首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Lactobacillus sakei strain, designated as I151 and isolated from naturally fermented sausages, was found to produce the sakacin P bacteriocin which is active against Listeria monocytogenes. In this study, we performed the sequencing of the gene cluster involved in the production of the sakacin P, and we followed the expression of the sppA gene, encoding for the bacteriocin, in vitro, using Rogosa–Sharpe medium, and in situ, inoculating the strain in fermented sausages as starter culture. The results obtained underlined the high similarity (>99%) of the entire sakacin P gene cluster from the L. sakei studied here with others present in strains of L. sakei already described. Moreover, from the expression experiments, it was shown that the gene is expressed during the exponential phase and that production procedures typical of fermented sausages are not turning off the expression of the gene encoding the bacteriocin. The capability of the strain studied to produce sakacin P during production is considered an advantage for its use as starter culture to improve the safety aspect of traditional fermented sausages produced in Italy.  相似文献   

2.
Sakacin P, a bacteriocin from Lactobacillus sakei, shows strong activity against food-borne pathogens such as Listeria monocytogenes. In L. sakei, the structural gene (sppA) encoding sakacin P is controlled by a strict regulatory mechanism, and the quantity of secreted sakacin P is limited. In this study, the sppA gene was synthesized by splicing overlap extension PCR and cloned into Escherichia coli. After the induction with isopropyl-β-d-thiogalactopyranoside, the recombinant sakacin P was successfully expressed. The collected cells were sonicated, and the activity was detected by agar diffusion method. The results also showed that the low-temperature induction can improve the activity of sakacin P.  相似文献   

3.
In this study, we focused our investigation on two strains of Lactobacillus curvatus, L442 and LTH1174, which are able to produce bacteriocins. L. curvatus LTH1174 is widely studied for its capability to produce curvacin A, while L. curvatus L442 was isolated from traditional Greek fermented sausages and was shown to possess a strong inhibitory activity toward Listeria monocytogenes. By polymerase chain reaction, we were able to target in both strains the genes for the production of sakacin P and sakacin Q, sppA and sppQ, respectively, both encoded chromosomally. While sppA was found to be conserved when compared with other sakacin P genes, sppQ showed a deletion of about 15 nucleotides when aligned with sequences obtained from Lactobacillus sakei. This difference did not affect the activity of sakacin Q as determined by testing sensitive strains. Expression analysis highlighted that sakacin P was expressed in L. curvatus L442 but not in L. curvatus LTH1174. Curing experiments were performed on L. curvatus LTH1174 to study the effect of the megaplasmid, present in this strain. In the plasmid-cured strain, expression of the sppA gene was detected. sppQ was expressed in both plasmid-cured and wild-type L. curvatus LTH1174, although expression was higher in the plasmid-cured strain.  相似文献   

4.
Aims: To evaluate the probiotic properties of strains isolated from smoked salmon and previously identified as bacteriocin producers. Methods and Results: Strains Lactobacillus curvatus ET06, ET30 and ET31, Lactobacillus fermentum ET35, Lactobacillus delbrueckii ET32, Pediococcus acidilactici ET34 and Enterococcus faecium ET05, ET12 and ET88 survived conditions simulating the gastrointestinal tract (GIT) and produced bacteriocins active against several strains of Listeria monocytogenes, but presented very low activity against other lactic acid bacteria (LAB). Cell‐free supernatants containing bacteriocins, added to 3‐h‐old cultures of L. monocytogenes 603, suppressed growth over 12 h. Auto‐aggregation was strain‐specific, and values ranged from 7·2% for ET35 to 12·1% for ET05. Various degrees of co‐aggregation with L. monocytogenes 603, Lactobacillus sakei ATCC 15521 and Enterococcus faecalis ATCC 19443 were observed. Adherence of the bacteriocinogenic strains to Caco‐2 cells was within the range reported for Lactobacillus rhamnosus GG, a well‐known probiotic. The highest levels of hydrophobicity were recorded for Lact. curvatus (61·9–64·6%), Lact. fermentum (78·9%), Lact. delbrueckii (43·7%) and Ped. acidilactici (51·3%), which are higher than the one recorded for Lact. rhamnosus GG (53·3%). These strains were highly sensitive to several antibiotics and affected by several drugs from different generic groups in a strain‐dependent manner. Conclusions: Smoked salmon is a rich source of probiotic LAB. All strains survived conditions simulating the GIT and produced bacteriocins active against various pathogens. Adherence to Caco‐2 cells was within the range reported for Lact. rhamnosus GG, a well‐known probiotic. In addition, the high hydrophobicity readings recorded define the strains as good probiotics. Significance and Impact of the Study: Smoked salmon contains a number of different probiotic LAB and could be marketed as having a potential beneficial effect.  相似文献   

