首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A family of nine Salmonella typhimurium type III secretion effectors with a conserved amino-terminus have been defined. Three family members (SifA, SifB and SseJ) have previously been demonstrated to localize to the Salmonella-containing vacuole and to Salmonella-induced filaments. In contrast, we demonstrate that two other family members, SspH2 and SseI, co-localized with the polymerizing actin cytoskeleton. These proteins also interacted with the mammalian actin cross-linking protein filamin in the yeast two-hybrid assay through their highly conserved amino-terminal domains. This amino-terminus was sufficient to direct localization to the polymerizing actin cytoskeleton, suggesting that the interaction with filamin is important for this subcellular localization. In addition, SspH2 co-localized with vacuole-associated actin polymerizations (VAP) induced by intracellular bacteria through the Salmonella pathogenicity island (SPI)-2 type III secretion system (TTSS). SspH2 interacted with the actin-binding protein profilin in the yeast two-hybrid assay and by affinity chromatography. This interaction was highly specific to SspH2 and was mediated by its carboxy-terminus. Furthermore, SspH2 inhibited the rate of actin polymerization in vitro, suggesting that it functions to reduce or remodel VAP. Strains with mutations in sspH2 and sseI retained the ability to form VAP. However, a third intracellular virulence factor, spvB, which ADP-ribosylates actin, strongly inhibited VAP formation in HeLa cells, suggesting a more subtle effect for SspH2 and SseI on the actin cytoskeleton.  相似文献   

2.
3.
4.
Salmonella enterica serovar Typhimurium invades intestinal epithelial cells using a type three secretion system (TTSS) encoded on Salmonella Pathogenicity Island 1 (SPI1). The SPI1 TTSS injects effector proteins into the cytosol of host cells where they promote actin rearrangement and engulfment of the bacteria. We previously identified RtsA, an AraC-like protein similar to the known HilC and HilD regulatory proteins. Like HilC and HilD, RtsA activates expression of SPI1 genes by binding upstream of the master regulatory gene hilA to induce its expression. HilA activates the SPI1 TTSS structural genes. Here we present evidence that hilA expression, and hence the SPI1 TTSS, is controlled by a feedforward regulatory loop. We demonstrate that HilC, HilD and RtsA are each capable of independently inducing expression of the hilC, hilD and rtsA genes, and that each can independently activate hilA. Using competition assays in vivo, we show that each of the hilA regulators contribute to SPI1 induction in the intestine. Of the three, HilD has a predominant role, but apparently does not act alone either in vivo or in vitro to sufficiently activate SPI1. The two-component regulatory systems, SirA/BarA and OmpR/EnvZ, function through HilD, thus inducing hilC, rtsA and hilA. However, the two-component systems are not responsible for environmental regulation of SPI1. Rather, we show that 'SPI1 inducing conditions' cause independent activation of the rtsA, hilC and hilD genes in the absence of known regulators. Our model of SPI1 regulation provides a framework for future studies aimed at understanding this complicated regulatory network.  相似文献   

5.
6.
The Salmonella pathogenicity island 2 (SPI2) type III secretion system (TTSS) promotes Salmonella enterica serovar Typhimurium virulence for mice and increased survival and replication within eukaryotic cells. After phagocytosis, Salmonella serovar Typhimurium assembles the SPI2 TTSS to translocate over a dozen effector proteins across the phagosome membrane. SpiC has been previously shown to be a translocated effector with a large contribution to virulence (K. Uchiya, M. A. Barbieri, K. Funato, A. H. Shah, P. D. Stahl, and E. A. Groisman, EMBO J. 18:3924-3933, 1999). This report demonstrates by competitive index that the virulence phenotype of a spiC mutant is equivalent to that of a secretion component mutant. In addition, translocation of SPI2 effector proteins was shown to require SpiC. Thus, the severe virulence phenotype resulting from deletion of spiC is likely due to the inability to translocate all SPI2 effectors. SpiC was also required to secrete translocon proteins SseB and SseC but not translocated effector SseJ, indicating that lack of assembly of the translocon explains the spiC mutant phenotype.  相似文献   

