首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In vitro regeneration of plants via somatic embryogenesis through cell suspension culture was achieved in horsegram. Embryogenic calluses were induced on leaf segments on solid Murashige and Skoog (MS) medium with 9.0 μM 2,4-dichlorophenoxyacetic acid (2,4-D). Differentiation of somatic embryos occurred when the embryogenic calluses were transferred to liquid MS medium containing 2,4-D. Maximum frequency (33.2%) of somatic embryos was observed on MS medium supplemented with 7.9 μM 2,4-D. Cotyledonary-torpedo-shaped embryos were transferred to liquid MS medium without growth regulators for maturation and germination. About 5% of the embryos germinated into plants, which grew further on solid MS medium. The plants were hardened and established in soil. Effects of various auxins, cytokinins, carbohydrates, amino acids, and other additives on induction and germination of somatic embryos were also studied. A medium supplemented with 7.9 μM 2,4-D, 3.0% sucrose, 40 mg l−1 L-glutamine, and 1.0 μM abscisic acid was effective to achieve a high frequency of somatic embryo induction, maturation, and further development.  相似文献   

2.
Summary We report a protocol for somatic embryogenesis and plantlet regeneration of Buchanania lanzan Spreng (Family—Anacardiaceae), which is a tropical fruit tree widely distributed in the dry forests of India. Calluses were initiated from immature zygotic embryos cultured on Murashige and Skoog (MS) medium supplemented with various combinations of 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzyladenine (BA) and/or 1-naphthaleneacetic acid (NAA). The highest frequency (60%) of somatic embryo induction was obtained in cultures grown on MS medium fortified with 4.53 μM 2,4-D, 5.32 μM NAA and 4.48 μM BA. The medium supplemented with 15 μM abscisic acid (ABA) was most effective for maturation and germination of somatic embryos. This is the first report on somatic embryogenesis in B. lanzan, which may be helpful for in vitro propagation, ex situ conservation and genetic manipulation of this species.  相似文献   

3.
Summary Regeneration of plants via somatic embryogenesis was achieved from zygotic embryo explants isolated from mature seeds of Schisandra chinensis. Merkle and Sommer's medium, fortified with 2,4-dichlorophenoxyacetic acid (2,4-D; 9.04 μM) and zeatin (0.09 μM), was effective for induction of embryogenic callus. The development of a proembryogenic mass and somatic embryos occurred on Murashige and Skoog medium (MS) free of plant growth regulators. The embryogenic callus induced on Merkle and Sommer's medium supplemented with 2,4-D (9.04 μM) and zeatin (0.09 μM) showed development of the maximum number of somatic embryos when transferred to MS medium free of plant growth regulators. The maximum maturation and germination of cotyledonary somatic embryos (46.3%) occurred on MS medium supplemented with 2,4-D (0.45 μM) and N6-benzyladenine (1.11 μM). The somatic embryo-derived plants were successfully hardned, with a survival rate of approximately 67%, and established in the field.  相似文献   

4.
Summary A protocol for the inducton of somatic embryogenesis from immature zygotic embryos of Rosa bourboniana, a scented rose species, was established. Somatic embryos were induced after 8wk of inoculation of zygotic embryos on MS medium supplemented with different concentrations of 2,4-dichlorophenoxy acetic acid (5–15 μM). In addition to 2,4-dichlorophenoxy acetic acid concentrations, somatic embryogenesis was also influenced by the month of collection of the explant and the stage of maturity of the hip. Maximum embryogenic response (16.6%) was observed using 2,4-dichlorophenoxy acetic acid (15 μM), from green hips in the month of September. The use of l-proline (800 mg l−1) was found to be optimum for secondary embryogenesis. On periodic subculturing, the cultures formed somatic embryos sustainably over a period of 18 mo. For somatic embryo germination, 6-benzylaminopurine (5 μM) was found to be most suitable. Rooted plants were transferred successfully to soil and appear morphologically normal under greenhouse conditions. Transfer of plants for hardening was most suitable during the active growth period between June and September. IHBT Publication No: 0447  相似文献   

