首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The secondary structure transitions of regenerated silk fibroin (RSF) under different external perturbations have been studied extensively, except for pressure. In this work, time‐resolved infrared spectroscopy with the attenuated total reflectance (ATR) accessory was employed to follow the secondary structure transitions of RSF in its wet film under low pressure. It has been found that pressure alone is favorable only to the formation of β‐sheet structure. Under constant pressure there is an optimum amount of D2O in the wet film (D2O : film = 2:1) so as to provide the optimal condition for the reorganization of the secondary structure and to have the largest formation of β‐sheet structure. Under constant amount of D2O and constant pressure, the secondary structure transitions of RSF in its wet film can be divided into three stages along with time. In the first stage, random coil, α‐helix, and β‐turn were quickly transformed into β‐sheet. In the second stage, random coil and β‐turn were relatively slowly transformed into β‐sheet and α‐helix, and the content of α‐helix was recovered to the value prior to the application of pressure. In the third and final stage, no measurable changes can be found for each secondary structure. This study may be helpful to understand the secondary structure changes of silk fibroin in silkworm's glands under hydrostatic pressure.  相似文献   

2.
Acylation of proteins is known to mediate membrane attachment and to influence subcellular sorting. Here, we report that acylation can stabilize secondary structure. Circular dichroism spectroscopy showed that N‐terminal attachment of acyl chains decreases the ability of an intrinsically flexible hydrophobic model peptide to refold from an α‐helical state to β‐sheet in response to changing solvent conditions. Acylation also stabilized the membrane‐embedded α‐helix. This increase of global helix stability did not result from decreased local conformational dynamics of the helix backbone as assessed by deuterium/hydrogen‐exchange experiments. We concluded that acylation can stabilize the structure of intrinsically dynamic helices and may thus prevent misfolding.  相似文献   

3.
The molecules‐in‐molecules (MIM) fragment‐based method has recently been adapted to evaluate the chiroptical (vibrational circular dichroism [VCD] and Raman optical activity [ROA]) spectra of large molecules such as peptides. In the MIM‐VCD and MIM‐ROA methods, the relevant higher energy derivatives of the parent molecule are assembled from the corresponding derivatives of smaller fragment subsystems. In addition, the missing long‐range interfragment interactions are accounted at a computationally less expensive level of theory (MIM2). In this work we employed the MIM‐VCD and MIM‐ROA fragment‐based methods to explore the evolution of the chiroptical spectroscopic characteristics of 310‐helix, α‐helix, β‐hairpin, γ‐turn, and β‐extended conformers of gas phase polyalanine (chain length n = 6–14). The different conformers of polyalanine show distinctive features in the MIM chiroptical spectra and the associated spectral intensities increase with evolution of system size. For a better understanding the site‐specific effects on the vibrational spectra, isotopic substitutions were also performed employing the MIM method. An increasing redshift with the number of isotopically labeled 13C=O functional groups in the peptide molecule was seen. For larger polypeptides, we implemented the two‐step‐MIM model to circumvent the high computational expense associated with the evaluation of chiroptical spectra at a high level of theory using large basis sets. The chiroptical spectra of α‐(alanine)20 polypeptide obtained using the two‐step‐MIM model, including continuum solvation effects, show good agreement with the full calculations and experiment. This benchmark study suggests that the MIM‐fragment approach can assist in predicting and interpreting chiroptical spectra of large polypeptides.  相似文献   

4.
Fourier‐transform infrared (FT‐IR) spectroscopy was employed to investigate potential lyophilization‐induced changes in the secondary structure of lipases from Candida antarctica B and Pseudomonas cepacia. The secondary structure elements were determined by curve fitting of the amide III bands of the two lipases in the lyophilized state in KBr pellets and in solution. It was found that lyophilization decreased the α‐helix and increased the β‐sheet content. However, FT‐IR analysis of crosslinked enzyme crystals of Pseudomonas cepacia lipase also indicated an increase in the β‐sheet content, which appears despite the fact that the enzyme, being in the crystallized state, should possess native conformation. This result partially questions the suitability of FT‐IR for analysis of the structure of solid proteins, at least as far as the β‐sheet content is concerned, because it is possible that the method overestimates the β‐sheets by measuring other hydrogen‐bonded nonperiodic intermolecular structures. No significant modification was observed when lipase from Pseudomonas cepacia was lyophilized in the presence of methoxypoly(ethylene glycol). © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 545–551, 1999.  相似文献   