5.
Aims: To investigate the ability of lactic acid bacteria (LAB) to convert linoleic acid (LA) and α‐linolenic acid (α‐LNA) to conjugated linoleic acid (CLA) and conjugated linolenic acid (CLNA), respectively. To assess pH and temperature influences on CLA and CLNA production by Lactobacillus sakei LMG 13558. Methods and Results: A screening of 48 LAB yielded one Lactobacillus curvatus, five Lactobacillus plantarum and four Lact. sakei strains displaying linoleate isomerase (LAI) activity. CLNA conversion percentages varied largely (1–60%). CLA conversion, occurring in three strains, was lower (2–5%). The LAI gene sequences of the ten LAI‐positive strains shared 75–99% identity with the LAI gene sequence of a Lact. plantarum AS1.555. At pH 6·2, CLA and CLNA production by Lact. sakei LMG 13558 was higher at 30°C than at 20 and 25°C. At pH 5·5 (30°C) or 37°C (pH 6·2), LA was not converted and α‐LNA only slightly converted. Conclusions: LAB show strain‐dependent LAI activity. Production of CLA and CLNA is affected by pH and temperature, as shown for Lact. sakei LMG 13558. Significance and Impact of the Study: Several LAB produce CLA and/or CLNA, as shown for Lact. sakei and Lact. curvatus for the first time. These findings offer potential for the manufacturing of fermented functional foods.  相似文献   

6.
Amongst 101 lactic acid bacteria isolated from meat and fish samples, strain CWBI-B1365, identified as Lactobacillus sakei, was found to produce the subclass IIa bacteriocin sakacin G. Partial sequencing of the gene involved in the biosynthetic pathways revealed an unusual gene organisation in that the accessory gene associated with bacteriocin transport did not occur immediately downstream of the gene encoding an ABC transporter, but upstream of the putative immunity gene and encoded on the opposite DNA strand. Sakacin G production was strongly regulated by pH, temperature and the carbon sources used in the growth medium, as well as the concentration of carbon and nitrogen sources. The condition of pH 5.5 and the temperature of 25°C appeared to be optimal for bacteriocin production. The use of sucrose during culturing and the fed batch addition of sucrose and meat extract greatly enhanced bacteriocin production.  相似文献   

7.
Aims: To evaluate interactions between Lactobacillus sakei and coagulase negative cocci (CNC) (Staphylococcus xylosus and Kocuria varians) and to investigate the influence of these interactions on their own proteolytic activity. Methods and Results: Interactions occurring between strains of Lact. sakei and CNC were assessed by spectrophotometric analysis. The growth of 35 strains of Lact. sakei, used as indicators, was compared to that obtained combining the same strains with growing cells or cell‐free supernatants of 20 CNC (18 Staph. xylosus and 2 K. varians). The proteolytic activity expressed by single strains or by their combinations was assessed on sarcoplasmic protein extracts by sodium dodecyl sulfate‐polyacrylamide gel electrophoresis. The results evidenced that interactions are able to affect not only the growth but also the in vitro proteolytic activity of Lact. sakei and CNC used in combination. Conclusions: A relationship between the presence of interactions among useful strains and the strength of technological characteristics, such as proteolysis, was defined. Significance and Impact of the Study:  The study highlighted that CNC are able to stimulate the growth of some Lact. sakei strains. At the same time, this interaction positively influences the proteolytic activity of strains used in combination. Given the importance of proteolysis during the ripening of fermented meats, this phenomenon should be taken into account to select meat starter cultures.  相似文献   

8.

Aims

To isolate and characterize bacteriocins produced by predominant species of lactic acid bacteria from faeces of elderly subjects.

