首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Spatial and seasonal characteristics of phytoplankton in Tolo Harbour, Hong Kong, were studied by microscopic observation of phytoplankton samples and HPLC analysis of chemotaxonomic pigments. Diatoms dominated the phytoplankton. Common diatoms included Skeletonema costatum and species of Cerataulina, Leptocylindrus, Pseudo-nitzschia and Thalassiosira. Dinoflagellates occurred sporadically and mainly in the inner part of the harbour. The dinoflagellate Scrippsiella trochoidea was the causative organism for the red tide occurrences in March, April and September 2001. Significant positive correlations between fucoxanthin and diatoms and between peridinin and dinoflagellates suggested that fucoxanthin and peridinin were valuable chemotaxonomic markers for diatoms and dinoflagellates, respectively. Analysis of pigment ratios revealed that red tide events caused by dinoflagellates were marked by increase in the value of PERI:chl a and decrease in the value of FUCO:chl a. Increase in the value of FUCO:chl a also revealed the presence of a dense population of Pseudo-nitzschia that was not indicated by increase in chlorophyll a and fucoxanthin concentrations. Pigment analysis also revealed the presence of cyanobacteria, silicoflagellates, cryptophytes and green algae in the surface waters of Tolo Harbour.  相似文献   

2.
The short-term temporal dynamics of phytoplankton composition was compared among coral reef waters, the adjacent ocean and polluted harbour water from July until October along the south-western coast of Curaçao, southern Caribbean. Temporal variations in phytoplankton pigment 'fingerprints' (zeaxanthin, chlorophyll b, 19'-hexanoyloxyfucoxanthin, fucoxanthin, 19'-butanoyloxyfucoxanthin, chlorophyll c2 and c3 relative to chlorophyll a) in the ocean were also observed in waters overlying the reef. However, with respect to specific pigments and algal-size distribution, the algal composition in reef waters was usually slightly different from that in the oceanic water. Phytoplankton biomass (chlorophyll a) was either higher or lower than in the oceanic water. The relative amount of fucoxanthin and peridinin was usually higher, and the relative and absolute amount of zeaxanthin was significantly lower than in oceanic water. Zeaxanthin-containing Synechococci were significantly reduced in reef water. Average algal cell size increased from the open water to the reef and the harbour entrance. Large centric diatoms (>20 m Ø) were better represented in reef than in oceanic water. In reef-overlying waters, the nitrate and nitrite concentrations were higher than in oceanic water. In front of the town, anthropogenic eutrophication (sewage discharge and ground water seepage) resulted in higher NH4, NO3 and PO4 concentrations than at other reef stations. This concurred with significantly enhanced phytoplankton biomass (chlorophyll a), chlorophyll c2 and peridinin amounts at Town Reef compared with the other reef stations. Polluted harbour water usually showed the highest phytoplankton biomass of all stations, dominated by diatoms and dinoflagellates. Conditions in reef waters and harbour water promoted the occurrence and the relative abundance of diatoms and dinoflagellates. Harbour water did not influence the phytoplankton composition and biomass at reef stations situated >5 km away from the harbour entrance. We conclude that phytoplankton undergoes a shift in algal composition during transit over the reef. The dominant processes appear to be selective removal of zeaxanthin-containing Synechococcus (by the reef benthos) and (relative) increase in diatoms and dinoflagellates. The difference in the phytoplankton composition between reef and oceanic waters tends to increase with decreasing dilution of reef water with ocean water.  相似文献   

