首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anchoring molecules, like amphiphilic polymers, are able to dynamically regulate membrane morphology. Such molecules insert their hydrophobic groups into the bilayer, generating a local membrane curvature. In order to minimize the elastic energy penalty, a dynamic shape instability may occur, as in the case of the curvature-driven pearling instability or the polymer-induced tubulation of lipid vesicles. We review recent works on modeling of such instabilities by means of a mesoscopic dynamic model of the phase-field kind, which take into account the bending energy of lipid bilayers.  相似文献   

2.
The production of vesicles, spherical shells formed from lipid bilayers, is an important aspect of their recent application to drug delivery technologies. One popular production method involves pushing a lipid suspension through cylindrical pores in polycarbonate membranes. However, the actual mechanism by which the polydisperse, multilamellar lipid suspension breaks up into a relatively monodisperse population of vesicles is not well understood. To learn about factors influencing this process, we have characterized vesicles produced under different extrusion parameters and from different lipids. We find that extruded vesicles are only produced above a certain threshold extrusion pressure and have sizes that depend on the extrusion pressure. The minimum pressure appears to be associated with the lysis tension of the lipid bilayer rather than any bending modulus of the system. The flow rate of equal concentration lipid solutions through the pores, after being corrected for the viscosity of water, is independent of lipid properties.  相似文献   

3.
Correction     
We investigated the physical properties of bacterial cytoplasmic membranes by applying the method of micropipette aspiration to Escherichia coli spheroplasts. We found that the properties of spheroplast membranes are significantly different from that of laboratory-prepared lipid vesicles or that of previously investigated animal cells. The spheroplasts can adjust their internal osmolality by increasing their volumes more than three times upon osmotic downshift. Until the spheroplasts are swollen to their volume limit, their membranes are tensionless. At constant external osmolality, aspiration increases the surface area of the membrane and creates tension. What distinguishes spheroplast membranes from lipid bilayers is that the area change of a spheroplast membrane by tension is a relaxation process. No such time dependence is observed in lipid bilayers. The equilibrium tension-area relation is reversible. The apparent area stretching moduli are several times smaller than that of stretching a lipid bilayer. We conclude that spheroplasts maintain a minimum surface area without tension by a membrane reservoir that removes the excessive membranes from the minimum surface area. Volume expansion eventually exhausts the membrane reservoir; then the membrane behaves like a lipid bilayer with a comparable stretching modulus. Interestingly, the membranes cease to refold when spheroplasts lost viability, implying that the membrane reservoir is metabolically maintained.  相似文献   

4.
We investigated the physical properties of bacterial cytoplasmic membranes by applying the method of micropipette aspiration to Escherichia coli spheroplasts. We found that the properties of spheroplast membranes are significantly different from that of laboratory-prepared lipid vesicles or that of previously investigated animal cells. The spheroplasts can adjust their internal osmolality by increasing their volumes more than three times upon osmotic downshift. Until the spheroplasts are swollen to their volume limit, their membranes are tensionless. At constant external osmolality, aspiration increases the surface area of the membrane and creates tension. What distinguishes spheroplast membranes from lipid bilayers is that the area change of a spheroplast membrane by tension is a relaxation process. No such time dependence is observed in lipid bilayers. The equilibrium tension-area relation is reversible. The apparent area stretching moduli are several times smaller than that of stretching a lipid bilayer. We conclude that spheroplasts maintain a minimum surface area without tension by a membrane reservoir that removes the excessive membranes from the minimum surface area. Volume expansion eventually exhausts the membrane reservoir; then the membrane behaves like a lipid bilayer with a comparable stretching modulus. Interestingly, the membranes cease to refold when spheroplasts lost viability, implying that the membrane reservoir is metabolically maintained.  相似文献   

5.
It has long been known that during the closed mitosis of many unicellular eukaryotes, including the fission yeast (Schizosaccharomyces pombe), the nuclear envelope remains intact while the nucleus undergoes a remarkable sequence of shape transformations driven by elongation of an intranuclear mitotic spindle whose ends are capped by spindle pole bodies embedded in the nuclear envelope. However, the mechanical basis of these normal cell cycle transformations, and abnormal nuclear shapes caused by intranuclear elongation of microtubules lacking spindle pole bodies, remain unknown. Although there are models describing the shapes of lipid vesicles deformed by elongation of microtubule bundles, there are no models describing normal or abnormal shape changes in the nucleus. We describe here a novel biophysical model of interphase nuclear geometry in fission yeast that accounts for critical aspects of the mechanics of the fission yeast nucleus, including the biophysical properties of lipid bilayers, forces exerted on the nuclear envelope by elongating microtubules, and access to a lipid reservoir, essential for the large increase in nuclear surface area during the cell cycle. We present experimental confirmation of the novel and non-trivial geometries predicted by our model, which has no free parameters. We also use the model to provide insight into the mechanical basis of previously described defects in nuclear division, including abnormal nuclear shapes and loss of nuclear envelope integrity. The model predicts that (i) despite differences in structure and composition, fission yeast nuclei and vesicles with fluid lipid bilayers have common mechanical properties; (ii) the S. pombe nucleus is not lined with any structure with shear resistance, comparable to the nuclear lamina of higher eukaryotes. We validate the model and its predictions by analyzing wild type cells in which ned1 gene overexpression causes elongation of an intranuclear microtubule bundle that deforms the nucleus of interphase cells.  相似文献   