5.
Protein folding has been studied extensively for decades, yet our ability to predict how proteins reach their native state from a mechanistic perspective is still rudimentary at best, limiting our understanding of folding‐related processes in vivo and our ability to manipulate proteins in vitro. Here, we investigate the in vitro refolding mechanism of a large β‐helix protein, pertactin, which has an extended, elongated shape. At 55 kDa, this single domain, all‐β‐sheet protein allows detailed analysis of the formation of β‐sheet structure in larger proteins. Using a combination of fluorescence and far‐UV circular dichroism spectroscopy, we show that the pertactin β‐helix refolds remarkably slowly, with multiexponential kinetics. Surprisingly, despite the slow refolding rates, large size, and β‐sheet‐rich topology, pertactin refolding is reversible and not complicated by off‐pathway aggregation. The slow pertactin refolding rate is not limited by proline isomerization, and 30% of secondary structure formation occurs within the rate‐limiting step. Furthermore, site‐specific labeling experiments indicate that the β‐helix refolds in a multistep but concerted process involving the entire protein, rather than via initial formation of the stable core substructure observed in equilibrium titrations. Hence pertactin provides a valuable system for studying the refolding properties of larger, β‐sheet‐rich proteins, and raises intriguing questions regarding the prevention of aggregation during the prolonged population of partially folded, β‐sheet‐rich refolding intermediates. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
We report structural alterations of histone H3 proteins induced by lysine‐4 (K4) monomethylation, dimethylation, and trimethylation identified by using synchrotron radiation circular dichroism spectroscopy. Compared with unmethylated H3, monomethylation and dimethylation induced increases in α‐helix structures and decreases in β‐strand structures. In contrast, trimethylation decreased α‐helix content but increased β‐strand content. The structural differences among K4‐unmethylated/methylated H3 may allow epigenetic enzymes to discriminate the substrates both chemically and sterically.  相似文献   

7.
Salmon calcitonin (sCT) was selected as a model protein drug for investigating its intrinsic thermal stability and conformational structure in the solid and liquid states by using a Fourier transform infrared (FT‐IR) microspectroscopy with or without utilizing thermal analyzer. The spectral correlation coefficient (r) analysis between two second‐derivative IR spectra was applied to quantitatively estimate the structural similarity of sCT in the solid state before and after different treatments. The thermal FT‐IR microspectroscopic data clearly evidenced that sCT in the solid state was not effected by temperature and had a thermal reversible property during heating–cooling process. Moreover, the high r value of 0.973 or 0.988 also evidenced the structural similarity of solid‐state sCT samples before and after treatments. However, sCT in H2O exhibited protein instability and thermal irreversibility after incubation at 40°C. The temperature‐induced conformational changes of sCT in H2O was occurred to transform the α‐helix/random coil structures to β‐sheet structure and also resulted in the formation of intramolecular and intermolecular β‐sheet structures. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 200–207, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

