首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the signaling pathways through which defense responses are activated following pathogen infection, we have isolated and characterized the cpr22 mutant. This plant carries a semidominant, conditional lethal mutation that confers constitutive expression of the pathogenesis-related (PR) genes PR-1, PR-2, PR-5 and the defensin gene PDF1.2. cpr22 plants also display spontaneous lesion formation, elevated levels of salicylic acid (SA) and heightened resistance to Peronospora parasitica Emco5. The cpr22 locus was mapped to chromosome 2, approximately 2 cM telomeric to the AthB102 marker. By analyzing the progeny of crosses between cpr22 plants and either NahG transgenic plants or npr1 mutants, all of the cpr22-associated phenotypes except PDF1.2 expression were found to be SA dependent. However, the SA signal transducer NPR1 was required only for constitutive PR-1 expression. A cross between cpr22 and ndr1-1 mutants revealed that enhanced resistance to P. parasitica is mediated by an NDR1-dependent pathway, while the other cpr22-induced defenses are not. Crosses between either coi1-1 or etr1-1 mutants further demonstrated that constitutive PDF1.2 expression is mediated by a JA- and ethylene-dependent pathway. Based on these results, the cpr22 mutation appears to induce its associated phenotypes by activating NPR1-dependent and NPR1-independent branches of the SA pathway, as well as an ethylene/JA signaling pathway. Interestingly, the SA-dependent phenotypes, but not the SA-independent phenotypes, are suppressed when cpr22 mutants are grown under high humidity.  相似文献   

2.
Mewis I  Appel HM  Hom A  Raina R  Schultz JC 《Plant physiology》2005,138(2):1149-1162
Plant responses to enemies are coordinated by several interacting signaling systems. Molecular and genetic studies with mutants and exogenous signal application suggest that jasmonate (JA)-, salicylate (SA)-, and ethylene (ET)-mediated pathways modulate expression of portions of the defense phenotype in Arabidopsis (Arabidopsis thaliana), but have not yet linked these observations directly with plant responses to insect attack. We compared the glucosinolate (GS) profiles of rosette leaves of 4-week-old mutant and transgenic Arabidopsis (Columbia) plants compromised in these three major signaling pathways, and characterized responses by those plants to feeding by two phloem-feeding aphids (generalist Myzus persicae and specialist Brevicoryne brassicae) and one generalist caterpillar species (Spodoptera exigua Hubner). Blocked JA signaling in coronatine-insensitive (coi1) and enhanced expression of SA-signaled disease resistance in hypersensitive response-like (hrl1) mutants reduced constitutive GS concentrations, while blocking SA signaling at the mediator protein npr1 mutant (NPR) increased them. There was no significant impact on constitutive GS contents of blocking ET signaling (at ET resistant [etr1]) or reducing SA concentrations (nahG transgene). We found increased GS accumulation in response to insect feeding, which required functional NPR1 and ETR1 but not COI1 or SA. Insect feeding caused increases primarily in short-chain aliphatic methylsulfinyl GS. By contrast, responses to exogenous JA, a frequent experimental surrogate for insect attack, were characterized by an increase in indolyl GS. Insect performance, measured as population increase or weight increase, was negatively related to GS levels, but we found evidence that other, ET-regulated factors may also be influential. Plant resistance to (consumption by) S. exigua was not related to insect growth because some plant chemistries inhibited growth while others inhibited feeding. These major signaling pathways modulate Arabidopsis GS accumulation and response to both phloem-feeding and chewing insects, often antagonistically; NPR appears to be central to these interactions. Our results indicate that exogenous signal application and plant consumption measures may not provide useful measures of plant responses to actual insect feeding.  相似文献   

