首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RlmM (YgdE) catalyzes the S-adenosyl methionine (AdoMet)-dependent 2′O methylation of C2498 in 23S ribosomal RNA (rRNA) of Escherichia coli. Previous experiments have shown that RlmM is active on 23S rRNA from an RlmM knockout strain but not on mature 50S subunits from the same strain. Here, we demonstrate RlmM methyltransferase (MTase) activity on in vitro transcribed 23S rRNA and its domain V. We have solved crystal structures of E. coli RlmM at 1.9 Å resolution and of an RlmM–AdoMet complex at 2.6 Å resolution. RlmM consists of an N-terminal THUMP domain and a C-terminal catalytic Rossmann-like fold MTase domain in a novel arrangement. The catalytic domain of RlmM is closely related to YiiB, TlyA and fibrillarins, with the second K of the catalytic tetrad KDKE shifted by two residues at the C-terminal end of a beta strand compared with most 2′O MTases. The AdoMet-binding site is open and shallow, suggesting that RNA substrate binding may be required to form a conformation needed for catalysis. A continuous surface of conserved positive charge indicates that RlmM uses one side of the two domains and the inter-domain linker to recognize its RNA substrate.  相似文献   

2.
Ribosomal protein L2 is a primary 23S rRNA binding protein in the large ribosomal subunit. We examined the contribution of the N- and C-terminal regions of Bacillus stearothermophilus L2 (BstL2) to the 23S rRNA binding activity. The mutant desN, in which the N-terminal 59 residues of BstL2 were deleted, bound to the 23S rRNA fragment to the same extent as wild type BstL2, but the mutation desC, in which the C-terminal 74 amino acid residues were deleted, abolished the binding activity. These observations indicated that the C-terminal region is involved in 23S rRNA binding. Subsequent deletion analysis of the C-terminal region found that the C-terminal 70 amino acids are required for efficient 23S rRNA binding by BstL2. Furthermore, the surface plasmon resonance analysis indicated that successive truncations of the C-terminal residues increased the dissociation rate constants, while they had little influence on association rate constants. The result indicated that reduced affinities of the C-terminal deletion mutants were due only to higher dissociation rate constants, suggesting that the C-terminal region primarily functions by stabilizing the protein L2-23S rRNA complex.  相似文献   

3.
Ribosomal protein L2 is a primary 23S rRNA binding protein in the large ribosomal subunit. We examined the contribution of the N- and C-terminal regions of Bacillus stearothermophilus L2 (BstL2) to the 23S rRNA binding activity. The mutant desN, in which the N-terminal 59 residues of BstL2 were deleted, bound to the 23S rRNA fragment to the same extent as wild type BstL2, but the mutation desC, in which the C-terminal 74 amino acid residues were deleted, abolished the binding activity. These observations indicated that the C-terminal region is involved in 23S rRNA binding. Subsequent deletion analysis of the C-terminal region found that the C-terminal 70 amino acids are required for efficient 23S rRNA binding by BstL2. Furthermore, the surface plasmon resonance analysis indicated that successive truncations of the C-terminal residues increased the dissociation rate constants, while they had little influence on association rate constants. The result indicated that reduced affinities of the C-terminal deletion mutants were due only to higher dissociation rate constants, suggesting that the C-terminal region primarily functions by stabilizing the protein L2-23S rRNA complex.  相似文献   

4.
L20 is a specific protein of the bacterial ribosome, which is involved in the early assembly steps of the 50S subunit and in the feedback control of the expression of its own gene. This dual function involves specific interactions with either the 23S rRNA or its messenger RNA. The solution structure of the free Aquifex aeolicus L20 has been solved. It is composed of an unstructured N-terminal domain comprising residues 1-58 and a C-terminal alpha-helical domain. This is in contrast with what is observed in the bacterial 50S subunit, where the N-terminal region folds as an elongated alpha-helical region. The solution structure of the C-terminal domain shows that several solvent-accessible, conserved residues are clustered on the surface of the molecule and are probably involved in RNA recognition. In vivo studies show that this domain is sufficient to repress the expression of the cistrons encoding L35 and L20 in the IF3 operon. The ability of L20 C-terminal domain to specifically recognise RNA suggests an assembly mechanism for L20 into the ribosome. The pre-folded C-terminal domain would make a primary interaction with a specific site on the 23S rRNA. The N-terminal domain would then fold within the ribosome, participating in its correct 3D assembly.  相似文献   