3.
Tolo Harbour is a poorly flushed bay in the northeastern corner of Hong Kong. Eutrophication caused by discharge of untreated and secondarily treated sewage into the bay was first detected during the 1970s. Increased nutrient input led to a noticeable increase in algal biomass and algal bloom occurrences. Nutrient reduction measures, including the construction of a pipeline to export all sewage effluents from Tolo Harbour, were introduced during the late 1980s. Decline in nutrient levels and decrease in the number of algal blooms have been recorded since 1998 when all nutrient reduction measures became fully operational. Zooplankton samples collected during 2003–2004 revealed that Tolo Harbour still contained a higher density and lower diversity of planktonic copepods compared to Mirs Bay, a less-polluted sea area outside Tolo Harbour. A comparison between data collected in this study to those collected during 1988–1990, several years before nutrient reduction measures were to be fully implemented, showed a decrease in copepod densities and an increase in copepod diversity. Small copepods, notably species of Paracalanus and Oithona, dominated the copepod communities in both periods, but there was an increase in species evenness during 2003–2004, caused by an increase in the number of dominant species. These observations confirm that eutrophication may lead to increases in copepod densities accompanied by increased dominance of small species.  相似文献   

4.
Dinoflagellates are characterized by low maximum photosynthetic rates and high respiratory costs. Recent evidence also suggests that dinoflagellates are disproportionately abundant in the diets of many copepods. This suggests that at least some species are preferred prey types. This begs the question: 'How do dinoflagellates co-exist with other, seemingly competitively superior, algal taxa'? Their motility may enable them to maintain position better in the light-rich surface waters, and more successfully make the return journey into deeper waters in order to replenish their internal nutrient stores when surface nutrients become depleted. This theory is examined using a depth-resolved model of algal dynamics. Nutrients and organic detrital matter are represented on a Eulerian grid, whilst a Lagrangian approach is used to represent dinoflagellates and diatoms. The model indicates that strictly autotrophic dinoflagellates have difficulty balancing their metabolic budgets. Even in the absence of competition from diatoms, motility is almost essential to dinoflagellate persistence. Only extremely motile dinoflagellates are able to compete successfully with diatoms. In reality, an increasing number of dinoflagellate species are being found to be mixotrophic. This model suggests that mixotrophy may often be an obligatory, rather than optional, behaviour.   相似文献   

5.
The New River Estuary, NC, is a nutrient-sensitive, eutrophic water body that is prone to harmful algal blooms. High annual loading from the watershed of varying nutrient forms, including inorganic phosphorus and inorganic and organic nitrogen, may be linked to the persistence of algal blooms in the estuary. In order to evaluate phytoplankton response to nutrient inputs, a series of in situ nutrient addition experiments were carried out during June 2010 to July 2011 on water from an estuarine site known to support algal blooms. Estuarine water was enriched with nutrients consisting of individual and combined sources of dissolved inorganic nitrogen, orthophosphate, urea, and a natural dissolved organic nitrogen (DON) addition derived from upstream New River water. The combined inorganic N and P addition most frequently stimulated phytoplankton biomass production as total chlorophyll a. The responses of diagnostic (of major algal groups) photopigments were also evaluated. Significant increases in peridinin (dinoflagellates), chlorophyll b (chlorophytes), and myxoxanthophyll (cyanobacteria) were most frequently promoted by additions containing riverine DON. Significant increases in zeaxanthin (cyanobacteria) were more frequently promoted by inorganic nitrogen additions, while increases in fucoxanthin (diatoms) and alloxanthin (cryptophytes) were not promoted consistently by any one nutrient treatment. Evaluating the impact of varying nutrient forms on phytoplankton community dynamics is necessary in order to develop strategies to avoid long-term changes in community structure and larger-scale changes in ecosystem condition.  相似文献   

6.
Hodgkiss  I.J.  Lu  Songhui 《Hydrobiologia》2004,512(1-3):215-229
Eutrophication has been considered to be undoubtedly one of the key factors stimulating phytoplankton growth, since it involves the enrichment of a water mass with both inorganic and organic nutrients supporting plant growth. Nutrient enrichment as a result of anthropogenic activity occurs in estuaries and coastal waters as well as in lakes and freshwater impoundments, and blooms of phytoplankton are one of the effects of such an accelerated process of nutrient enrichment. This paper presents the results of a two-year survey of the nutrients and phytoplankton at 3 stations in Junk Bay, Hong Kong, carried out from 1997 to 1998. The relationships between nitrogen, phosphorus, and their ratio, with phytoplankton abundance have been studied. The results show that the highest nitrogen concentration was in Station 2 which is close to a sewage input, whereas the highest phosphorus concentration was in Station 1 which is close to a landfill area. The mean N:P ratios at the three stations were between 8 and 14. The diatoms were the dominant group during most of the year but it seems that diatoms were more sensitive than dinoflagellates and other algal groups to the increase in nutrients.  相似文献   

