein (STRADα/β) and mouse protein 25 (MO25α/β) or by associating with an LKB1-interacting protein (LIP1), to exert its biological function (1822). Although LKB1 has been shown to mediate contraction- and adiponectin-induced activation of AMPK in muscle cells, the underlying molecular mechanisms remain elusive (15, 23).CaMKK is another upstream kinase of AMPK, which shows considerable sequence and structural homology with LKB1 (2426). The two isoforms of CaMKK, CaMKKα and CaMKKβ, encoded by two distinct genes, share ∼70% homology at the amino acid sequence level and exhibit a wide expression in rodent tissues, including skeletal muscle (2734). Unlike LKB1, AMPK phosphorylation mediated by CaMKKs is independent of AMP and is dependent only on Ca2+/calmodulin (35). Hence, it is possible that an LKB1-independent activation of AMPK by CaMKK exists in muscle cells. However, whether and how adiponectin stimulates this pathway in muscle cells are not known.In this study, we demonstrate that in muscle cells adiponectin induces an APPL1-dependent LKB1 translocation from the nucleus to the cytosol, leading to increased AMPK activation. Adiponectin also activates CaMKK by stimulating intracellular Ca2+ release via the PLC-dependent mechanism, which plays a minor role in activation of AMPK. Taken together, our results demonstrate that enhanced cytosolic localization of LKB1 and Ca2+-induced activation of CaMKK are the mechanisms underlying adiponectin-stimulated AMPK activation in muscle cells.  相似文献   

9.

Background

Energetic and metabolic circuits that orchestrate cell differentiation are largely unknown. Adenylate kinase (AK) and associated AMP-activated protein kinase (AMPK) constitute a major metabolic signaling axis, yet the role of this system in guiding differentiation and lineage specification remains undefined.

Methods and Results

Cardiac stem cell differentiation is the earliest event in organogenesis, and a suitable model of developmental bioenergetics. Molecular profiling of embryonic stem cells during cardiogenesis revealed here a distinct expression pattern of adenylate kinase and AMPK genes that encode the AK-AMP-AMPK metabolic surveillance axis. Cardiac differentiation upregulated cytosolic AK1 isoform, doubled AMP-generating adenylate kinase activity, and increased AMP/ATP ratio. At cell cycle initiation, AK1 translocated into the nucleus and associated with centromeres during energy-consuming metaphase. Concomitantly, the cardiac AMP-signal receptor AMPKα2 was upregulated and redistributed to the nuclear compartment as signaling-competent phosphorylated p-AMPKα(Thr172). The cardiogenic growth factor TGF-β promoted AK1 expression, while knockdown of AK1, AK2 and AK5 activities with siRNA or suppression by hyperglycemia disrupted cardiogenesis compromising mitochondrial and myofibrillar network formation and contractile performance. Induction of creatine kinase, the alternate phosphotransfer pathway, compensated for adenylate kinase-dependent energetic deficits.

Conclusions

Developmental deployment and upregulation of the adenylate kinase/AMPK tandem provides a nucleocytosolic energetic and metabolic signaling vector integral to execution of stem cell cardiac differentiation. Targeted redistribution of the adenylate kinase-AMPK circuit associated with cell cycle and asymmetric cell division uncovers a regulator for cardiogenesis and heart tissue regeneration.  相似文献   

10.

Objectives

Binge alcohol drinking often triggers myocardial contractile dysfunction although the underlying mechanism is not fully clear. This study was designed to examine the impact of cardiac-specific overexpression of alcohol dehydrogenase (ADH) on ethanol-induced change in cardiac contractile function, intracellular Ca2+ homeostasis, insulin and AMP-dependent kinase (AMPK) signaling.

Methods

ADH transgenic and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3 days. Oral glucose tolerance test, cardiac AMP/ATP levels, cardiac contractile function, intracellular Ca2+ handling and AMPK signaling (including ACC and LKB1) were examined.

Results

Ethanol exposure led to glucose intolerance, elevated plasma insulin, compromised cardiac contractile and intracellular Ca2+ properties, downregulated protein phosphatase PP2A subunit and PPAR-γ, as well as phosphorylation of AMPK, ACC and LKB1, all of which except plasma insulin were overtly accentuated by ADH transgene. Interestingly, myocardium from ethanol-treated FVB mice displayed enhanced expression of PP2Cα and PGC-1α, decreased insulin receptor expression as well as unchanged expression of Glut4, the response of which was unaffected by ADH. Cardiac AMP-to-ATP ratio was significantly enhanced by ethanol exposure with a more pronounced increase in ADH mice. In addition, the AMPK inhibitor compound C (10 µM) abrogated acute ethanol exposure-elicited cardiomyocyte mechanical dysfunction.