5.
Rv2118c belongs to the class of conserved hypothetical proteins from Mycobacterium tuberculosis H37Rv. The crystal structure of Rv2118c in complex with S-adenosyl-l-methionine (AdoMet) has been determined at 1.98 A resolution. The crystallographic asymmetric unit consists of a monomer, but symmetry-related subunits interact extensively, leading to a tetrameric structure. The structure of the monomer can be divided functionally into two domains: the larger catalytic C-terminal domain that binds the cofactor AdoMet and is involved in the transfer of methyl group from AdoMet to the substrate and a smaller N-terminal domain. The structure of the catalytic domain is very similar to that of other AdoMet-dependent methyltransferases. The N-terminal domain is primarily a beta-structure with a fold not found in other methyltransferases of known structure. Database searches reveal a conserved family of Rv2118c-like proteins from various organisms. Multiple sequence alignments show several regions of high sequence similarity (motifs) in this family of proteins. Structure analysis and homology to yeast Gcd14p suggest that Rv2118c could be an RNA methyltransferase, but further studies are required to establish its functional role conclusively. Copyright 12001 Academic Press.  相似文献   

6.
Methylation of lysine residues in the N-terminal tails of histones is thought to represent an important component of the mechanism that regulates chromatin structure. The evolutionarily conserved SET domain occurs in most proteins known to possess histone lysine methyltransferase activity. We present here the crystal structure of a large fragment of human SET7/9 that contains a N-terminal beta-sheet domain as well as the conserved SET domain. Mutagenesis identifies two residues in the C terminus of the protein that appear essential for catalytic activity toward lysine-4 of histone H3. Furthermore, we show how the cofactor AdoMet binds to this domain and present biochemical data supporting the role of invariant residues in catalysis, binding of AdoMet, and interactions with the peptide substrate.  相似文献   

7.
Thiostrepton-resistant mutants of Thermus thermophilus   总被引:3,自引:1,他引:2  
Ribosomal protein L11 and its associated binding site on 23S rRNA together comprise one of the principle components that mediate interactions of translation factors with the ribosome. This site is also the target of the antibiotic thiostrepton, which has been proposed to act by preventing important structural transitions that occur in this region of the ribosome during protein synthesis. Here, we describe the isolation and characterization of spontaneous thiostrepton-resistant mutants of the extreme thermophile, Thermus thermophilus. All mutations were found at conserved positions in the flexible N-terminal domain of L11 or at conserved positions in the L11-binding site of 23S rRNA. A number of the mutant ribosomes were affected in in vitro EF-G-dependent GTP hydrolysis but all showed resistance to thiostrepton at levels ranging from high to moderate. Structure probing revealed that some of the mutations in L11 result in enhanced reactivity of adjacent rRNA bases to chemical probes, suggesting a more open conformation of this region. These data suggest that increased flexibility of the factor binding site results in resistance to thiostrepton by counteracting the conformation-stabilizing effect of the antibiotic.  相似文献   

8.
Ribosomal protein L2 is the largest protein component in the ribosome. It is located at or near the peptidyl transferase center and has been a prime candidate for the peptidyl transferase activity. It binds directly to 23S rRNA and plays a crucial role in its assembly. The three-dimensional structure of the RNA-binding domain of L2 from Bacillus stearothermophilus has been determined at 2.3 A resolution by X-ray crystallography using the selenomethionyl MAD method. The RNA-binding domain of L2 consists of two recurring motifs of approximately 70 residues each. The N-terminal domain (positions 60-130) is homologous to the OB-fold, and the C-terminal domain (positions 131-201) is homologous to the SH3-like barrel. Residues Arg86 and Arg155, which have been identified by mutation experiments to be involved in the 23S rRNA binding, are located at the gate of the interface region between the two domains. The molecular architecture suggests how this important protein has evolved from the ancient nucleic acid-binding proteins to create a 23S rRNA-binding domain in the very remote past.  相似文献   

9.
10.
RumA catalyzes transfer of a methyl group from S-adenosylmethionine (SAM) specifically to uridine 1939 of 23S ribosomal RNA in Escherichia coli to yield 5-methyluridine. We determined the crystal structure of RumA at 1.95 A resolution. The protein is organized into three structural domains: The N-terminal domain contains sequence homology to the conserved TRAM motif and displays a five-stranded beta barrel architecture characteristic of an oligosaccharide/oligonucleotide binding fold. The central domain contains a [Fe(4)S(4)] cluster coordinated by four conserved cysteine residues. The C-terminal domain displays the typical SAM-dependent methyltransferase fold. The catalytic nucleophile Cys389 lies in a motif different from that in DNA 5-methylcytosine methyltransferases. The electrostatic potential surface reveals a predominately positively charged area that covers the concave surface of the first two domains and suggests an RNA binding mode. The iron-sulfur cluster may be involved in the correct folding of the protein or may have a role in RNA binding.  相似文献   