5.
Summary Somatic embryogenesis in American ginseng (Panax quinquefolium L.) was investigated from three explant sources (root, leaf and epicotyl) with Murashige and Skoog (MS) medium containing different growth regulators. Mature roots and leaves obtained from 3- to 5-yr-old field-grown plants, and seedling leaves and epicotyls from plantlets grownin vitro, were evaluated. From root and epicotyl explants, callus development was optimal with 3,6-dichloro-o-anisic acid (dicamba) (9.0 μM) and kinetin (KN) (5.0 μM) as the growth regulators. When these calluses were transferred after 3 mo. to dicamba alone (9.0 μM), somatic embryo formation was observed at an average frequency of 15.6% in root explants after an additional 3 mo., and 2% in epicotyl explants after an additional 6 mo. No plantlets were recovered because the embryos germinated to form shoots with no roots. From leaf explants, callus growth was optimal with α-naphthaleneacetic acid (NAA) at 10.0 μM and 2,4-dichlorophenoxyacetic acid (2,4-D) at 9.0 μM. Somatic embryos developed on this medium, with the highest frequency (40%) obtained after 3 mo. from seedling-leaf explants. Calluses on mature leaves formed somatic embryos after 7 mo. with NAA/2,4-D at an average frequency of 30%. Transfer of these somatic embryos to 6-benzyladenine/gibberellic acid (4.4/2.9 μM) promoted shoot development but no roots were observed. Up to 100% of germination was observed within 6 wk on half-strength MS salts containing activated charcoal (1%) and on NAA/2,4-D (5.0/4.5 μM) with charcoal (1%). On the latter medium, somatic embryos enlarged and frequently gave rise to new somatic embryos after a brief callusing phase. The embryos germinated through a two-stage process, involving the elongation of the root followed by the formation of a shoot. The highest recovery of ginseng plantlets from germinated embryos was 61.0%. Following transfer to potting medium and maintenance under conditions of high humidity and low light intensity, the plantlets elongated and developed new leaves. A high percentage (50%) of these plants have been acclimatized to soil.  相似文献   

6.
Summary A novel protocol has been developed for inducing somatic embryogenesis from leaf cultures of Decalepis hamiltonii. Callus was obtained from leaf sections in Murashige and Skoog (MS) medium supplemented with α-naphthaleneacetic acid (NAA)+N6-benzyladenine (BA) or 2,4-dichlorophenoxyacetic acid (2,4-D)+BA. Nodular embryogenic callus developed from the cut end of explants on media containing 2,4-D and BA, whereas compact callus developed on media containing NAA and BA. Upon subsequent transfer of explants with primary callus onto MS media containing zeatin and/or gibberellic acid (GA3) and BA, treatment with zeatin (13.68μM) and BA (10.65 μM) resulted in the induction of the highest number of somatic embryos directly from nodular tissue. The maturation of embryos took place along with the induction on the same medium. Embryogenic calluses with somatic embryos were subcultured onto MS basal medium supplemented with 4.56μM zeatin+10.65 μM BA. After 4wk, more extensive differentiation of somatic embryos was observed. The mature embryos developed into complete plantlets on growth regulator-free MS medium. A distinct feature of this study is the induction of somatic embryogenesis from leaf explants of Decalepis hamiltonii, which has not been reported previously. By using this protocol, complete plantlets could be regenerated through indirect somatic embryogenesis or organogenesis from leaf explants in 12–16 wk.  相似文献   

7.
Summary Leaf segments of the orchid sp. Phalaenopsis ‘Little Steve’ were used as explants testing the effects of 2,4-dichlorophenoxyacetic acid (2,4-D; 0.45, 2.26, 4.52 μM), 6-furfurylaminopurine (kinetin; 2.32, 4.65, 13.95 μM), N6-benzyladenine (BA; 2.22, 4.44, 13.32 μM), and 1-phenyl-3-(1,2,3-thiadiazol-5-yl)-urea (TDZ; 2.27, 4.54, 13.62μM) on the induction of direct somatic embryogenesis. After 20–30 d of culture in darkness, clusters of somatic embryos formed from leaf surfaces and wounded regions of explants on half-strength Murashige and Skoog medium supplemented with BA and TDZ. However, kinetin had no response on direct embryo induction. In addition, 2,4-D highly retarded the frequency of embryogenesis that was induced by TDZ. Generally, adaxial surfaces near wounded regions had the highest embryogenic competency compared to other regions of explants. Histological sections revealed that somatic embryos mostly arose from epidermal cell layers of the explants. Secondary embryogenesis occurred at basal parts of embryos, and originated from outer cell layers. Following transfer of regenerated embryos onto growth regulator-free medium for 3.5–4 mo., plantlets with three to four leaves and several roots were obtained. This protocol provides a simple way to regenerate plants through direct somatic embryogenesis, and is suitable for further studies on embryo development and genetic transformation of Phalaenopsis.  相似文献   