Conclusions

In summary, these data suggest that the ADH transgene exacerbated acute ethanol toxicity-induced myocardial contractile dysfunction, intracellular Ca2+ mishandling and glucose intolerance, indicating a role of ADH in acute ethanol toxicity-induced cardiac dysfunction possibly related to altered cellular fuel AMPK signaling cascade.  相似文献   

11.
Cheng ZX  Sun B  Wang SJ  Gao Y  Zhang YM  Zhou HX  Jia G  Wang YW  Kong R  Pan SH  Xue DB  Jiang HC  Bai XW 《PloS one》2011,6(8):e23752

Background

Epithelial to mesenchymal transition (EMT) induced by hypoxia is one of the critical causes of treatment failure in different types of human cancers. NF-κB is closely involved in the progression of EMT. Compared with HIF-1α, the correlation between NF-κB and EMT during hypoxia has been less studied, and although the phenomenon was observed in the past, the molecular mechanisms involved remained unclear.

Methodology/Principal Findings

Here, we report that hypoxia or overexpression of hypoxia-inducible factor-1α (HIF-1α) promotes EMT in pancreatic cancer cells. On molecular or pharmacologic inhibition of NF-κB, hypoxic cells regained expression of E-cadherin, lost expression of N-cadherin, and attenuated their highly invasive and drug-resistant phenotype. Introducing a pcDNA3.0/HIF-1α into pancreatic cancer cells under normoxic conditions heightened NF-κB activity, phenocopying EMT effects produced by hypoxia. Conversely, inhibiting the heightened NF-κB activity in this setting attenuated the EMT phenotype.

Conclusions/Significance

These results suggest that hypoxia or overexpression of HIF-1α induces the EMT that is largely dependent on NF-κB in pancreatic cancer cells.  相似文献   

12.

Background

Diabetic nephropathy (DN) has been recognized as the leading cause of end-stage renal disease. Resveratrol (RSV), a polyphenolic compound, has been indicated to possess an insulin-like property in diabetes. In the present study, we aimed to investigate the renoprotective effects of RSV and delineate its underlying mechanism in early-stage DN.

Methods

The protective effects of RSV on DN were evaluated in streptozotocin (STZ)-induced diabetic rats.

Results

The plasma glucose, creatinine, and blood urea nitrogen were significantly elevated in STZ-induced diabetic rats. RSV treatment markedly ameliorated hyperglycemia and renal dysfunction in STZ-induced diabetic rats. The diabetes-induced superoxide anion and protein carbonyl levels were also significantly attenuated in RSV-treated diabetic kidney. The AMPK protein phosphorylation and expression levels were remarkably reduced in diabetic renal tissues. In contrast, RSV treatment significantly rescued the AMPK protein expression and phosphorylation compared to non-treated diabetic group. Additionally, hyperglycemia markedly enhanced renal production of proinflammatory cytokine IL-1β. RSV reduced IL-1β but increased TNF-α and IL-6 levels in the diabetic kidneys.

Conclusions

Our findings suggest that RSV protects against oxidative stress, exhibits concurrent proinflammation and anti-inflammation, and up-regulates AMPK expression and activation, which may contribute to its beneficial effects on the early stage of DN.  相似文献   

13.
Y Zong  L Sun  B Liu  YS Deng  D Zhan  YL Chen  Y He  J Liu  ZJ Zhang  J Sun  D Lu 《PloS one》2012,7(8):e44107

Background

Resveratrol is a natural polyphenolic compound that has cardioprotective, anticancer and anti-inflammatory properties. We investigated the capacity of resveratrol to protect RAW 264.7 cells from inflammatory insults and explored mechanisms underlying inhibitory effects of resveratrol on RAW 264.7 cells.

Methodology/Principal Findings

Murine RAW 264.7 cells were treated with resveratrol (1, 5, and 10 µM) and/or LPS (5 µg/ml). Nitric oxide (NO) and prostaglandin E2 (PGE2) were measured by Griess reagent and ELISA. The mRNA and protein levels of proinflammatory proteins and cytokines were analysed by ELISA, RT-PCR and double immunofluorescence labeling, respectively. Phosphorylation levels of Akt, cyclic AMP-responsive element-binding protein (CREB), mitogen-activated protein kinases (MAPKs) cascades, AMP-activated protein kinase (AMPK) and expression of SIRT1(Silent information regulator T1) were measured by western blot. Wortmannin (1 µM), a specific phosphatidylinositol 3-kinase (PI3-K) inhibitor, was used to determine if PI3-K/Akt signaling pathway might be involved in resveratrol’s action on RAW 264.7 cells. Resveratrol significantly attenuated the LPS-induced expression of nitric oxide (NO), prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in RAW 264.7 cells. Resveratrol increased Akt phosphorylation in a time-dependent manner. Wortmannin, a specific phosphatidylinositol 3-kinase (PI3-K) inhibitor, blocked the effects of resveratrol on LPS-induced RAW 264.7 cells activation. In addition, PI3-K inhibition partially abolished the inhibitory effect of resveratrol on the phosphorylation of cyclic AMP-responsive element-binding protein (CREB) and mitogen-activated protein kinases (MAPKs) cascades. Meanwhile, PI3-K is essential for resveratrol-mediated phosphorylation of AMPK and expression of SIRT1.