11.
A library of random mutations in Xenopus ribosomal protein L5 was generated by error-prone PCR and used to delineate the binding domain for 5S rRNA. All but one of the amino acid substitutions that affected binding affinity are clustered in the central region of the protein. Several of the mutations are conservative substitutions of non-polar amino acid residues that are unlikely to form energetically significant contacts to the RNA. Thermal denaturation, monitored by circular dichroism (CD), indicates that L5 is not fully structured and association with 5S rRNA increases the t(m) of the protein by 16 degrees C. L5 induces changes in the CD spectrum of 5S rRNA, establishing that the complex forms by a mutual induced fit mechanism. Deuterium exchange reveals that a considerable amount of L5 is unstructured in the absence of 5S rRNA. The fluorescence emission of W266 provides evidence for structural changes in the C-terminal region of L5 upon binding to 5S rRNA; whereas, protection experiments demonstrate that the N terminus remains highly sensitive to protease digestion in the complex. Analysis of the amino acid sequence of L5 by the program PONDR predicts that the N and C-terminal regions of L5 are intrinsically disordered, but that the central region, which contains three essential tyrosine residues and other residues important for binding to 5S rRNA, is likely to be structured. Initial interaction of the protein with 5S rRNA likely occurs through this region, followed by induced folding of the C-terminal region. The persistent disorder in the N-terminal domain is possibly exploited for interactions between the L5-5S rRNA complex and other proteins.  相似文献   

12.
The crystal structure of Escherichia coli tRNA (guanosine-1) methyltransferase (TrmD) complexed with S-adenosyl homocysteine (AdoHcy) has been determined at 2.5A resolution. TrmD, which methylates G37 of tRNAs containing the sequence G36pG37, is a homo-dimer. Each monomer consists of a C-terminal domain connected by a flexible linker to an N-terminal AdoMet-binding domain. The two bound AdoHcy moieties are buried at the bottom of deep clefts. The dimer structure appears integral to the formation of the catalytic center of the enzyme and this arrangement strongly suggests that the anticodon loop of tRNA fits into one of these clefts for methyl transfer to occur. In addition, adjacent hydrophobic sites in the cleft delineate a defined pocket, which may accommodate the GpG sequence during catalysis. The dimer contains two deep trefoil peptide knots and a peptide loop extending from each knot embraces the AdoHcy adenine ring. Mutational analyses demonstrate that the knot is important for AdoMet binding and catalytic activity, and that the C-terminal domain is not only required for tRNA binding but plays a functional role in catalytic activity.  相似文献   

13.
14.
15.
The assembly of the ribosomal subunits is facilitated by ribosome biogenesis factors. The universally conserved methyltransferase KsgA modifies two adjacent adenosine residues in the 3'-terminal helix 45 of the 16 S ribosomal RNA (rRNA). KsgA recognizes its substrate adenosine residues only in the context of a near mature 30S subunit and is required for the efficient processing of the rRNA termini during ribosome biogenesis. Here, we present the cryo-EM structure of KsgA bound to a nonmethylated 30S ribosomal subunit. The structure reveals that KsgA binds to the 30S platform with the catalytic N-terminal domain interacting with substrate adenosine residues in helix 45 and the C-terminal domain making extensive contacts to helix 27 and helix 24. KsgA excludes the penultimate rRNA helix 44 from adopting its position in the mature 30S subunit, blocking the formation of the decoding site and subunit joining. We suggest that the activation of methyltransferase activity and subsequent dissociation of KsgA control conformational changes in helix 44 required for final rRNA processing and translation initiation.  相似文献   

16.
Wu J  Cheung T  Grande C  Ferguson AD  Zhu X  Theriault K  Code E  Birr C  Keen N  Chen H 《Biochemistry》2011,50(29):6488-6497
SET and MYND domain-containing protein 2 (SMYD2) is a protein lysine methyltransferase that catalyzes the transfer of methyl groups from S-adenosylmethionine (AdoMet) to acceptor lysine residues on histones and other proteins. To understand the kinetic mechanism and the function of individual domains, human SMYD2 was overexpressed, purified, and characterized. Substrate specificity and product analysis studies established SMYD2 as a monomethyltransferase that prefers nonmethylated p53 peptide substrate. Steady-state kinetic and product inhibition studies showed that SMYD2 operates via a rapid equilibrium random Bi Bi mechanism at a rate of 0.048 ± 0.001 s(-1), with K(M)s for AdoMet and the p53 peptide of 0.031 ± 0.01 μM and 0.68 ± 0.22 μM, respectively. Metal analyses revealed that SMYD2 contains three tightly bound zinc ions that are important for maintaining the structural integrity and catalytic activity of SMYD2. Catalytic activity was also shown to be dependent on the GxG motif in the S-sequence of the split SET domain, as a G18A/G20A double mutant and a sequence deletion within the conserved motif impaired AdoMet binding and significantly decreased enzymatic activity. The functional importance of other SMYD2 domains including the MYND domain, the cysteine-rich post-SET domain, and the C-terminal domain (CTD), were also investigated. Taken together, these results demonstrated the functional importance of distinct domains in the SMYD family of proteins and further advanced our understanding of the catalytic mechanism of this family.  相似文献   