7.
The ability of Salmonella enterica to invade and replicate within host cells depends on two type III secretion systems (TTSSs) encoded on pathogenicity islands 1 and 2 (SPI1 and SPI2). The current paradigm holds that these systems translocate two classes of effectors that operate sequentially and independently. In essence, the SPI1 TTSS mediates early events (i.e. invasion) whereas the SPI2 TTSS mediates post-invasion processes (i.e. replication, vacuole maturation). Contrary to this model, we have found in infected macrophages that a SPI1 effector, SopB/SigD, increased inducible nitric oxide synthase levels and nitric oxide production, host cell process previously known only to be a target of the SPI2 TTSS. Furthermore, SopB protein and message persist many hours after invasion. Our findings reveal an unanticipated potential for dialogue between the SPI1 and SPI2 TTSS and the host cell response.  相似文献   

8.
9.
10.
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative intracellular pathogen that causes disease in a variety of hosts. S. Typhimurium actively invade host cells and typically reside within a membrane-bound compartment called the Salmonella-containing vacuole (SCV). The bacteria modify the fate of the SCV using two independent type III secretion systems (TTSS). TTSS are known to damage eukaryotic cell membranes and S. Typhimurium has been suggested to damage the SCV using its Salmonella pathogenicity island (SPI)-1 encoded TTSS. Here we show that this damage gives rise to an intracellular bacterial population targeted by the autophagy system during in vitro infection. Approximately 20% of intracellular S. Typhimurium colocalized with the autophagy marker GFP-LC3 at 1 h postinfection. Autophagy of S. Typhimurium was dependent upon the SPI-1 TTSS and bacterial protein synthesis. Bacteria targeted by the autophagy system were often associated with ubiquitinated proteins, indicating their exposure to the cytosol. Surprisingly, these bacteria also colocalized with SCV markers. Autophagy-deficient (atg5-/-) cells were more permissive for intracellular growth by S. Typhimurium than normal cells, allowing increased bacterial growth in the cytosol. We propose a model in which the host autophagy system targets bacteria in SCVs damaged by the SPI-1 TTSS. This serves to retain intracellular S. Typhimurium within vacuoles early after infection to protect the cytosol from bacterial colonization. Our findings support a role for autophagy in innate immunity and demonstrate that Salmonella infection is a powerful model to study the autophagy process.  相似文献   

11.
12.
The type III secretion system encoded by Salmonella pathogenicity island 2 (SPI2) is required for systemic infections and intracellular accumulation of Salmonella enterica. This system is induced by intracellular Salmonella and subsequently transfers effector proteins into the host cell. Growth conditions either inducing expression of the type III secretion system or the secretion of substrate proteins were defined. Here we report the identification of a set of substrate proteins consisting of SseB, SseC, and SseD that are secreted by the SPI2 system in vitro. Secretion was observed if bacterial cells were exposed to acidic pH after growth in minimal medium with limitation of Mg(2+) or phosphate. SseB, -C, and -D were isolated in a fraction detached from the bacterial cell surface by mechanical shearing, indicating that these proteins are predominantly assembled into complexes on the bacterial cell surface. The three proteins were required for the translocation of SPI2 effector proteins SspH1 and SspH2 into infected host cells. Thus, SseB, SseC, and SseD function as the translocon for effector proteins by intracellular Salmonella.  相似文献   

13.
We recently identified a pathogenicity island (SPI2) located at 30.7 centisomes on the Salmonella typhimurium chromosome. SPI2 contains genes encoding a type III secretion system whose function is distinct from that of the type III secretion system encoded by a pathogenicity island (SPI1) at 63 centisomes which is involved in epithelial cell entry. An analysis of the boundaries of SPI2 and comparison with the corresponding region of the Escherichia coli chromosome revealed that SPI2 inserted adjacent to the tRNA(Val) gene. The E. coli chromosome contains 9 kb of DNA at the region corresponding to the SPI2 insertion point which appears to be absent in S. typhimurium. The distribution of SPI1 and SPI2 was examined in various Salmonella isolates. In contrast to type III secretion system genes of SPI1, those of SPI2 are not present in Salmonella bongori, which diverged at the first branch point in the Salmonella lineage. These and other data indicate that SPI2 was acquired by a Salmonella strain already harboring SPI1 by horizontal transfer from an unknown source.  相似文献   