Conclusion and Implications

This investigation demonstrates that PI3-K/Akt activation is an important signaling in resveratrol-mediated activation of AMPK phosphorylation and SIRT1 expression, and inhibition of phosphorylation of CREB and MAPKs activation, proinflammatory mediators and cytokines production in response to LPS in RAW 264.7 cells.  相似文献   

14.

Background

Hepatocellular carcinoma (HCC) is the most commonly occurring primary liver cancer and ranks as the fifth most frequently occurring cancer, overall, and the third leading cause of cancer deaths, worldwide. At present, effective therapeutic options available for HCC are limited; consequently, the prognosis for these patients is poor. Our aim in the present study was to identify a novel target for antibody therapy against HCC.

Methodology/Principal Findings

We used Western blot and flow cytometric and immunocytochemical analyses to investigate the regulation of FGFR1 expression by interferon-α/β in several human hepatic cancer cell lines. In addition, we tested the efficacy of combined treatment with anti-FGFR1 monoclonal antibody and interferon-α/β in a murine xenograft model of human HCC. We found that interferon-α/β induces expression of FGFR1 in human HCC cell lines, and that an anti-FGFR1 monoclonal antibody (mAb) targeting of the induced FGFR1 can effectively inhibit growth and survival of HCC cells in vitro and in vivo. Moreover, the combination of interferon-α, anti-FGFR1 mAb and peripheral blood mononuclear cells (PBMCs) exerted a significant antitumor effect in vitro.

Conclusions

Our results suggest that the combined use of an anti-FGFR1 antibody and interferon-α/β is a promising approach to the treatment of HCC.  相似文献   

15.
Lin KY  Tai C  Hsu JC  Li CF  Fang CL  Lai HC  Hseu YC  Lin YF  Uen YH 《PloS one》2011,6(2):e17193

Background

Colorectal cancer (CRC) is one of the most common malignancies but the current therapeutic approaches for advanced CRC are less efficient. Thus, novel therapeutic approaches are badly needed. The purpose of this study is to investigate the involvement of nuclear protein kinase CK2 α subunit (CK2α) in tumor progression, and in the prognosis of human CRC.

Methodology/Principal Findings

Expression levels of nuclear CK2α were analyzed in 245 colorectal tissues from patients with CRC by immunohistochemistry, quantitative real-time PCR and Western blot. We correlated the expression levels with clinicopathologic parameters and prognosis in human CRC patients. Overexpression of nuclear CK2α was significantly correlated with depth of invasion, nodal status, American Joint Committee on Cancer (AJCC) staging, degree of differentiation, and perineural invasion. Patients with high expression levels of nuclear CK2α had a significantly poorer overall survival rate compared with patients with low expression levels of nuclear CK2α. In multi-variate Cox regression analysis, overexpression of nuclear CK2α was proven to be an independent prognostic marker for CRC. In addition, DLD-1 human colon cancer cells were employed as a cellular model to study the role of CK2α on cell growth, and the expression of CK2α in DLD-1 cells was inhibited by using siRNA technology. The data indicated that CK2α-specific siRNA treatment resulted in growth inhibition.

Conclusions/Significance

Taken together, overexpression of nuclear CK2α can be a useful marker for predicting the outcome of patients with CRC.  相似文献   

16.

Introduction and Objectives

Lymphatic metastasis is a common occurrence in human breast cancer, mechanisms remaining poorly understood. MDA-MB-468LN (468LN), a variant of the MDA-MB-468GFP (468GFP) human breast cancer cell line, produces extensive lymphatic metastasis in nude mice. 468LN cells differentially express α9β1 integrin, a receptor for lymphangiogenic factors VEGF-C/-D. We explored whether (1) differential production of VEGF-C/-D by 468LN cells provides an autocrine stimulus for cellular motility by interacting with α9β1 and a paracrine stimulus for lymphangiogenesis in vitro as measured with capillary-like tube formation by human lymphatic endothelial cells (HMVEC-dLy); (2) differential expression of α9 also promotes cellular motility/invasiveness by interacting with macrophage derived factors; (3) stable knock-down of VEGF-D or α9 in 468LN cells abrogates lymphangiogenesis and lymphatic metastasis in vivo in nude mice.