7.
1. The impacts of nutrients (phosphorus and nitrogen) and planktivorous fish on phytoplankton composition and biomass were studied in six shallow, macrophyte‐dominated lakes across Europe using mesocosm experiments. 2. Phytoplankton biomass was more influenced by nutrients than by densities of planktivorous fish. Nutrient addition resulted in increased algal biomass at all locations. In some experiments, a decrease was noted at the highest nutrient loadings, corresponding to added concentrations of 1 mg L?1 P and 10 mg L?1 N. 3. Chlorophyll a was a more precise parameter to quantify phytoplankton biomass than algal biovolume, with lower within‐treatment variability. 4. Higher densities of planktivorous fish shifted phytoplankton composition toward smaller algae (GALD < 50 μm). High nutrient loadings selected in favour of chlorophytes and cyanobacteria, while biovolumes of diatoms and dinophytes decreased. High temperatures also may increase the contribution of cyanobacteria to total phytoplankton biovolume in shallow lakes.  相似文献   

8.
A study was done of the relationship between hydrographic variables and the composition, abundance, community structure and biomass spectrums of coastal phytoplankton at scales greater than 100 km on the Yucatan Peninsula (SE Gulf of Mexico). This was done during the season of greatest environmental instability in the region, the northwind season (late fall to winter). Samples were collected at stations in the west (Campeche), north (Yucatan), and east (Quintana Roo) zones of the Peninsula. Measurements were taken of temperature, salinity, dissolved oxygen, dissolved inorganic nutrients (ammonia, nitrite, nitrate and phosphate) and chlorophyll a, and samples were taken for phytoplankton analysis. The hydrographic results showed the Campeche zone as having the lowest salinity (<35 psu) values, as well as the highest inorganic nutrient and chlorophyll a values, all of which are related to continental water contributions. The Yucatan zone had the lowest temperatures and the lowest inorganic nutrient values, indicating influence from the Yucatan Current and the Gulf of Mexico. A total of 159 phytoplankton species were identified, dominated by diatoms (>80%) and dinoflagellates. Phytoplankton exhibited greater concentration, richness, equitability and diversity in Campeche, while the lowest community structure values were had in the Quintana Roo zone. The ordination analysis demonstrated that the dominant genera were the diatoms Chaetoceros, Pseudonitzschia and Thalassionema. The biomass spectrums exhibited the lowest slope in environments of higher heterogeneity, with Campeche being the most disturbed and heterogeneous zone and Quintana Roo that with the least heterogeneity.  相似文献   

9.
The nutritional versatility of dinoflagellates is a complicating factor in identifying potential links between nutrient enrichment and the proliferation of harmful algal blooms. For example, although dinoflagellates associated with harmful algal blooms (e.g. red tides) are generally considered to be phototrophic and use inorganic nutrients such as nitrate or phosphate, many of these species also have pronounced heterotrophic capabilities either as osmotrophs or phagotrophs. Recently, the widespread occurrence of the heterotrophic toxic dinoflagellate, Pfiesteria piscicida Steidinger et Burkholder, has been documented in turbid estuarine waters. Pfiesteria piscicida has a relatively proficient grazing ability, but also has an ability to function as a phototroph by acquiring chloroplasts from algal prey, a process termed kleptoplastidy. We tested the ability of kleptoplastidic P. piscicida to take up 15N-labeled NH     , NO     , urea, or glutamate. The photosynthetic activity of these cultures was verified, in part, by use of the fluorochrome, primulin, which indicated a positive relationship between photosynthetic starch production and growth irradiance. All four N substrates were taken up by P. piscicida , and the highest uptake rates were in the range cited for phytoplankton and were similar to N uptake estimates for phagotrophic P. piscicida . The demonstration of direct nutrient acquisition by kleptoplastidic P. piscicida suggests that the response of the dinoflagellate to nutrient enrichment is complex, and that the specific pathway of nutrient stimulation (e.g. indirect stimulation through enhancement of phytoplankton prey abundance vs. direct stimulation by saprotrophic nutrient uptake) may depend on P. piscicida 's nutritional state (phagotrophy vs. phototrophy).  相似文献   