6.
Lipid bilayers can be induced to adhere to each other by molecular mediators, and, depending on the lipid composition, such adhesion can lead to merging of the contacting monolayers in a process known as hemifusion. Such bilayer-bilayer reactions have never been systematically studied. In the course of our studies of membrane-active molecules, we encountered such reactions. We believe that they need to be understood whenever bilayer-bilayer interactions take place, such as during membrane fusion. For illustration, we discuss three examples: spontaneous adhesion between phospholipid bilayers induced by low pH, polymer-induced osmotic depletion attraction between lipid bilayers, and anionic lipid bilayers cross-bridged by multicationic peptides. Our purpose here is to describe a general method for studying such interactions. We used giant unilamellar vesicles, each of which was aspirated in a micropipette so that we could monitor the tension of the membrane and the membrane area changes during the bilayer-bilayer interaction. We devised a general method for measuring the free energy of adhesion or hemifusion. The results show that the energies of adhesion or hemifusion of lipid bilayers could vary over 2 orders of magnitude from −1 to −50 × 10−5 J/m2 in these examples alone. Our method can be used to measure the energy of transition in each step of lipid transformation during membrane fusion. This is relevant for current research on membrane fusion, which focuses on how fusion proteins induce lipid transformations.  相似文献   

7.
Photon correlation spectroscopy has been used to study capillary waves on black lipid membranes of glycerol monooleate at temperatures above the lipid transition. For the first time the tension and viscosity of solvent-free bilayers have been observed to display a frequency dependence. The variations of both parameters can be accounted for by a Maxwell viscoelastic fluid model having a relaxation time of 37 microseconds. The equilibrium (omega = 0) tension is compatible with literature values. The present results do not suffice to precisely define the specific molecular processes involved, but relaxation times similar to the present are associated with certain phenomena in phospholipid vesicles. Bilayers containing hydrocarbon solvent do not show such relaxation, presumably due to their weaker intermolecular interactions.  相似文献   

8.
Portet T  Dimova R 《Biophysical journal》2010,99(10):3264-3273
We report a novel and facile method for measuring edge tensions of lipid membranes. The approach is based on electroporation of giant unilamellar vesicles and analysis of the pore closure dynamics. We applied this method to evaluate the edge tension in membranes with four different compositions: egg phosphatidylcholine (eggPC), dioleoylphosphatidylcholine (DOPC), and mixtures of DOPC with cholesterol and dioleoylphosphatidylethanolamine. Our data confirm previous results for eggPC and DOPC. The addition of 17 mol % cholesterol to the DOPC membrane causes an increase in the membrane edge tension. On the contrary, when the same fraction of dioleoylphosphatidylethanolamine is added to the membrane, a decrease in the edge tension is observed, which is an unexpected result considering the inverted-cone shape geometry of the molecule. It is presumed that interlipid hydrogen bonding is the origin of this behavior. Furthermore, cholesterol was found to lower the lysis tension of DOPC bilayers. This behavior differs from that observed on bilayers made of stearoyloleoylphosphatidylcholine, suggesting that cholesterol influences the membrane mechanical stability in a lipid-specific manner.  相似文献   