Results

A comparison of expression of cyclo-oxygenase (COX)-2 (a VEGF-C/-D inducer), VEGF-C/-D and their receptors revealed little COX-2 expression by either cells. However, 468LN cells showed differential VEGF-D and α9β1 expression, VEGF-D secretion, proliferative, migratory/invasive capacities, latter functions being stimulated further with VEGF-D. The requirement of α9β1 for native and VEGF-D-stimulated proliferation, migration and Erk activation was demonstrated by treating with α9β1 blocking antibody or knock-down of α9. An autocrine role of VEGF-D in migration was shown by its impairment by silencing VEGF-D and restoration with VEGF-D. 468LN cells and their soluble products stimulated tube formation, migration/invasiveness of HMVEC-dLy cell in a VEGF-D dependent manner as indicated by the loss of stimulation by silencing VEGF-D in 468LN cells. Furthermore, 468LN cells showed α9-dependent stimulation of migration/invasiveness by macrophage products. Finally, capacity for intra-tumoral lymphangiogenesis and lymphatic metastasis in nude mice was completely abrogated by stable knock-down of either VEGF-D or α9 in 468LN cells.

Conclusion

Differential capacity for VEGF-D production and α9β1 integrin expression by 468LN cells jointly contributed to their lymphatic metastatic phenotype.  相似文献   

17.
18.

Introduction

17β-hydroxysteroid dehydrogenases (17βHSDs) are important enzymes regulating the pool of bioactive steroids in the breast. The current study was undertaken in order to evaluate implications of 17βHSD14 in breast cancer, measuring 17βHSD14 protein expression in breast tumours.

Methods

An antibody targeting the 17βHSD14 antigen was generated and validated using HSD17B14-transfected cells and a peptide-neutralising assay. Tissue microarrays with tumours from 912 post-menopausal women diagnosed with lymph node-negative breast cancer, and randomised to adjuvant tamoxifen or no endocrine treatment, were analysed for 17βHSD14 protein expression with immunohistochemistry.

Results

Results were obtained from 847 tumours. Patients with oestrogen positive tumours with high 17βHSD14 expression had fewer local recurrences when treated with tamoxifen (HR 0.38; 95% C.I. 0.19–0.77, p = 0.007) compared to patients with lower tumoural 17βHSD14 expression, for whom tamoxifen did not reduce the number of local recurrences (HR 1.19; 95% C.I. 0.54–2.59; p = 0.66). No prognostic importance of 17βHSD14 was seen for systemically untreated patients.

Conclusions

Using a highly specific validated antibody for immunohistochemical analysis of a large number of breast tumours, we have shown that tumoural expression levels of 17βHSD14 can predict the outcome of adjuvant tamoxifen treatment in terms of local recurrence-free survival in patients with lymph node-negative ER+ breast cancer. The results need be verified to confirm any clinical relevance.  相似文献   

19.

Background

Under stress, AMP-activated protein kinase (AMPK) plays a central role in energy balance, and the heat shock response is a protective mechanism for cell survival. The relationship between AMPK activity and heat shock protein (HSP) expression under stress is unclear.

Methodology/Principal Findings

We found that heat stress induced dephosphorylation of AMPKα subunit (AMPKα) in various cell types from human and rodent. In HepG2 cells, the dephosphorylation of AMPKα under heat stress in turn caused dephosphorylation of acetyl-CoA carboxylase and upregulation of phosphoenolpyruvate carboxykinase, two downstream targets of AMPK, confirming the inhibition of AMPK activity by heat stress. Treatment of HepG2 cells with phosphatase 2A (PP2A) inhibitor okadaic acid or inhibition of PP2A expression by RNA interference efficiently reversed heat stress-induced AMPKα dephosphorylation, suggesting that heat stress inhibited AMPK through activation of PP2A. Heat stress- and other HSP inducer (CdCl2, celastrol, MG132)-induced HSP70 expression could be inhibited by AICAR, an AMPK specific activator. Inhibition of AMPKα expression by RNA interference reversed the inhibitory effect of AICAR on HSP70 expression under heat stress. These results indicate that AMPK inhibition under stress contribute to HSP70 expression. Mechanistic studies showed that activation of AMPK by AICAR had no effect on heat stress-induced HSF1 nuclear translocation, phosphorylation and binding with heat response element in the promoter region of HSP70 gene, but significantly decreased HSP70 mRNA stability.

Conclusions/Significance

These results demonstrate that during heat shock response, PP2A mediated AMPK inhibition upregulates HSP70 expression at least partially through stabilizing its mRNA, which suggests a novel mechanism for HSP induction under stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号