3.
Salicylic acid (SA), ethylene, and jasmonic acid (JA) are important signaling molecules in plant defense to biotic stress. An intricate signaling network involving SA, ethylene, and JA fine tunes plant defense responses. SA-dependent defense responses in Arabidopsis thaliana are mediated through NPR1-dependent and -independent mechanisms. We have previously shown that activation of an NPR1-independent defense mechanism confers enhanced disease resistance and constitutive expression of the pathogenesis-related (PR) genes in the Arabidopsis ssi1 mutant. In addition, the ssi1 mutant constitutively expresses the defensin gene PDF1.2. Moreover, SA is required for the ssi1-conferred constitutive expression of PDF1.2 in addition to PR genes. Hence, the ssi1 mutant appears to target a step common to SA- and ethylene- or JA-regulated defense pathways. In the present study, we show that, in addition to SA, ethylene and JA signaling also are required for the ssi1-conferred constitutive expression of PDF1.2 and the NPR1-independent expression of PR-1. Furthermore, the ethylene-insensitive ein2 and JA-insensitive jar1 mutants enhance susceptibility of ssi1 plants to the necrotrophic fungus Botrytis cinerea. However, defects in either the ethylene- or JA-signaling pathways do not compromise ssi1-conferred resistance to the bacterial pathogen Pseudomonas synringae pv. maculicola and the oomycete pathogen Peronospora parasitica. Interestingly, ssi1 exhibits a marginal increase in the levels of ethylene and JA, suggesting that low endogenous levels of these phytohormones are sufficient to activate expression of defense genes. Taken together, our results indicate that although cross talk in ssi1 renders expression of ethylene- or JA-responsive defense genes sensitive to SA and vice versa, it does not affect downstream signaling leading to resistance.  相似文献   

4.
We have established an Arabidopsis protoplast model system to study plant cell death signaling. The fungal toxin fumonisin B1 (FB1) induces apoptosis-like programmed cell death (PCD) in wild-type protoplasts. FB1, however, only marginally affects the viability of protoplasts isolated from transgenic NahG plants, in which salicylic acid (SA) is metabolically degraded; from pad4-1 mutant plants, in which an SA amplification mechanism is thought to be impaired; or from jar1-1 or etr1-1 mutant plants, which are insensitive to jasmonate (JA) or ethylene (ET), respectively. FB1 susceptibility of wild-type protoplasts decreases in the dark, as does the cellular content of phenylalanine ammonia-lyase, a light-inducible enzyme involved in SA biosynthesis. Interestingly, however, FB1-induced PCD does not require the SA signal transmitter NPR1, given that npr1-1 protoplasts display wild-type FB1 susceptibility. Arabidopsis cpr1-1, cpr6-1, and acd2-2 protoplasts, in which the SA signaling pathway is constitutively activated, exhibit increased susceptibility to FB1. The cpr6-1 and acd2-2 mutants also constitutively express the JA and ET signaling pathways, but only the acd2-2 protoplasts undergo PCD in the absence of FB1. These results demonstrate that FB1 killing of Arabidopsis is light dependent and requires SA-, JA-, and ET-mediated signaling pathways as well as one or more unidentified factors activated by FB1 and the acd2-2 mutation.  相似文献   

5.
Systemic acquired resistance (SAR) is a potent innate immunity system in plants that is induced through the salicylic acid-mediated pathway. N-cyanomethyl-2-chloroisonicotinamide (NCI) is able to induce a broad range of disease resistance in tobacco and rice and induces SAR marker gene expression without SA accumulation in tobacco. To clarify the detailed mode of action of NCI, we analyzed its ability to induce defense gene expression and resistance in Arabidopsis mutants that are defective in various defense signaling pathways. Wild-type Arabidopsis treated with NCI exhibited increased expression of several pathogenesis-related genes and enhanced resistance to the bacterial pathogen, Pseudomonas syringae pv. tomato DC3000. NCI induced disease resistance and PR gene expression in NahG transgenic plants, but not in the npr1 mutant. NCI could induce PR gene expression in the etr1-1, ein2-1 and jar1-1 mutants. Thus, NCI activates SAR, independently from ethylene and jasmonic acid, by stimulating the site between SA and NPR1.  相似文献   