10.
Physical, chemical, and biological characteristics of the Kentucky River and its tributaries were assessed for one year to compare effects of seasonal, spatial, and human environmental factors on phytoplankton. Phytoplankton cell densities were highest in the fall and summer and lowest in the winter. Cell densities averaged 1162 (± 289 SE) cells m1–1. Cell densities were positively correlated to water temperature and negatively correlated to dissolved oxygen concentration and to factors associated with high-flow conditions (such as, suspended sediment concentrations). Chrysophytes, diatoms, and blue-green algae dominated winter, spring, and summer assemblages, respectively. Ordination analyses (DCCA) indicated that variation in taxonomic composition of assemblages was associated with stream size as well as season.Spatial variation in phytoplankton assemblages and effects of humans was investigated by sampling 55 sites in low flow conditions during August. Phytoplankton density increased with stream size. Assemblages shifted in composition from those dominated by benthic diatoms upstream to downstream communities dominated by blue-green algae and small flagellates. Human impacts were assumed to cause higher algal densities in stream basins with high proportions of agricultural or urban land use than in basins with forested/mined land use. While density and composition of phytoplankton were positively correlated to agricultural land use, they were poorly correlated to nutrient concentrations. Phytoplankton diversity changed with water quality: decreasing with nutrient enrichment and increasing with conditions that probably changed species composition or inhibited algal growth. Human impacts on phytoplankton in running water ecosystems were as great or greater than effects by natural seasonal and spatial factors. Our results indicated that phytoplankton could be useful indicators of water quality and ecosystem integrity in large river systems.  相似文献   

11.
An ecological dynamic model for the simulation of two pelagic phytoplankton groups is developed in this article. Model parameters were adjusted and validated based on the light-limited field culture experiments and the mesocosm experiments in the East China Sea (ECS). The calculation comparisons from the proposed model, along with field experiment observations, show that the model simulate the datasets very well, qualitatively and quantitatively. The parameters’ sensitivity analysis indicates that the competition between the diatoms and dinoflagellates is most sensitive to the photosynthetic process, followed by the exudation process of the phytoplankton, while the autolysis and respiration processes of phytoplankton and the grazing and exudation processes of zooplankton can also influence this competition to some extent. The sensitive parameters include: the photosynthetic optimal specific rate; the optimal irradiance and optimal temperature for phytoplankton growth; and the half-saturation constant for limiting nutrients, etc. Results of the sensitivity analysis also indicate that light, temperature and limiting nutrients are the controlling environmental factors for the competition between the diatoms and dinoflagellates in the ECS. In order to explore the effects of light and nutrients on the phytoplankton competition, simulations were carried out with varying light and nutrient conditions. Model simulations suggest that the diatoms favor higher irradiance, lower DIN/PO4–P ratios, higher SiO4–Si/DIN ratios and higher nutrient concentrations, as compared to the dinoflagellates. These results support the speculation that the increase in the DIN/PO4−P ratio and the decrease in the SiO4–Si/DIN ratio in the ECS may be responsible for the composition change in the functional Harmful Algal Bloom (HAB) groups from the diatom to the dinoflagellate communities over the last two decades. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Handling editor: L. Naselli-Flores  相似文献   