8.
Summary Efficient in vitro propagation of Ceropegia candelabrum L. (Asclepidaceae) through somatic embryogenesis was established. Somatic embryogenesis depended on the type of plant growth regulators in the callus-inducing medium. Friable callus, developed from leaf and internode explants grown on Murashige and Skoog (MS) medium supplemented with 4.52μM2,4-dichlorophenoxyacetic acid (2,4-D), underwent somatic embryogenesis. Compared to solid media, suspension culture was superior and gave rise to a higher number of somatic embryos. Transfer of the friable callus developed on MS medium containing 4.52μM 2,4-D to suspension cultures of half- or quarter-strength MS medium with lower levels of 2,4-D (0.23 or 0.45 μM) induced the highest number of somatic embryos, which developed up to the torpedo stage. Somatic embryogenesis was asynchronous with the dominance of globular embryos. About 100 mg of callus induced more than 500 embryos. Upon transfer to quarter-strength MS agar medium without growth regulators, 50% of the somatic embryos underwent maturation and developed into plantlets. Plantlets acclimatized under field conditions with 90% survival.  相似文献   

9.
Whole plants were regenerated from excised leaves of Drimiopsis kirkii Baker (Lily of the Valley) through direct somatic embryogenesis. An initial exposure to a low level of 2,4-dichlorophenoxyacetic acid (2,4-D, 0.45 μM) in the medium was essential in inducing the direct formation of somatic embryos. A high concentration of 2,4-D (4.52 μM) in the proliferation medium reduced embryogenesis and enhanced callus formation. The presence of kinetin in the medium enhanced the somatic-embryogenesis-inducing effect of 2,4-D (0.45 μM). The maximum embryogenesis rate (4,026 somatic embryos per gram of leaf) was obtained in explants cultured for 30 d in medium supplemented with 2.33 μM kinetin and 0.45 μM 2,4-D (embryo induction medium). Kinetin (4.65 μM) also enhanced embryo germination (97.6%), but the presence of α-naphthalene acetic acid in the medium drastically reduced embryo germination. Following conversion, the regenerated plantlets were transferred to soil and showed normal morphological characteristics.  相似文献   

10.
Summary In order to establish a protocol for somatic embryogenesis of annatto, Bixa orellana L., seeds (70 d after anthesis) from field-grown orchards had their coats dissected off, and immature zygotic embryos were excised aseptically from immature seeds collected from field-grown trees and used as explants. Embryos were cultured onto MS medium supplemented with or without different combinations of plant growth regulators and activated charcoal. Direct somatic embryogenesis was induced on explants incubated either in Murashige and Skoog (MS), 2,4-dichlorophenoxyacetic acid (2,4-D), and/or kinetin-supplemented media after 25 d of culture. The highest frequencies of embryogenesis and embryos per explant were obtained on medium containing 2.26 μM 2.4-D, 4.52μM kinetin, and 1.0 gl−1 activated charcoal. The presence of charcoal was critical in increasing embryos per explant, to reduce the time to obtain somatic embryos, and mainly to prevent callus proliferation and subsequent indirect somatic embryogenesis. No embryogenic response was achieved when mature embryos were used. It was also observed that embryogenic response was significantly affected by genotype. Histological investigations revealed that primary direct somatic embryos differentiated exclusively from the protodermis or together with the outer ground meristem cell layers of the zygotic embryo axis, and from the protodermis of zygotic cotyledons. Diverse morphological differences, including malformed embryos, were observed among somatic embryos. In spite of the high frequencies of histodifferentiation of all embryo stages, a very low conversion frequency to normal plants from somatic embryos was observed.  相似文献   