6.
Bacillus cereus AR156 is a plant growth-promoting rhizobacterium that induces resistance against a broad spectrum of pathogens including Pseudomonas syringae pv. tomato DC3000. This study analyzed AR156-induced systemic resistance (ISR) to DC3000 in Arabidopsis ecotype Col-0 plants. Compared with mock-treated plants, AR156-treated ones showed an increase in biomass and reductions in disease severity and pathogen density in the leaves. The defense-related genes PR1, PR2, PR5, and PDF1.2 were concurrently expressed in the leaves of AR156-treated plants, suggesting simultaneous activation of the salicylic acid (SA)- and the jasmonic acid (JA)- and ethylene (ET)-dependent signaling pathways by AR156. The above gene expression was faster and stronger in plants treated with AR156 and inoculated with DC3000 than that in plants only inoculated with DC3000. Moreover, the cellular defense responses hydrogen peroxide accumulation and callose deposition were induced upon challenge inoculation in the leaves of Col-0 plants primed by AR156. Also, pretreatment with AR156 led to a higher level of induced protection against DC3000 in Col-0 than that in the transgenic NahG, the mutant jar1 or etr1, but the protection was absent in the mutant npr1. Therefore, AR156 triggers ISR in Arabidopsis by simultaneously activating the SA- and JA/ET-signaling pathways in an NPR1-dependent manner that leads to an additive effect on the level of induced protection.  相似文献   

7.
Arabidopsis thaliana grown in soil amended with barley grain inocula of Penicillium simplicissimum GP17-2 or receiving root treatment with its culture filtrate (CF) exhibited clear resistance to Pseudomonas syringae pv. tomato DC3000 (Pst). To assess the contribution of different defense pathways, Arabidopsis genotypes implicated in salicylic acid (SA) signaling expressing the NahG transgene or carrying disruption in NPR1 (npr1), jasmonic acid (JA) signaling (jar1) and ethylene (ET) signaling (ein2) were tested. All genotypes screened were protected by GP17-2 or its CF. However, the level of protection was significantly lower in NahG and npr1 plants than it was in similarly treated wild-type plants, indicating that the SA signaling pathway makes a minor contribution to the GP17-2-mediated resistance and is insufficient for a full response. Examination of local and systemic gene expression revealed that GP17-2 and its CF modulate the expression of genes involved in both the SA and JA/ET signaling pathways. Subsequent challenge of GP17-2-colonized plants with Pst was accompanied by direct activation of SA-inducible PR-2 and PR-5 genes as well as potentiated expression of the JA-inducible Vsp gene. In contrast, CF-treated plants infected with Pst exhibited elevated expression of most defense-related genes (PR-1, PR-2, PR-5, PDF1.2 and Hel) studied. Moreover, an initial elevation of SA responses was followed by late induction of JA responses during Pst infection of induced systemic resistance (ISR)-expressing plants. In conclusion, we hypothesize the involvement of multiple defense mechanisms leading to an ISR of Arabidopsis by GP17-2.  相似文献   

8.
9.
The Arabidopsis FAD7 gene encodes a plastid omega-3 fatty acid desaturase that catalyzes the desaturation of dienoic fatty acids to trienoic fatty acids in chloroplast membrane lipids. The expression of FAD7 was rapidly and locally induced by ozone exposure, which causes oxidative responses equivalent to pathogen-induced hypersensitive responses and subsequently activates various defense-related genes. This induction was reduced in salicylic acid (SA)-deficient NahG plants expressing SA hydroxylase, but was unaffected in etr1 and jar1 mutants, which are insensitive to ethylene and jasmonic acid (JA), respectively. The SA dependence of the FAD7 induction was confirmed by the exogenous application of SA. SA-induced expression of FAD7 in the npr1 mutant which is defective in an SA signaling pathway occurred to the same extent as in the wild type. Furthermore, in the sid2 mutant which lacks an enzyme required for SA biosynthesis, the expression of FAD7 was induced by ozone exposure. These results suggest that the ozone-induced expression of FAD7 gene requires SA, but not ethylene, JA, NPR1 and SID2.  相似文献   