17.
Nine of ten methylated nucleotides of Escherichia coli 16 S rRNA are conserved in Mycobacterium tuberculosis. All the 10 different methyltransferases are known in E. coli, whereas only TlyA and GidB have been identified in mycobacteria. Here we have identified Rv2966c of M. tuberculosis as an ortholog of RsmD protein of E. coli. We have shown that rv2966c can complement rsmD-deleted E. coli cells. Recombinant Rv2966c can use 30 S ribosomes purified from rsmD-deleted E. coli as substrate and methylate G966 of 16 S rRNA in vitro. Structure determination of the protein shows the protein to be a two-domain structure with a short hairpin domain at the N terminus and a C-terminal domain with the S-adenosylmethionine-MT-fold. We show that the N-terminal hairpin is a minimalist functional domain that helps Rv2966c in target recognition. Deletion of the N-terminal domain prevents binding to nucleic acid substrates, and the truncated protein fails to carry out the m(2)G966 methylation on 16 S rRNA. The N-terminal domain also binds DNA efficiently, a property that may be utilized under specific conditions of cellular growth.  相似文献   

18.
RlmG is a specific AdoMet-dependent methyltransferase (MTase) responsible for N2-methylation of G1835 in 23S rRNA of Escherichia coli. Methylation of m2G1835 specifically enhances association of ribosomal subunits and provides a significant advantage for bacteria in osmotic and oxidative stress. Here, the crystal structure of RlmG in complex with AdoMet and its structure in solution were determined. The structure of RlmG is similar to that of the MTase RsmC, consisting of two homologous domains: the N-terminal domain (NTD) in the recognition and binding of the substrate, and the C-terminal domain (CTD) in AdoMet-binding and the catalytic process. However, there are distinct positively charged protuberances and a distribution of conserved residues contributing to the charged surface patch, especially in the NTD of RlmG for direct binding of protein-free rRNA. The RNA-binding properties of the NTD and CTD characterized by both gel electrophoresis mobility shift assays and isothermal titration calorimetry showed that NTD could bind RNA independently and RNA binding was achieved by the NTD, accomplished by a coordinating role of the CTD. The model of the RlmG-AdoMet-RNA complex suggested that RlmG may unfold its substrate RNA in the positively charged cleft between the NTD and CTD, and then G1835 disengages from its Watson-Crick pairing with C1905 and flips out to insert into the active site. Our structure and biochemical studies provide novel insights into the catalytic mechanism of G1835 methylation.  相似文献   

19.
Ribosomal stalk is involved in the formation of the so-called “GTPase-associated site” and plays a key role in the interaction of ribosome with translation factors and in the control of translation accuracy. The stalk is formed by two or three copies of the L7/L12 dimer bound to the C-terminal tail of protein L10. The N-terminal domain of L10 binds to a segment of domain II of 23S rRNA near the binding site for ribosomal protein L11. The structure of bacterial L10 in complex with three L7/L12 N-terminal dimers has been determined in the isolated state, and the structure of the first third of archaeal L10 bound to domain II of 23S rRNA has been solved within the Haloarcula marismortui 50S ribosomal subunit. A close structural similarity between the RNA-binding domain of archaeal L10 and the RNA-binding domain of bacterial L10 has been demonstrated. In this work, a long RNA-binding N-terminal fragment of L10 from Methanococcus jannaschii has been isolated and crystallized. The crystal structure of this fragment (which encompasses two-thirds of the protein) has been solved at 1.6 Å resolution. The model presented shows the structure of the RNA-binding domain and the structure of the adjacent domain that exist in archaeal L10 and eukaryotic P0 proteins only. Furthermore, our model incorporated into the structure of the H. marismortui 50S ribosomal subunit allows clarification of the structure of the archaeal ribosomal stalk base.  相似文献   

20.
The RIO family of atypical serine/threonine kinases contains two subfamilies, Rio1 and Rio2, highly conserved from archaea to man. Both RIO proteins from Saccharomyces cerevisiae catalyze serine phosphorylation in vitro, and the presence of conserved catalytic residues is required for cell viability. The activity of Rio2 is necessary for rRNA cleavage in 40S ribosomal subunit maturation. We solved the X-ray crystal structure of Archaeoglobus fulgidus Rio2, with and without bound nucleotides, at 2.0 A resolution. The C-terminal RIO domain is indeed structurally homologous to protein kinases, although it differs from known serine kinases in ATP binding and lacks the regions important for substrate binding. Unexpectedly, the N-terminal Rio2-specific domain contains a winged helix fold, seen primarily in DNA-binding proteins. These discoveries have implications in determining the target and function of RIO proteins and define a distinct new family of protein kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号