9.
Li L  Cheng JX 《Biochemistry》2006,45(39):11819-11826
We report a new type of gel-liquid phase segregation in giant unilamellar vesicles (GUVs) of mixed lipids. Coexisting patch- and stripe-shaped gel domains in GUV bilayers composed of DOPC/DPPC or DLPC/DPPC are observed by confocal fluorescence microscopy. The lipids in stripe domains are shown to be tilted according to the DiIC18 fluorescence intensity dependence on the excitation polarization. The patch domains are found to be mainly composed of DPPC-d62 according to the coherent anti-Stokes Raman scattering (CARS) images of DOPC/DPPC-d62 bilayers. When cooling GUVs from above the miscibility temperature, the patch domains start to appear between the chain melting and the pretransition temperature of DPPC. In GUVs containing a high molar percentage of DPPC, the stripe domains form below the pretransition temperature. Our observations suggest that the patch and stripe domains are in the Pbeta' and Lbeta' gel phases, respectively. According to the thermoelastic properties of GUVs described by Needham and Evans [(1988) Biochemistry 27, 8261-8269], the Pbeta' and Lbeta' phases are formed at relatively low and high membrane tensions, respectively. GUVs with high DPPC percentage have high membrane surface tension and thus mainly exhibit Lbeta' domains, while GUVs with low DPPC percentage have low membrane surface tension and form Pbeta' domains accordingly. Adding negatively charged lipid to the lipid mixtures or applying an osmotic pressure to GUVs using sucrose solutions releases the surface tension and leads to the disappearance of the Lbeta' gel phase. The relationship between the observed domains in free-standing GUV bilayers and those in supported bilayers is discussed.  相似文献   

10.
The steric repulsion between proteins on biological membranes is one of the most generic mechanisms that cause membrane shape changes. We present a minimal model in which a spontaneous curvature is induced by asymmetric protein crowding. Our results show that the interplay between the induced spontaneous curvature and the membrane tension determines the energy-minimizing shapes, which describes the wide range of experimentally observed membrane shapes, i.e., flat membranes, spherical vesicles, elongated tubular protrusions, and pearling structures. Moreover, the model gives precise predictions on how membrane shape changes by protein crowding can be tuned by controlling the protein size, the density of proteins, and the size of the crowded domain.  相似文献   

11.
Binding of the lipophilic probe merocyanine 540 to artificial bilayers was assessed by measuring the enhancement of fluorescence which results when dye enters the hydrophobic environment of the membrane. Titration of a constant amount of dye with increasing amounts of vesicles revealed that much more dye binds to multilamellar and 1000-Å, unilamellar vesicles which are in the fluid-phase state than to comparable vesicles which are in the gel-phase state. Incorporation of cholesterol into fluid-phase vesicles at levels of greater than 20 mol% reduced dye binding, whereas cholesterol had no effect at any concentration when incorporated into gel-phase vesicles. Sonicated 200–300-Å unilamellar gel-phase vesicles, which because of their reduced radius of curvature resemble fluid-phase bilayers in their more widely spaced exterior leaflet lipids, bound more dye than 1000-Å unilameilar gel-phase vesicles constructed from the same lipid. These results suggest that merocyanine 540 is able to sense the degree of lipid packing of bilayers and inserts preferentially into bilayers whose lipids are more widely spaced.  相似文献   

12.
Temporins are short (10-13 amino acids) and linear antimicrobial peptides first isolated from the skin of the European red frog, Rana temporaria, and are effective against Gram-positive bacteria and Candida albicans. To get insight into their mechanism(s) of action, we compared the effects on model membranes exerted by two members of this family, viz., temporin B (LLPIVGNLLKSLL-NH(2)) and temporin L (FVQWFSKFLGRIL-NH(2)). More specifically, we measured their insertion into lipid monolayers as well as their effects on the structural dynamics of liposomal bilayers as revealed by diphenylhexatriene (DPH)- and pyrene-labeled phospholipids. We also observed the impact of these peptides on the topology of giant vesicles. Both temporins readily penetrate into lipid monolayers, their intercalation being enhanced in the presence of the common bacterial negatively charged phospholipid phosphatidylglycerol. Instead, the eukaryotic lipid cholesterol did to some extent counteract their penetration into the lipid films. Both temporin B and temporin L caused an enrichment of phospholipids in the bilayers, and in the presence of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), these peptides increased acyl chain order. Temporin B had practically no effect on giant liposomes composed of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), whereas rapid vesiculation was observed when POPG was present. In contrast, temporin L induced vesiculation of both SOPC and SOPC/POPG giant vesicles while the presence of cholesterol in SOPC giant vesicles attenuated this effect.  相似文献   