8.
To elucidate the effects of specific disulfide bridges (Cys6‐Cys127, Cys30‐Cys115, Cys64‐Cys80, and Cys76‐Cys94) on the secondary structure of hen lysozyme, the vacuum‐ultraviolet circular dichroism (VUVCD) spectra of 13 species of disulfide‐deficient variants in which Cys residues were replaced with Ala or Ser residues were measured down to 170 nm at pH 2.9 and 25°C using a synchrotron‐radiation VUVCD spectrophotometer. Each variant exhibited a VUVCD spectrum characteristic of a considerable amount of residual secondary structures depending on the positions and numbers of deleted disulfide bridges. The contents of α‐helices, β‐strands, turns, and unordered structures were estimated with the SELCON3 program using the VUVCD spectra and PDB data of 31 reference proteins. The numbers of α‐helix and β‐strand segments were also estimated from the VUVCD data. In general, the secondary structures were more effectively stabilized through entropic forces as the number of disulfide bridges increased and as they were formed over larger distances in the primary structure. The structures of three‐disulfide variants were similar to that of the wild type, but other variants exhibited diminished α‐helices with a border between the ordered and disordered structures around the two‐disulfide variants. The sequences of the secondary structures were predicted for all the variants by combining VUVCD data with a neural‐network method. These results revealed the characteristic role of each disulfide bridge in the formation of secondary structures. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
The influenza A M2 protein forms a proton channel for virus infection and mediates virus assembly and budding. While extensive structural information is known about the transmembrane helix and an adjacent amphipathic helix, the conformation of the N‐terminal ectodomain and the C‐terminal cytoplasmic tail remains largely unknown. Using two‐dimensional (2D) magic‐angle‐spinning solid‐state NMR, we have investigated the secondary structure and dynamics of full‐length M2 (M2FL) and found them to depend on the membrane composition. In 2D 13C DARR correlation spectra, 1,2‐dimyristoyl‐sn‐glycero‐3‐phosphocholine (DMPC)‐bound M2FL exhibits several peaks at β‐sheet chemical shifts, which result from water‐exposed extramembrane residues. In contrast, M2FL bound to cholesterol‐containing membranes gives predominantly α‐helical chemical shifts. Two‐dimensional J‐INADEQUATE spectra and variable‐temperature 13C spectra indicate that DMPC‐bound M2FL is highly dynamic while the cholesterol‐containing membranes significantly immobilize the protein at physiological temperature. Chemical‐shift prediction for various secondary‐structure models suggests that the β‐strand is located at the N‐terminus of the DMPC‐bound protein, while the cytoplasmic domain is unstructured. This prediction is confirmed by the 2D DARR spectrum of the ectodomain‐truncated M2(21–97), which no longer exhibits β‐sheet chemical shifts in the DMPC‐bound state. We propose that the M2 conformational change results from the influence of cholesterol, and the increased helicity of M2FL in cholesterol‐rich membranes may be relevant for M2 interaction with the matrix protein M1 during virus assembly and budding. The successful determination of the β‐strand location suggests that chemical‐shift prediction is a promising approach for obtaining structural information of disordered proteins before resonance assignment.  相似文献   

10.
The spinning mechanism of natural silk has been an open issue. In this study, both the conformation transition from random coil to beta sheet and the beta sheet aggregation growth of silk fibroin are identified in the B. mori regenerated silk fibroin aqueous solution by circular dichroism (CD) spectroscopy. A nucleation-dependent aggregation mechanism, similar to that found in prion protein, amyloid beta (Abeta) protein, and alpha-synuclein protein with the conformation transition from a soluble protein to a neurotoxic, insoluble beta sheet containing aggregate, is a novel suggestion for the silk spinning process. We present evidence that two steps are involved in this mechanism: (a) nucleation, a rate-limiting step involving the conversion of the soluble random coil to insoluble beta sheet and subsequently a series of thermodynamically unfavorable association of beta sheet unit, i.e. the formation of a nucleus or seed; (b) once the nucleus forms, further growth of the beta sheet unit becomes thermodynamically favorable, resulting a rapid extension of beta sheet aggregation. The aggregation growth follows a first order kinetic process with respect to the random coil fibroin concentration. The increase of temperature accelerates the beta sheet aggregation growth if the beta sheet seed is introduced into the random coil fibroin solution. This work enhances our understanding of the natural silk spinning process in vivo.  相似文献   