10.
We analyzed the susceptibility of Arabidopsis mutants with defects in salicylic acid (SA) and jasmonic acid (JA)/ethylene (ET) signaling to infection by Cauliflower mosaic virus (CaMV). Mutants cpr1-1 and cpr5-2, in which SA-dependent defense signaling is activated constitutively, were substantially more resistant than the wild type to systemic infection, implicating SA signaling in defense against CaMV. However, SA-deficient NahG, sid2-2, eds5-1, and pad4-1 did not show enhanced susceptibility. A cpr5 eds5 double mutant also was resistant, suggesting that resistance in cpr5 may function partially independently of SA. Treatment of cpr5 and cpr5 eds5, but not cpr1, with salicyl-hydroxamic acid, an inhibitor of alternative oxidase, partially restored susceptibility to wild-type levels. Mutants etr1-1, etr1-3, and ein2-1, and two mutants with lesions in ET/JA-mediated defense, eds4 and eds8, also showed reduced virus susceptibility, demonstrating that ET-dependent responses also play a role in susceptibility. We used a green fluorescent protein (GFP)-expressing CaMV recombinant to monitor virus movement. In mutants with reduced susceptibility, cpr1-1, cpr5-2, and etr1-1, CaMV-GFP formed local lesions similar to the wild type, but systemic spread was almost completely absent in cpr1 and cpr5 and was substantially reduced in etr1-1. Thus, mutations with enhanced systemic acquired resistance or compromised ET signaling show diminished long-distance virus movement.  相似文献   

11.
The signal transduction network controlling plant responses to pathogens includes pathways requiring the signal molecules salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). The network topology was explored using global expression phenotyping of wild-type and signaling-defective mutant plants, including eds3, eds4, eds5, eds8, pad1, pad2, pad4, NahG, npr1, sid2, ein2, and coi1. Hierarchical clustering was used to define groups of mutations with similar effects on gene expression and groups of similarly regulated genes. Mutations affecting SA signaling formed two groups: one comprised of eds4, eds5, sid2, and npr1-3 affecting only SA signaling; and the other comprised of pad2, eds3, npr1-1, pad4, and NahG affecting SA signaling as well as another unknown process. Major differences between the expression patterns in NahG and the SA biosynthetic mutant sid2 suggest that NahG has pleiotropic effects beyond elimination of SA. A third group of mutants comprised of eds8, pad1, ein2, and coi1 affected ethylene and jasmonate signaling. Expression patterns of some genes revealed mutual inhibition between SA- and JA-dependent signaling, while other genes required JA and ET signaling as well as the unknown signaling process for full expression. Global expression phenotype similarities among mutants suggested, and experiments confirmed, that EDS3 affects SA signaling while EDS8 and PAD1 affect JA signaling. This work allowed modeling of network topology, definition of co-regulated genes, and placement of previously uncharacterized regulatory genes in the network.  相似文献   

12.
13.
Defence against pathogens in Arabidopsis is orchestrated by at least three signalling molecules: salicylic acid (SA), jasmonic acid (JA) and ethylene (ET). The hrl1 (hypersensitive response-like lesions 1) mutant of Arabidopsis is characterized by spontaneous necrotic lesions, accumulation of reactive oxygen species, constitutive expression of SA- and ET/JA-responsive defence genes, and enhanced resistance to virulent bacterial and oomycete pathogens. Epistasis analyses of hrl1 with npr1, etr1, coi1 and SA-depleted nahG plants revealed novel interactions between SA and ET/JA signalling pathways in regulating defence gene expression and cell death. RNA gel-blot analysis of RNA isolated separately from the lesion+ and the lesion- leaves of double mutants of hrl1 revealed different signalling requirements for the expression of defence genes in these tissues. Expression of the ET/JA-responsive PDF1.2 gene was markedly reduced in hrl1 npr1 and in SA-depleted hrl1 nahG plants. In hrl1 nahG plants, expression of PDF1.2 was regulated by benzathiadiazole in a concentration-dependent manner: induced at low concentration and suppressed at high concentration. The hrl1 etr1 plants lacked systemic PR-1 expression, and exhibited compromised resistance to virulent Pseudomonas syringae and Peronospora parasitica. Inhibiting JA responses in hrl1 coi1 plants lead to exaggerated cell death and severe stunting of plants. Finally, the hrl1 mutation lead to elevated expression of AtrbohD, which encodes a major subunit of the NADPH oxidase complex. Our results indicate that defence gene expression and resistance against pathogens in hrl1 is regulated synergistically by SA and ET/JA defence pathways.  相似文献   