13.
High-pressure Fourier-transform infrared (FT-IR) spectroscopy was used to study the barotropic behavior of phosphatidylserine bilayers and their interactions with the local anesthetic tetracaine. The model membrane systems studied were multilamellar aqueous dispersions of 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine (DMPS) and 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) in the absence and the presence of tetracaine at pH 5.5 and 9.5. The infrared spectra were measured at 28 degrees C in a diamond anvil cell as a function of pressure up to 25 kbar. The results show that the barotropic behavior of the negatively charged phosphatidylserine bilayers is very similar to that observed for zwitterionic phospholipids, such as phosphatidylcholine and phosphatidylethanolamine, with corresponding acyl chains. The results also indicate that the local anesthetic partitions into phosphatidylserine bilayers in an environment close to the membrane-water interface and interacts electrostatically with the lipid head group. Application of high hydrostatic pressure on the lipid-anesthetic systems results in the pressure-induced expulsion of the anesthetic from a membrane to an aqueous environment. The pressures required for expulsion of anesthetic from bilayers are much higher for the unsaturated lipid (DOPS) than for the saturated lipid (DMPS) (approximately 6 kbar vs approximately 2 kbar, respectively). Whereas incorporation of the anesthetic into DOPS bilayers does not affect significantly the structural and dynamic properties of the disordered acyl chains in the liquid-crystalline phase, it orders the DMPS acyl chains in the gel phase.  相似文献   

14.
In this work we report the interaction effects of the local anesthetic dibucaine (DBC) with lipid patches in model membranes by Atomic Force Microscopy (AFM). Supported lipid bilayers (egg phosphatidylcholine, EPC and dimyristoylphosphatidylcholine, DMPC) were prepared by fusion of unilamellar vesicles on mica and imaged in aqueous media. The AFM images show irregularly distributed and sized EPC patches on mica. On the other hand DMPC formation presents extensive bilayer regions on top of which multibilayer patches are formed. In the presence of DBC we observed a progressive disruption of these patches, but for DMPC bilayers this process occurred more slowly than for EPC. In both cases, phase images show the formation of small structures on the bilayer surface suggesting an effect on the elastic properties of the bilayers when DBC is present. Dynamic surface tension and dilatational surface elasticity measurements of EPC and DMPC monolayers in the presence of DBC by the pendant drop technique were also performed, in order to elucidate these results. The curve of lipid monolayer elasticity versus DBC concentration, for both EPC and DMPC cases, shows a maximum for the surface elasticity modulus at the same concentration where we observed the disruption of the bilayer by AFM. Our results suggest that changes in the local curvature of the bilayer induced by DBC could explain the anesthetic action in membranes.  相似文献   

15.
We have investigated the interaction of Pseudomonas exotoxin A with small unilamellar vesicles comprised of different phospholipids as a function of pH, toxin, and lipid concentration. We have found that this toxin induces vesicle permeabilization, as measured by the release of a fluorescent dye. Permeabilization is due to the formation of ion-conductive channels which we have directly observed in planar lipid bilayers. The toxin also produces vesicle aggregation, as indicated by an increase of the turbidity. Aggregation and permeabilization have completely different time course and extent upon toxin dose and lipid composition, thus suggesting that they are two independent events. Both time constants decrease by lowering the pH of the bulk phase or by introducing a negative lipid into the vesicles. Our results indicate that at least three steps are involved in the interaction of Pseudomonas exotoxin A with lipid vesicles. After protonation of one charged group the toxin becomes competent to bind to the surface of the vesicles. Binding is probably initiated by an electrostatic interaction because it is absolutely dependent on the presence of acidic phospholipids. Binding is a prerequisite for the subsequent insertion of the toxin into the lipid bilayer, with a special preference for phosphatidylglycerol-containing membranes, to form ionic channels. At high toxin and vesicle concentrations, bound toxin may also induce aggregation of the vesicles, particularly when phosphatidic acid is present in the lipid mixture. A quenching of the intrinsic tryptophan fluorescence of the protein, which is induced by lowering the pH of the solution, becomes more drastic in the presence of lipid vesicles. However, this further quenching takes so long that it cannot be a prerequisite to either vesicle permeabilization or aggregation. Pseudomonas exotoxin A shares many of these properties with other bacterial toxins like diphtheria and tetanus toxin.  相似文献   

16.
B Kachar  N Fuller    R P Rand 《Biophysical journal》1986,50(5):779-788
Structural changes in phospholipid vesicles made of dioleylphosphatidylethanolamine (DOPE)/bovine phosphatidylserine (PS) (1/1, 3/1, 10/1) or of egg phosphatidylcholine (PC)/PS (3/1) and exposed to calcium chloride for various times have been observed by means of video-enhanced light microscopy and freeze-fracture electron microscopy. Calcium induces the formation of large, smooth double-bilayer diaphragms as the spherical vesicles adhere to and deform each other. No subsequent changes are seen with PC/PS vesicles. DOPE/PS vesicles respond to the resultant stress, with about equal probability, by either fusing, through diaphragm rupture, or deflating, by way of volume loss through intact bilayers, even when they contain up to 400 mM sucrose. The diaphragm areas only rarely show the structural destabilization necessary for fusion. The final state is lipid segregated into DOPE hexagonal and Ca-PS lamellar bulk phases with the exclusion of most of the vesicle contents. Results with these and pure PS vesicles studied earlier indicate that the early response of vesicles to calcium chloride is determined by the competing rates at which mechanical stress (bilayer tension and intravesicular pressure) builds up as the vesicles adhere and flatten against each other, and is relieved by vesicle fusion or by volume loss. We attribute the qualitatively different responses of these three lipid systems to their measured differences in adhesion energies and consequent rate of build-up of mechanical stress. Yield to that stress for any one of these lipid systems is not a unique sequence of morphological changes, and so it remains obscure how such a stochastic process could be used in the controlled process of cellular fusion.  相似文献   