12.
Factors that regulate phytoplankton dynamics in shallow, productive lakes are poorly understood, due to their predisposition for frequent algal blooms and sediment resuspension events. In Lake Apopka, greatest phytoplankton biomass reflects wind-induced resuspension of algae (meroplankton) that exists on the aphotic lake bottom in a layer approximately 5 cm thick; this assemblage is dominated by diatoms (>60% of total biomass) that can occur in resting stages. Once exposed to moderate light, meroplankton are capable of growth and photosynthetic rates comparable with surface populations. In Lake Okeechobee, remote sensing was used to assess the basin-wide distribution of suspended particles. Satellite reflectance values agreed well with in situ particle densities at 20 in-lake stations (average r2; LANDSAT = 0.81, AVHRR = 0.53), and maps of algal blooms (r2 = 0.79, p ≤ 0.01). The greatest chlorophyll concentrations occurred in the vicinity of tributary nutrient inputs at the lake's perimeter, while turbidity increased towards the center of the lake reflecting predominant water circulation patterns. These results underscore the importance of physical-biological interactions in lakes.  相似文献   

13.
Satellite-derived estimates of phytoplankton pigments are thoughtto be affected by the phytoplankton species composition. Measurementsof surface algal chlorophyll and satellite-derived pigment werecompared for waters containing coccolithophores and dinoflagellates.Satellite-derived chlorophyll concentration was underestimatedby a factor of 2–3 in a patch of the large coccolithophore,Umbilicosphaera sibogae, and also in a bloom of the dinoflagellate,Gonyaulax polyedra. Overall abundance and species-specific propertiessuch as light scatter and vertical migration probably causedthese results.  相似文献   

14.
Carbon to chlorophyll a (C:Chl) ratios, assimilation numbers (A.N.) and turnover times of natural populations of individual species and taxonomic groups were extracted from a long-term database of phytoplankton wet-weight biomass, chlorophyll a concentrations, and primary production in Lake Kinneret, Israel. From a database spanning more than a decade, we selected data for samples dominated by a single species or taxonomic group. The overall average of C:Chl was highest for cyanophytes and lowest for diatoms, while chlorophytes and dinoflagellates showed intermediate values. When converting chlorophyll a to algal cellular carbon this variability should be taken into account. The variability in C:Chl within each phylum and species (when data were available) was high and the variability at any particular sampling date tended to be greater than the temporal variability. The average chlorophyll a-normalized rate of photosynthetic activity of cyanophytes was higher and that of the dinoflagellates lower than that of other phyla. Turnover time of phytoplankton, calculated using primary productivity data at the depth of maximal photosynthetic rate, was longest in dinoflagellates and shortest in cyanophytes, with diatoms and chlorophytes showing intermediate values. The more extreme C:Chl and turnover times of dinoflagellates and cyanobacteria in comparison with chlorophytes and diatoms should be taken into consideration when employed in ecological modeling.  相似文献   

15.
This study investigated the role of N, P and Si enrichments on phytoplankton in the Bizerte Lagoon (southwestern Mediterranean Sea, Tunisia) during March, June, August, October and December 2004. Polycarbonate bottles were enriched with different nutrients according to four treatments N:Si:P ratios [+NSi/-P (40:40:1), +P/-NSi (20:20:2,5), +NP/-Si (16:0:1) and +Si/-NP (16:32:1)] and incubated in situ during six days. Chl a and carbon biomass of phytoplankton varied significantly during the course of months, with the highest levels recorded in summer (4-4.4 microg Chl a L(-1) or 1126-1721 microg C L(-1)). Dinoflagellates dominated the initial phytoplankton communities, except in August, when diatoms represented a high fraction of microalgae (48%). Enrichment experiments induced significant increases in Chl a and in the final phytoplankton carbon biomasses. In summer (June/August), Si was the main limiting element for phytoplankton. Diatoms strongly responded to +Si/-NP and +NSi/-P enrichments and dominated the final phytoplankton communities (52-61%) in both treatments. Si played the most important role in the growth and development of diatoms. The biomasses and growth rates of dinoflagellates were significantly stimulated by +P/-NSi and +NP/-Si enrichments. After 6 days, dinoflagellates represented more than 70% of the total phytoplankton biomass in samples subjected to these treatments. Moreover, the addition of +P/-NSi increased the biomasses of several dinoflagellates. This suggests that dinoflagellates were mostly controlled by P availability. Unlike diatoms and dinoflagellates, flagellates showed weak responses to nutrient treatments during only some months of the year. The results showed that phytoplankton dynamics in the lagoon were influenced by nutrients in different manners.  相似文献   