11.
Summary High-frequency somatic embryogenesis and plant regeneration was achieved on callus derived from leaf (petiole and lamina) and internode explants of Centella asiatica L. Growth regulators significantly influenced the frequency of somatic embryogenesis and plant regeneration. Calluses developed on Murashige and Skoog (MS) medium fortified with 4.52 μM 2,4-dichlorophenoxyacetic acid (2,4-D) or 5.37 μM α-naphthaleneacetic acid (NAA), both with 2.32 μM kinetin (Kn), were superior for somatic embryogenesis. Callus developed on NAA and Kn-supplemented medium favored induction and maturation of embryos earlier compared to that on 2,4-D and Kn. Embryogenic callus transferred from NAA and Kn-supplemented medium to suspension cultures of half-strength MS medium with NAA (2.69 μM) and Kn (1.16 μM) developed a mean of 204.3 somatic embryos per 100 mg of callus. Embryogenic callus transferred from 2,4-D and Kn subsequently to suspension cultures of half-strength MS medium with 2,4-D (0.45 μM) and Kn (1.16 μM) developed a mean of 303.1 embryos per 100 mg of callus. Eighty-eight percent of the embryos underwent maturation and conversion to plantlets upon transfer to half-strength MS semisolid medium having 0.054 μM NAA with either 0.044 μM BA or 0.046 μM Kn. Embryo-derived plantlets established in field conditions displayed morphological characters identical to those of the parent plant.  相似文献   

12.
Summary In vitro propagation of Andrographis paniculata (Burm. f.) Wallich ex Nees through somatic embryogenesis, and influence of 2,4-dichlorophenoxyacetic acid (2,4-1) on induction, maturation, and conversion of somatic embryos were investigated. The concentration of 2,4-D in callus induction medium determined the induction, efficacy of somatic embryogenesis, embryo maturation, and conversion. Friable callus initiated from leaf and internode explants grown on Murashige and Skoog (MS) medium supplemented with 2.26, 4.52, 6.78, and 9.05μM 2,4-D started to form embryos at 135, 105, 150, and 185d, respectively, after explant establishment. Callus initiated at 13.56μM 2,4-D did not induce embryos even after 240 d, whereas those initiated on MS medium with 4.52μM 2,4-D was most favorable for the formation and maturation of somatic embryos. Callus subcultured on the medium with reduced concentration of 2,4-D (2.26μM) became embryogenic. This embryogenic callus gave rise to the highest number of embryos (mean of 312 embryos) after being transferred to half-strength MS basal liquid medium. The embryos were grown only up to the torpedo stage. A higher frequency of embryos developed from callus initiated on 2.26 or 4.52 μM 2,4-D underwent maturation compared to that initiated on higher concentrations of 2.4-D. The addition of 11.7μM silver nitrate to half-strength MS liquid medium resulted in 71% of embryos undergoing maturation, while 83% of embryos developed into plantlets after being transferred to agar inedium with 0.44 μMN6-benzyladenine and 1.44 μM gibberellic acid. Most plantlets (88%) survived under field conditions and were morphologically identical to the parent plant.  相似文献   

13.
Summary A protocol was developed for high frequency somatic embryogenesis and plant regeneration from cotyledon and hypocotyl explants of Eruca sativa. Explants grown on Murashige and Skoog (MS) medium supplemented with 4.52 μM 2,4-D formed embryogenic callus after 4 wk of culture. Secondary somatic embryos were also produced from primary somatic embryos on MS medium containing 0.56 μM 2,4-D. Somatic embryos developed into mature embryos on MS medium in the presence of 45 gl−1 polyethylene glycol. After desiccation, somatic embryos developed into plantlets by culturing the mature somatic embryos on 1/2 x MS medium containing 0.24 μM indole-3-butyric acid.  相似文献   