14.
Salmonella spp. possess a conserved type III secretion system encoded within the pathogenicity island 1 (SPI1; centisome 63), which mediates translocation of effector proteins into the host cell cytosol to trigger responses such as bacterial internalization. Several translocated effector proteins are encoded in other regions of the Salmonella chromosome. It remains unclear how this complex chromosomal arrangement of genes for the type III apparatus and the effector proteins emerged and how the different effector proteins cooperate to mediate virulence. By Southern blotting, PCR, and phylogenetic analyses of highly diverse Salmonella spp., we show here that effector protein genes located in the core of SPI1 are present in all Salmonella lineages. Surprisingly, the same holds true for several effector protein genes located in distant regions of the Salmonella chromosome, namely, sopB (SPI5, centisome 20), sopD (centisome 64), and sopE2 (centisomes 40 to 42). Our data demonstrate that sopB, sopD, and sopE2, along with SPI1, were already present in the last common ancestor of all contemporary Salmonella spp. Analysis of Salmonella mutants revealed that host cell invasion is mediated by SopB, SopE2, and, in the case of Salmonella enterica serovar Typhimurium SL1344, by SopE: a sopB sopE sopE2-deficient triple mutant was incapable of inducing membrane ruffling and was >100-fold attenuated in host cell invasion. We conclude that host cell invasion emerged early during evolution by acquisition of a mosaic of genetic elements (SPI1 itself, SPI5 [sopB], and sopE2) and that the last common ancestor of all contemporary Salmonella spp. was probably already invasive.  相似文献   

15.
16.
17.
Salmonella typhimurium can colonize the gut, invade intestinal tissues, and cause enterocolitis. In vitro studies suggest different mechanisms leading to mucosal inflammation, including 1) direct modulation of proinflammatory signaling by bacterial type III effector proteins and 2) disruption or penetration of the intestinal epithelium so that penetrating bacteria or bacterial products can trigger innate immunity (i.e., TLR signaling). We studied these mechanisms in vivo using streptomycin-pretreated wild-type and knockout mice including MyD88(-/-) animals lacking an adaptor molecule required for signaling via most TLRs. The Salmonella SPI-1 and the SPI-2 type III secretion systems (TTSS) contributed to inflammation. Mutants that retain only a functional SPI-1 (M556; sseD::aphT) or a SPI-2 TTSS (SB161; DeltainvG) caused attenuated colitis, which reflected distinct aspects of the colitis caused by wild-type S. typhimurium: M556 caused diffuse cecal inflammation that did not require MyD88 signaling. In contrast, SB161 induced focal mucosal inflammation requiring MyD88. M556 but not SB161 was found in intestinal epithelial cells. In the lamina propria, M556 and SB161 appeared to reside in different leukocyte cell populations as indicated by differential CD11c staining. Only the SPI-2-dependent inflammatory pathway required aroA-dependent intracellular growth. Thus, S. typhimurium can use two independent mechanisms to elicit colitis in vivo: SPI-1-dependent and MyD88-independent signaling to epithelial cells and SPI-2-dependent intracellular proliferation in the lamina propria triggering MyD88-dependent innate immune responses.  相似文献   

18.
Pathogenicity islands (PAIs) are large DNA segments in the genomes of bacterial pathogens that encode virulence factors. Five PAIs have been identified in the Gram-negative bacterium Salmonella enterica. Two of these PAIs, Salmonella pathogenicity island (SPI)-1 and SPI-2, encode type III secretion systems (TTSS), which are essential virulence determinants. These 'molecular syringes' inject effectors directly into the host cell, whereupon they manipulate host cell functions. These effectors are either encoded with their respective TTSS or scattered elsewhere on the Salmonella chromosome. Importantly, SPI-1 and SPI-2 are expressed under distinct environmental conditions: SPI-1 is induced upon initial contact with the host cell, whereas SPI-2 is induced intracellularly. Here, we demonstrate that a single PAI, in this case SPI-5, can encode effectors that are induced by distinct regulatory cues and targeted to different TTSS. SPI-5 encodes the SPI-1 TTSS translocated effector, SigD/SopB. In contrast, we report that the adjacently encoded effector PipB is part of the SPI-2 regulon. PipB is translocated by the SPI-2 TTSS to the Salmonella-containing vacuole and Salmonella-induced filaments. We also show that regions of SPI-5 are not conserved in all Salmonella spp. Although sigD/sopB is present in all Salmonella spp., pipB is not found in Salmonella bongori, which also lacks a functional SPI-2 TTSS. Thus, we demonstrate a functional and regulatory cross-talk between three chromosomal PAIs, SPI-1, SPI-2 and SPI-5, which has significant implications for the evolution and role of PAIs in bacterial pathogenesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号