16.
Seasonal and annual variation in biomass and structure of algal assemblages of hyposaline Devils Lake were examined in relation to turbidity, ambient concentrations of major ions, trace elements and nutrients, and the standing crop of herbivores. Lake level declined during the early years of study, but rose markedly in subsequent years as historically large volumes of water flowed into this hydrologically-closed basin. Winter algal assemblages were dominated (in biomass) most years by small, non-motile chlorophytes ( Choricystis minor, Kirchneriella lunaris or Dunaliella sp.), or Euglena sp. in the most saline sub-basin. Spring assemblages were dominated by diatoms (Stephanodiscus cf. minutulus, Surirella peisonis, Cyclotella meneghiniana and Entomoneis paludosa were especially prominent) or chlorophytes ( C. minor) until the lake level rose. C. minor abundances then declined in spring assemblages and diatoms ( Stephanodiscus cf. agassizensis and S. niagarae; E. paludosa in the more saline sub-basins) dominated. The potential for nitrogen-deficient conditions for phytoplankton growth was evidenced most summers and early autumns by consistently high concentrations of reactive-P relative to inorganic-N and blooms of the N-fixing cyanophyte Aphanizomenon flos-aquae; Microcystis aeruginosa typically was a co-dominant (>30% of biomass) in these assemblages. Pulses of diatoms ( S. cf. agassizensis and C. meneghiniana) occurred in summers following unusually prolonged periods of calm weather or large water inflows. Physical (irradiance, turbulence) and chemical (major nutrients) variables were the primary factors associated with phytoplankton growth. Transparency and major nutrient concentrations accounted for more of the annual variation in phytoplankton structure than did salinity. Seasonal abundance patterns of the dominant zooplankton (the copepod Diaptomus sicilis; the cladocerans Ceriodaphnia quadrangula, Chydorus sphaericus, Daphnia pulex and Diaphanosoma birgei; and the rotifers Brachionus spp., Filinia longiseta, Keratella cochlearis and K. quadrata) also indicated variation in algal populations related to grazing. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The hydrological structure and nutrient dynamics of the Bayof Tunis (south-western Mediterranean), and the abundance ofits principal plankton groups (diatoms, dinoflagellates, tintinids,rotifers, appendicularians, copepods, medusae, siphonophores,chaetognaths and cladocerans), were studied over 2 years. Despitethe small size of the Bay (361 km2), the nutrient concentrationsvaried greatly between the sampling stations. We distinguishedspatial from temporal variations using a newly-developed methodfor regionalization based on multivariate cluster analysis,and the changes over time of any similarities between stations.The method allowed us to obtain an optimal geographical divisionof any degree of grouping of the sampling stations (i.e. fora chosen number of zones). We also calculated the optimum partitionof stations using a multivariate matrix obtained from multi-parametersampling over time. The application of the method to a time-seriesof nutrient concentrations in the Bay of Tunis produced fourzones of similar nutrient dynamics. Each zone was then characterizedby the median and the variability of its nutrient, physicaland biological parameters. A statistical test was used to assessthe significance of the differences between zones for the variousparameters. Comparison of the medians of the various parametersallowed us to synthesize the underlying differences in nutrientdynamics and also in plankton ecosystem components. This analysisrevealed a relative nutrient enrichment in the west and south-westernareas of the Bay. Silicates did not contribute to the high variabilityof nutrients in the Bay. The pattern of phytoplankton biomass(chlorophyll a) and the abundance of diatoms and dinoflagellateswere similar to those of the sampled nutrients. The highestvalues were measured in the first zone, where the highest nutrientconcentrations were also recorded. The coastal zones were characterizedby zooplankton groups of small size (tintinids, rotifers andsmall copepods) with a limited diversity. These zones were alsovery turbid and shallow. Central zones, on the other hand, wererich in zooplankton species. Meso-zooplankton groups (e.g. siphonophres,chaetognaths) were also more abundant in this zone.  相似文献   