14.
Summary Somatic embryos of carob (Ceratonia siliqua L.) were induced from cotyledonary segments excised from immature seeds when cultured on Murashige and Skoog media supplemented with several combinations of 6-benzylaminopurine (BA) and indole-3-butyric acid (IBA). The best frequencies of induction (33.8%) were obtained when 4.4 μM BA and 0.5 μM IBA were used. Shoots were also sporadically formed in the same media. When IBA was replaced by other auxins in the induction media, only α-naphthaleneacetic acid (NAA) and indole-3-acetic acid (IAA) could induce somatic embryogenesis, although at lower rates than IBA. 2,4-Dichlorophenoxyacetic acid and 4-amino-3,5,6-trichloropicolinic acid were completely ineffective. Besides culture media composition, the developmental stage of the explants at the time of culture showed a strong influence on somatic embryogenesis induction, with cotyledons from stage II pods providing the highest levels of induction. By contrast, the genotype of the explant did not determine a significant role in the induction process. Attempts to achieve somatic embryo germination were mostly unsuccessful, since only shoot development was observed; the highest frequencies of development occurred on media containing only gibberellic acid (3.0 μM). For plant regeneration, the developed shoots were further rooted on IBA-supplemented media, and the plantlets obtained were transferred to soil, where c. 88% of them survived. Histological observations showed the presence of morphologically normal and abnormal somatic embryos, the latter displaying an abnormal pattern of vascular bundles. Ultrastructural analysis showed that the cells of the globular embryos had a dense cytoplasm, whereas those not involved in somatic embryo formation showed signs of senescence. Histological studies were also used to distinguish between somatic embryos and shoots originated in the same media.  相似文献   

15.
Summary Kalopanax pictus (Thunb.) Nakai is a tall tree, and its wood has been used in making furniture, while its stem bark is used for medicinal purposes. Here, we report on the micropropagation of Kalopanax pictus via somatic embryogenesis. Embryogenic callus was induced from immature zygotic embryos. The frequency embryogenic callus induction is influenced by days of seed harvest. Callus formation was primarily observed along the radicle tips of zygotic embryos incubated on Murashige and Skoog (MS) medium with 4.4 μM 2,4-dichlorophenoxyacctic acid (2,4-D). Somatic embryogenesis was observed following transfer of embryogenic callus to MS medium lacking 2,4-D. Somatic embryos at the cotyledonary stage were obtained after 6 wk following culture. Frequency of conversion of somatic embryos into plantlets was low (35%) on a hormone-free MS basal medium, but it increased to 61% when the medium was supplemented with 0.05% charcoal. Gibberellic acid (GA3) treatment markedly enhanced the germination frequency of embryos up to 83%. All plantlets obtained showed 98% survival on moist peat soil (TKS2) artificial soil matrix. About 30 000 Kalopanax pictus plants were propagated via somatic embryogenesis and grown to 3-yr-old plants. These results indicate that production of woody medicinal Kalopanax pictus plantlets through somatic embryogenesis can be practically applicable for propagation.  相似文献   

16.
Induction of somatic embryogenesis in Pinus armandii var. amamiana, an endemic and endangered species in Japan, was initiated from megagametophytes containing immature zygotic embryos on both media with and without plant growth regulators. Across nine open-pollinated families initiation frequency ranged from 0 to 20%, with an average of 1.5%. Embryogenic cultures were maintained and proliferated on a medium supplemented with 2,4-dichlorophenoxyacetic acid (3 μM) and 6-benzylaminopurine (1 μM). Maturation of somatic embryos occurred on medium containing maltose (50 g l−1), activated charcoal (2 g l−1), abscisic acid (100 μM), and polyethylene glycol (100 g l−1). The frequencies of germination and plant conversion of somatic embryos differed among the embryogenic lines from 16 to 51% and from 12 to 40%, respectively. Growth of regenerated somatic plants has been monitored in the field.  相似文献   

17.
Summary An efficient plant regeneration system employing cotyledons, hypocotyls, petioles and leaves as explants and characterized by continuous and prolific production of somatic embryos, has been developed with Medicago arborea ssp. arborea. The optimal somatic embryogenic response was obtained using a two-step protocol, where explants were incubated under a 16 h photoperiod for 2 mo. on Murashige and Skoog (MS) medium containing 2,4-dichlorophenoxyacetic acid (2,4-D; 9 μM) and kinetin (9 μM), and followed by transfer to kinetin-free MS medium with 2,4-D (2.25 μM). Removal of the cytokinin and a reduction in the concentration of auxin (2.25 μM) in the second step of culture were critical for enhanced production of somatic embryos. The best explants proved to be cotyledons and petioles (i.e. a mean of 18.0±0.70 somatic embryos at 3 mo. for petiole culture). Somatic embryos were converted into normal plantlets (8.0±0.89%) when cultured on basal MS medium with 5 μM indolebutyric acid. No somatic embryos were obtained when thidiazuron was used in the culture media. Using petioles as explants and N6-benzyladenine (BA), embryogenesis was induced in the second step of culture when BA was removed from the medium and the concentration of 2,4-D was decreased to 2.25 μM.  相似文献   