14.
Although defense responses mediated by the plant oxylipin jasmonic acid (JA) are often necessary for resistance against pathogens with necrotrophic lifestyles, in this report we demonstrate that jasmonate signaling mediated through COI1 in Arabidopsis thaliana is responsible for susceptibility to wilt disease caused by the root-infecting fungal pathogen Fusarium oxysporum . Despite compromised JA-dependent defense responses, the JA perception mutant coronatine insensitive 1 ( coi1 ), but not JA biosynthesis mutants, exhibited a high level of resistance to wilt disease caused by F. oxysporum . This response was independent from salicylic acid-dependent defenses, as coi1/NahG plants showed similar disease resistance to coi1 plants. Inoculation of reciprocal grafts made between coi1 and wild-type plants revealed that coi1 -mediated resistance occurred primarily through the coi1 rootstock tissues. Furthermore, microscopy and quantification of fungal DNA during infection indicated that coi1 -mediated resistance was not associated with reduced fungal penetration and colonization until a late stage of infection, when leaf necrosis was highly developed in wild-type plants. In contrast to wild-type leaves, coi1 leaves showed no necrosis following the application of F. oxysporum culture filtrate, and showed reduced expression of senescence-associated genes during disease development, suggesting that coi1 resistance is most likely achieved through the inhibition of F. oxysporum -incited lesion development and plant senescence. Together, our results indicate that F. oxysporum hijacks non-defensive aspects of the JA-signaling pathway to cause wilt-disease symptoms that lead to plant death in Arabidopsis.  相似文献   

15.
To better understand the genetic requirements for R gene-dependent defense activation in Arabidopsis, we tested the effect of several defense response mutants on resistance specified by eight RPP genes (for resistance to Peronospora parasitica) expressed in the Col-0 background. In most cases, resistance was not suppressed by a mutation in the SAR regulatory gene NPR1 or by expression of the NahG transgene. Thus, salicylic acid accumulation and NPR1 function are not necessary for resistance mediated by these RPP genes. In addition, resistance conferred by two of these genes, RPP7 and RPP8, was not significantly suppressed by mutations in either EDS1 or NDR1. RPP7 resistance was also not compromised by mutations in EIN2, JAR1 or COI1 which affect ethylene or jasmonic acid signaling. Double mutants were therefore tested. RPP7 and RPP8 were weakly suppressed in an eds1-2/ndr1-1 background, suggesting that these RPP genes operate additively through EDS1, NDR1 and as-yet-undefined signaling components. RPP7 was not compromised in coi1/npr1 or coi1/NahG backgrounds. These observations suggest that RPP7 initiates resistance through a novel signaling pathway that functions independently of salicylic acid accumulation or jasmonic acid response components.  相似文献   

16.
The biocontrol bacterium Paenibacillus alvei K165 has the ability to protect Arabidopsis thaliana against Verticillium dahliae. A direct antagonistic action of strain K165 against V. dahliae was ruled out, making it likely that K165-mediated protection results from induced systemic resistance (ISR) in the host. K165-mediated protection was tested in various Arabidopsis mutants and transgenic plants impaired in defense signaling pathways, including NahG (transgenic line degrading salicylic acid [SA]), etr1-1 (insensitive to ethylene), jar1-1 (insensitive to jasmonate), npr1-1 (nonexpressing NPR1 protein), pad3-1 (phytoalexin deficient), pad4-1 (phytoalexin deficient), eds5/sid1 (enhanced disease susceptibility), and sid2 (SA-induction deficient). ISR was blocked in Arabidopsis mutants npr1-1, eds5/sid1, and sid2, indicating that components of the pathway from isochorismate and a functional NPR1 play a crucial role in the K165-mediated ISR. Furthermore, the concomitant activation and increased transient accumulation of the PR-1, PR-2, and PR-5 genes were observed in the treatment in which both the inducing bacterial strain and the challenging pathogen were present in the rhizosphere of the A. thaliana plants.  相似文献   