11.
Li XG  Wu LY  Huang MR  Shao HL  Hu XC 《Biopolymers》2008,89(6):497-505
The conformational transition of molecular chains of regenerated silk fibroin (SF) aqueous solution is systematically investigated by circular dichroism, Raman, IR, and UV-vis spectroscopies. It is found that an initial random coil conformation of the SF can be readily changed into an ordered beta-sheet structure by optimizing the solution conditions, such as the SF concentration, pH, temperature, or metal-ion content. Circular dichroic spectra quantitatively confirm a steadily decreased content of the random coil conformation but a significantly increased beta-sheet content after an ultrasonic or extruding treatment. Furthermore, the extrusion is more powerful to achieve high beta-sheet content than the ultrasonic. It is interesting that the polarized optical micrographs of the SF aqueous solution extruded by injection illustrate the formation and existence of liquid crystalline state. A study of extrusion in vitro could be used as a model system to understand the natural silk spinning process in silkworm.  相似文献   

12.
This work advances bottom‐up design of bioinspired materials built from peptide‐amphiphiles, which are a class of bioconjugates in which a biofunctional peptide is covalently attached to a hydrophobic moiety that drives self‐assembly in aqueous solution. Specifically, this work highlights the importance of peptide contour length in determining the equilibrium secondary structure of the peptide as well as the self‐assembled (i.e., micelle) geometry. Peptides used here repeat a seven‐amino acid sequence between one and four times to vary peptide contour length while maintaining similar peptide‐peptide interactions. Without a hydrophobic tail, these peptides all exhibit a combination of random coil and α‐helical structure. Upon self‐assembly in the crowded environment of a micellar corona, however, short peptides are prone to β‐sheet structure and cylindrical micelle geometry while longer peptides remain helical in spheroidal micelles. The transition to β‐sheets in short peptides is rapid, whereby amphiphiles first self‐assemble with α‐helical peptide structure, then transition to their equilibrium β‐sheet structure at a rate that depends on both temperature and ionic strength. These results identify peptide contour length as an important control over equilibrium peptide secondary structure and micelle geometry. Furthermore, the time‐dependent nature of the helix‐to‐sheet transition opens the door for shape‐changing bioinspired materials with tunable conversion rates. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 573–581, 2013.  相似文献   

13.
Binding a small molecule to proteins causes conformational changes, but often to a limited extent. Here, we demonstrate that the interaction of a CO‐releasing molecule (CORM3) with a photoreceptor photoactive yellow protein (PYP) drives large structural changes in the latter. The interaction of CORM3 and a mutant of PYP, Met100Ala, not only trigger the isomerization of its chromophore, p‐coumaric acid, from its anionic trans configuration to a protonated cis configuration, but also increases the content of β‐sheet at the cost of α‐helix and random coil in the secondary structure of the protein. The CORM3 derived Met100Ala is found to highly resemble the signaling state, which is one of the key photo‐intermediates of this photoactive protein, in both protein local conformation and chromophore configuration. The organometallic reagents hold promise as protein engineering tools. This work highlights a novel approach to structurally accessing short lived intermediates of proteins in a steady‐state fashion.  相似文献   

14.
Fourier transform ir vibrational circular dichroism (VCD) spectra in the amide I′ region of poly(L-lysine) in D2O solutions have confirmed the existence of three distinct conformational states and an unordered conformational state in this homopolypeptide. Characteristic VCD spectra are presented for the right-handed α-helix, the antiparallel β-sheet, an extended helix conformation previously referred to as the so-called “random coil,” and a completely unordered conformation characterized by the absence of any amide I′ VCD. VCD for the antiparallel β-sheet in solution and the unordered chain conformation are presented for the first time. Each of the four different VCD spectra is unique in appearance and lends weight to the view that VCD has the potential to become a sensitive new probe of the secondary structure of proteins in solution.  相似文献   