18.
Summary Regeneration of several varieties of soybean [Glycine max (L.) Merrill] by somatic embryogenesis from cultured epicotyls and primary leaves has been demonstrated. Somatic embryogenesis was induced from epicotyls and primary leaves when cotyledon halves with the intact zygotic embryo axes were cultured on Murashige and Skoog (MS) medium supplemented with 10 mg 1−1 (45.2 μM) 2,4-D. Stable, continuously proliferating globular embryo cultures (GEC) were established from small groups of somatic embryos on MS medium supplemented with 20 mg 1−1 (90.5 μM) 2,4-dichlorophenoxyacetic acid (2,4-D). Rapid multiplication of shoot tips from germinating somatic embryos was achieved on Cheng’s basal medium (CBO) containing 2.5 mg 1−1 (11.3 μM) 6-benzyladenine. Fertile plants were obtained from individual somatic embryos and in vitro propagated adventitious shoot bud cultures.  相似文献   

19.
Summary Baloskion tetraphyllum is a member of the Restionaceae and is an important species for the rehabilitation of disused mine sites and wetland areas, and is also highly prized as a cut flower. Its use for restoration of disturbed land is, however, severely limited, due to very poor propagation success by conventional methods. A study was conducted to evaluate the potential of somatic embryogenesis for the large-scale propagation of this species. A variety of auxins (at different concentrations) were investigated for their efficacy in stimulating somatic embryogenesis. Somatic embryos were successfully induced from excised coleoptiles of B. tetraphyllum on half-strength Murashige and Skoog (1/2MS) medium supplemented with 1 μM 2,4-dichlorophenoxyacetic (2,4-D). To scale up the production, proliferation of secondary somatic embryos was achieved using primary somatic embryos as the tissue source, on 1/2MS+1 μM 2,4-D resulting in a 30-fold increase in somatic embryo, numbers. Almost all the somatic embryos developed into plants and were established ex vitro. The other auxins investigated, including p-chlorophenoxyacetic acid, indole-3-acetic acid, α-naphthaleneacetic acid, and picloram, were not as effective as 2,4-D. The age, of the explant material significantly influenced somatic embryogenesis with white, young coleoptiles (5–7 d) producing 50% more somatic embryos than green, more mature (8–14 d) coleoptiles. The protocol developed for B. tetraphyllum has the potential to be commercially viable, with an estimated 22 000 somatic embryos produced from 1 g of plant material. This research may also have a positive impact on the propagation of other important Restionaceae species.  相似文献   

20.
Summary A protocol of somatic embryogenesis and plant regeneration from petiole segments of Parthenocissus tricuspidata Planch. has been developed. Embryogenic tissue was induced on B5 (Gamborg) basal medium supplemented with 2.25–9.0 μM 2,4-dichlorophenoxyacetic acid, 500 mg l−1 casein hydrolysate (CH), and 0.1 gl−1 activated charcoal. Somatic embryos were induced on B5 medium containing various concentrations of benzyladenine (BA) (4.44, 6.66, and 8.88 μM) and α-naphthaleneacetic acid (NAA) (0, 0.54, and 1.61 μM) plus 500 mg l−1 CH. Ninety percent of normal somatic embryos were converted into plantlets directly on Murashige and Skoog (MS) medium free of plant growth regulators. Shoots could be induced from abnormal somatic embryos on MS medium containing 4.44 μM BA, 0.05 μM NAA, and 500 mg l−1 CH. Genotypic differences were found in the process of somatic embryogenesis and plant regeneration. Histological analysis confirmed the process of somatic embryogenesis. Regenerated plantlets with well-developed roots were successfully acclimatized in greenhouse and all plants showed normal morphological characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号