17.
Cholesterol incorporation into lipid bilayers, in the form of multilamellar vesicles or extruded large unilamellar vesicles, has been quantitated. To this aim, the cholesterol contents of bilayers prepared from phospholipid:cholesterol mixtures 33-75 mol% cholesterol have been measured and compared with the original mixture before lipid hydration. There is a great diversity of cases, but under most conditions the actual cholesterol proportion present in the extruded bilayers is much lower than predicted. A quantitative analysis of the vesicles is thus required before any experimental study is undertaken.  相似文献   

18.
Liposomes are micro-compartments made of lipid bilayer membranes possessing the characteristics quite similar to those of biological membranes. To form artificial cell-like structures, we made liposomes that contained subunit proteins of cytoskeletons: tubulin or actin. Spherical liposomes were transformed into bipolar or cell-like shapes by mechanical forces generated by the polymerization of encapsulated subunits of microtubules. On the other hand, disk- or dumbbell-shaped liposomes were developed by the polymerization of encapsulated actin. Dynamic processes of morphological transformations of liposomes were visualized by high intensity dark-field light microscopy. Topological changes, such as fusion and division of membrane vesicles, play an essential role in cellular activities. To investigate the mechanism of these processes, we visualized the liposomes undergoing topological transformation in real time. A variety of novel topological transformations were found, including the opening-up of liposomes and the direct expulsion of inner vesicles.  相似文献   

19.
Membrane protein folding has suffered from a lack of detailed kinetic studies, particularly with regard to the insertion of denatured protein into lipid bilayers. We present a detailed in vitro kinetic study of the association of a denatured, transmembrane alpha helical protein with lipid vesicles. The mechanism of folding of Escherichia coli diacylglycerol kinase from a partially denatured state in urea has been investigated. The protein associates with lipid vesicles to give a protein, vesicle complex with an apparent association constant of 2 x 10(6) M(-1) s(-1). This association rate approaches the diffusion limit of the protein, vesicle reaction. The association of the protein with lipid vesicles is followed by a slower process occurring at observed rate of 0.031 s(-1), involving insertion into the bilayer and generation of a functional oligomer of diacylglycerol kinase. Protein aggregation competes with vesicle insertion. The urea-denatured protein monomers begin to aggregate as soon as the urea is diluted. This aggregation is faster than the association of the protein with vesicles so that most protein aggregates before it inserts into a vesicle. Increasing the vesicle concentration favours insertion of protein monomers, but at high vesicle concentrations monomers are primarily in separate vesicles and do not associate to form functional oligomers. Irreversible aggregation limits the yield of functional protein, while the data also suggest that lipid vesicles can reverse another aggregation reaction, leading to the recovery of correctly folded protein.  相似文献   

20.
The distribution of cholesterol in asymmetric lipid bilayers was studied by extensive coarse-grained molecular dynamics simulations. The effects of the lipid head group charge, acyl chain saturation, spontaneous membrane curvature and surface tension of the membrane were investigated. Four asymmetric bilayers containing DOPC, DOPS, DSPC or DSPS lipids were simulated on a time scale extended to tens of microseconds. We show that cholesterol strongly prefers anionic lipids to neutral and saturated lipid tails to unsaturated with a distribution ratio of ~0.7 in neutral/anionic bilayers and of ~0.4 in unsaturated/saturated bilayers. Multiple flip-flop transitions of cholesterol were observed directly, and their mean times ranged from 80 to 250?ns. It was shown that the distribution of cholesterol in the asymmetric membrane depends not only on the type of lipid, but also on the local membrane curvature and the surface tension. The membrane curvature enhances the influence of the lipid head groups on cholesterol distribution, while non-optimal surface tension caused by different areas per lipid in different monolayers increases the effect of the lipid tail saturation. It was clearly seen that the monolayers of asymmetric bilayers are interdependent. Mean distances from the bilayer center to cholesterol molecules depend not only on the type of the lipid in the considered monolayer but also on the composition of the opposite monolayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号