15.
The continuously growing interest in the understanding of peptide folding led to the conformational investigation of methylamides of N‐acetyl‐amino acids as diamide models. Here we report the results of detailed conformational analysis on Ac‐Pro‐NHMe and Ac‐β‐HPro‐NHMe diamides. These compounds were analyzed by experimental and computational methods, the conformational distributions obtained by Density Functional Theory (DFT) calculations for isolated and solvated diamide compounds are discussed. The conformational preference of proline‐containing diamide compounds as a function of the ambience was observed by a number of chiroptical spectroscopic techniques, such as vibrational circular dichroism (VCD), electronic circular dichroism (ECD), Raman optical activity (ROA) spectroscopy, and additionally by single crystal X‐ray diffraction analyses. Based on a comparison between Ac‐Pro‐NHMe and Ac‐β‐HPro‐NHMe, one can conclude that due to the greater conformational freedom of the β‐HPro derivative, Ac‐β‐HPro‐NHMe shows different behavior in solid‐ and solution‐phase, as well. Ac‐β‐HPro‐NHMe tends to form cis Ac‐β‐HPro amide conformation in water, dichloromethane, and acetonitrile in contrast to its α‐Pro analog. On the other hand, the crystal structure of the β‐HPro compound cannot be related to any of the conformers obtained in vacuum and solution while the X‐ray structure of Ac‐Pro‐NHMe was identified as tαL–, which is a trans Ac‐Pro amide containing conformer also predominant in polar solvents. Chirality 26:228–242, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
The construction of novel functional proteins has been a key area of protein engineering. However, there are few reports of functional proteins constructed from artificial scaffolds. Here, we have constructed a genetic library encoding α3β3 de novo proteins to generate novel scaffolds in smaller size using a binary combination of simplified hydrophobic and hydrophilic amino acid sets. To screen for folded de novo proteins, we used a GFP‐based screening system and successfully obtained the proteins from the colonies emitting the very bright fluorescence as a similar intensity of GFP. Proteins isolated from the very bright colonies (vTAJ) and bright colonies (wTAJ) were analyzed by circular dichroism (CD), 8‐anilino‐1‐naphthalenesulfonate (ANS) binding assay, and analytical size‐exclusion chromatography (SEC). CD studies revealed that vTAJ and wTAJ proteins had both α‐helix and β‐sheet structures with thermal stabilities. Moreover, the selected proteins demonstrated a variety of association states existing as monomer, dimer, and oligomer formation. The SEC and ANS binding assays revealed that vTAJ proteins tend to be a characteristic of the folded protein, but not in a molten‐globule state. A vTAJ protein, vTAJ13, which has a packed globular structure and exists as a monomer, was further analyzed by nuclear magnetic resonance. NOE connectivities between backbone signals of vTAJ13 suggested that the protein contains three α‐helices and three β‐strands as intended by its design. Thus, it would appear that artificially generated α3β3 de novo proteins isolated from very bright colonies using the GFP fusion system exhibit excellent properties similar to folded proteins and would be available as artificial scaffolds to generate functional proteins with catalytic and ligand binding properties.  相似文献   

17.
In this work, we studied the effects of incubation concentration and time on the self‐assembly behaviors of regenerated silk fibroin (RSF). Our results showed the assembly ways of RSF were concentration‐dependent and there were four self‐assembly ways of RSF: (i) At relatively low concentration (≤0.015%), RSF molecules assembled into protofilaments (random coil), and then the thickness decreased and the secondary conformation changed to antiparallel β‐sheet; (ii) at the concentration of 0.015%, RSF molecules assembled into protofilaments (random coil), and then assembled into protofibrils (antiparallel β‐sheet). The protofibrils experienced the appearance and disappearance of phase periodic intervals in turn; (iii) at the concentration of 0.03%, RSF molecules assembled into bead‐like oligomers (random coil), and then assembled into protofibrils (antiparallel β‐sheet), and finally the height and phase periodic intervals of RSF protofibrils disappeared in turn; and (iv) at the relatively high concentration (≥0.15%), RSF molecules assembled into protofilaments (random coil), then aggregated into blurry cuboid‐like micelles (random coil), and finally self‐arranged to form smooth and clear cuboid‐like micelles (antiparallel β‐sheet). These results provide useful insights into the process by which the RSF molecules self‐assemble into protofilaments, protofibrils and micelles. Furthermore, our work will be beneficial to basic understanding of the nanoscale structure formations in different silk‐based biomaterials. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 1181–1192, 2014.  相似文献   