18.
大亚湾澳头水域浮游植物群落结构及周年数量动态   总被引:16,自引:0,他引:16  
对1997年至1998年广东省大亚湾澳头水域的浮游植物群落进行调查和分析。结果发现浮游植物65属198种;硅藻在种类组成和数量上都比甲藻占有优势,存在春季和秋季高峰,主要优势类群依次是角毛藻、骨条藻、拟菱形藻等;甲藻只存在春季高峰,代表种类有裸甲藻、原甲藻等。主要优势种类的生长与调查水域的盐度没有明显关系,但全年水温的季节性变化对优势种类的消长影响显著。Simpson多样性指数、Shannon-Weaver多样性指数、均匀度的年平均值分别是0.611、2.107、0.557,多样性指数没有明显的季节变化规律和水平分布规律。    相似文献   

19.
Forty-two species of chlorophyll c-containing algae (diatoms, dinoflagellates, chrysomonads, haptophytes, cryptomonads and xanthophytes) were examined for their content of chlorophyll c1 and c2. This work, and recent studies on c1/c2 distribution in the literature (total 86 species), show that chlorophyll c2 is universal to all algae examined. Chlorophyll c1 occurs in addition to c2 in brown seaweeds, diatoms, chrysomonads, haptophytes (coccolithophorids) xanthophytes and the, fucoxanthin-containing dinoflagellates; c2 only occurs in dinoflagellates and cryptomonads. Two exceptions to the generalizations are one dinoflagellate and one cryptomonad containing c1 in addition to c2 No explanation can be offered on present knowledge for these exceptions. No alga was found containing only chlorophyll c1. Chlorophyll c, far from being a minor accessory chlorophyll, occurred in amounts almost equal to chlorophyll a(some diatoms and dinoflagellates) or ranged from 50 to 20% of the chlorophyll a (diatoms, dinoflagellates, chrysomonads, cryptomonads, browns). Xanthophytes, however, contained only trace amounts of chlorophyll c with ratios of chlorophyll a:c ranging from 55:1 to 116:1 on a weight basis. In those algae with both chlorophyll c components, c1 and c2, occurred either in equal amounts, or chlorophyll c2was twice the c1 content.  相似文献   

20.
The species composition and phytoplankton biomass, concentrations of chlorophyll “a” (Chl) and nutrients, concurrent hydrophysical conditions were studied in the south part of the White Sea in July 10–15, 2012 during chlorophyll “a” decrease after summer peak. The water column stability varied, the concentration of dissolved silicon in upper mixed layer was closed to the range favorable for diatoms with exception of areas of intensive tide mixing and areas influenced by waters of Severnaya Dvina River. In surface layer the dinoflagellates dominated excepting of areas with intensive tide mixing where diatoms prevailed. Diatoms provided major contribution to biomass in different stations above, in and under pycnocline and in deep waters out of photic zone. Structural analysis has revealed three phytoplankton communities that corresponded to different depths: communities of photic zone, intermediate and deep layers. Extension of layers inhabited by different communities depended on water column stability and on genesis of water masses. Integrated values of phytoplankton biomass and Chl varied from 250 to 1188 mg С/m2, and from 22 to 51 mg/m2, correspondently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号