17.
Plant defenses against pathogens and insects are regulated differentially by cross-communicating signal transduction pathways in which salicylic acid (SA) and jasmonic acid (JA) play key roles. In this study, we investigated the molecular mechanism of the antagonistic effect of SA on JA signaling. Arabidopsis plants unable to accumulate SA produced 25-fold higher levels of JA and showed enhanced expression of the JA-responsive genes LOX2, PDF1.2, and VSP in response to infection by Pseudomonas syringae pv tomato DC3000, indicating that in wild-type plants, pathogen-induced SA accumulation is associated with the suppression of JA signaling. Analysis of the Arabidopsis mutant npr1, which is impaired in SA signal transduction, revealed that the antagonistic effect of SA on JA signaling requires the regulatory protein NPR1. Nuclear localization of NPR1, which is essential for SA-mediated defense gene expression, is not required for the suppression of JA signaling, indicating that cross-talk between SA and JA is modulated through a novel function of NPR1 in the cytosol.  相似文献   

18.
Regulation of the cytosolic acetyl-coenzyme A carboxylase (ACCase) gene promoter from common bean (Phaseolus vulgaris) was studied in transgenic Arabidopsis (Arabidopsis thaliana) plants using a beta-glucuronidase (GUS) reporter gene fusion (PvACCase::GUS). Under normal growth conditions, GUS was expressed in hydathodes, stipules, trichome bases, flowers, pollen, and embryos. In roots, expression was observed in the tip, elongation zone, hypocotyl-root transition zone, and lateral root primordia. The PvACCase promoter was induced by wounding, Pseudomonas syringae infection, hydrogen peroxide, jasmonic acid (JA), ethylene, or auxin treatment. Analysis of PvACCase::GUS expression in JA and ethylene mutants (coronatine insensitive1-1 [coi1-1], ethylene resistant1-1 [etr1-1], coi1-1/etr1-1) suggests that neither JA nor ethylene perception participates in the activation of this gene in response to wounding, although each of these independent signaling pathways is sufficient for pathogen or hydrogen peroxide-induced PvACCase gene expression. We propose a model involving different pathways of PvACCase gene activation in response to stress.  相似文献   

19.
20.
We have used an hrp-positive strain of the soft rot pathogen Erwinia carotovora subsp. carotovora to elucidate plant responses to this bacterial necrotroph. Purified virulence determinants, harpin (HrpN) and polygalacturonase (PehA), were used as tools to facilitate this analysis. We show that HrpN elicits lesion formation in Arabidopsis and tobacco and triggers systemic resistance in Arabidopsis. Establishment of resistance is accompanied by the expression of salicylic acid (SA)-dependent, but also jasmonate/ethylene (JA/ET)-dependent, marker genes PR1 and PDF1.2, respectively, suggesting that both SA-dependent and JA/ET-dependent defense pathways are activated. Use of pathway-specific mutants and transgenic NahG plants show that both pathways are required for the induction of resistance. Arabidopsis plants treated simultaneously with both elictors PehA, known to trigger only JA/ET-dependent defense signaling, and HrpN react with accelerated and enhanced induction of the marker genes PR1 and PDF1.2 both locally and systemically. This mutual amplification of defense gene expression involves both SA-dependent and JA/ET-dependent defense signaling. The two elicitors produced by E. carotovora subsp. carotovora also cooperate in triggering increased production of superoxide and lesion formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号