18.
The protein scaffold is a peptide framework with a high tolerance of residue modifications. The cysteine‐stabilized αβ motif (CSαβ) consists of an α‐helix and an antiparallel triple‐stranded β‐sheet connected by two disulfide bridges. Proteins containing this motif share low sequence identity but high structural similarity and has been suggested as a good scaffold for protein engineering. The Vigna radiate defensin 1 (VrD1), a plant defensin, serves here as a model protein to probe the amino acid tolerance of CSαβ motif. A systematic alanine substitution is performed on the VrD1. The key residues governing the inhibitory function and structure stability are monitored. Thirty‐two of 46 residue positions of VrD1 are altered by site‐directed mutagenesis techniques. The circular dichroism spectrum, intrinsic fluorescence spectrum, and chemical denaturation are used to analyze the conformation and structural stability of proteins. The secondary structures were highly tolerant to the amino acid substitutions; however, the protein stabilities were varied for each mutant. Many mutants, although they maintained their conformations, altered their inhibitory function significantly. In this study, we reported the first alanine scan on the plant defensin containing the CSαβ motif. The information is valuable to the scaffold with the CSαβ motif and protein engineering.  相似文献   

19.
We studied the interaction of poly‐l ‐lysine (PLL) and poly‐l ‐arginine (PLAG) with sodium dodecyl sulfate (SDS) surfactant and the interaction of poly‐l‐ glutamic acid (PLGA) and poly‐l ‐aspartic acid (PLAA) with tetradecyltrimethylammonium bromide (TTAB) surfactant using vibrational circular dichroism (VCD) spectroscopy in the region of C‐H stretching vibration and in the Amide I region both in solution and in mulls. A chirality transfer from polypeptides to achiral surfactants was observed in the C‐H stretching region, where measurements in solution were impossible. This observation was enabled by a special sample treatment technique using lyophilization and the preparation of mulls. This technique demonstrated itself as an interesting and beneficial tool for VCD measurements. In addition, we observed that SDS changed the secondary structure of PLL to the β‐sheet and of PLAG to the α‐helix. TTAB disrupted the PLGA and PLAA structure. These results were obtained in the mull but were confirmed by the VCD spectra measured in solution and by electronic circular dichroism. The chirality transfer from the polypeptides to SDS was caused by polypeptides ordered into a specific conformation during the interaction, while in the TTBA system it was induced primarily by the chirality of the amino acid residues. Chirality 27:965–972, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
The abnormal aggregation of amyloid proteins is reported to play a critical role in the etiology of neurodegenerative disorders. Studies have shown that excessive ferric irons are associated with the misfolding of amyloid proteins, and that (‐)‐epigallocatechin gallate (EGCG) is a good metallic ion chelator with inhibitory effect on the aggregation of amyloid proteins. EGCG has been thus considered as a potential drug candidate for the treatment of neurodegenerative diseases. However, the mechanism of action for EGCG in inhibition of aggregation of amyloid proteins is still remaining unclear. Silk fibroin (SF) shares similarities with amyloid proteins in some amino acid sequences and fibrillation kinetics. In this work, therefore, we used SF as a model of protein to investigate the effects of Fe(III) and EGCG on conformational transition by using turbidity assay, thioflavin T (ThT) fluorescence spectroscopy, Raman spectroscopy, and atomic force microscope (AFM). We demonstrated that low concentration of Fe(III) ions promoted the formation of β‐sheet conformers, while high concentration of Fe(III) ions inhibited further aggregation of SF. EGCG could significantly inhibit the conformational transition of SF when induced by Fe(III), and decrease the amount of β‐sheet conformers dose‐dependently. The findings provide important information regarding to EGCG as a potential agent for the prevention and treatment of neurodegenerative diseases. Fe(III) can accelerate the conformation transition of silk fibrion (SF) from random coil into β‐sheet, while (‐)‐epigallocatechin gallate (EGCG) inhibits Fe(III)‐induced β‐sheet aggregation of SF., 2016. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 100–107, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号