Methods and Results

Screening over 70 000 colonies, from faecal samples collected from 266 subjects, using the indicator organisms Lactobacillus bulgaricus LMG 6901 and Listeria innocua DPC 3572, identified 55 antimicrobial‐producing bacteria. Genomic fingerprinting following ApaI digestion revealed 15 distinct strains. The antimicrobial activities associated with 13 of the 15 strains were sensitive to protease treatment. The predominant antimicrobial‐producing species were identified as Lactobacillus salivarius, Lactobacillus gasseri, Lactobacillus acidophilus, Lactobacillus crispatus and Enterococcus spp. A number of previously characterized bacteriocins, including ABP‐118 and salivaricin B (from Lact. salivarius), enterocin B (Enterococcus faecium), lactacin B (Lact. acidophilus), gassericin T and a variant of gassericin A (Lact. gasseri), were identified. Interestingly, two antimicrobial‐producing species, not generally associated with intestinally derived microorganisms were also isolated: Lactococcus lactis producing nisin Z and Streptococcus mutans producing mutacin II.

Conclusion

These data suggest that bacteriocin production by intestinal isolates against our chosen targets under the screening conditions used was not frequent (0·08%).

Significance and Impact of the Study

The results presented are important due to growing evidence indicating bacteriocin production as a potential probiotic trait by virtue of strain dominance and/or pathogen inhibition in the mammalian intestine.  相似文献   

9.
The specific conditions in the batter of raw fermented sausages may reduce the efficiency of bacteriocin-producing starter cultures. In this work, using in vitro fermentation, we found that sodium chloride and sodium nitrite interfere with the growth of Lactobacillus sakei CTC 494, an organism which produces the antilisterial bacteriocin sakacin K. Because sakacin K production follows primary metabolite kinetics, a decrease in cell formation resulted in a decrease in sakacin K production as well. Sodium chloride dramatically influenced bacteriocin production by decreasing both biomass production and specific bacteriocin production. Sodium nitrite, however, had no effect on specific bacteriocin production and decreased bacteriocin production only because of its effect on cell growth. Moreover, sodium nitrite enhanced the toxic effect of lactic acid on bacterial growth.  相似文献   

10.
Lactobacillus sake CTC494 isolated from a naturally fermented sausage, produced an antibacterial agent active against selected strains of Listeria monocytogenes and L. innocua. The agent was bacteriolytic against L. monocytogenes and sensitive to proteolytic enzymes; it was identified as a bacteriocin and was designated as sakacin K. The ability of Lact. sake CTC494 to inhibit the growth of listeria, compared to a bacteriocinogenic negative control strain, was examined in a model sausage system and in dry fermented sausages. In dry fermented sausages Lact. sake CTC494 was able not only to suppress the growth of listeria but to diminish their number by 1.25 log compared to the non-bacteriocinogenic control strain. Thus, Lact. sake CTC494 has proved to be a good starter culture providing good organoleptical and sensorial qualities to the product and can be employed as a bioprotective starter culture in fermented meat products.  相似文献   

11.
AIMS: To evaluate the potential of sakacin P and sakacin P-producing Lactobacillus sakei for the inhibition of growth of Listeria monocytogenes in chicken cold cuts, by answering the following questions. (i) Is sakacin P actually produced in food? (ii) Is sakacin P produced in situ responsible for the inhibiting effect? (iii) How stable is sakacin P in food? METHODS AND RESULTS: Listeria monocytogenes, a Lact. sakei strain and/or the bacteriocin sakacin P were added to chicken cold cuts, vacuum packed and incubated at 4 or 10 degrees C for 4 weeks. Each of two isogenic Lact. sakei strains, one producing sakacin P and the other not, had an inhibiting effect on the growth of L. monocytogenes. The effect of these two isogenic strains on the growth of L. monocytogenes was indistinguishable, even though sakacin P was produced in the product by one of the two Lact. sakei strains. The addition of purified sakacin P had an inhibiting effect on the growth of L. monocytogenes. A high dosage of sakacin P (3.5 microg x g(-1)) had a bacteriostatic effect throughout the storage period of 4 weeks, while a low dosage (12 ng x g(-1)) permitted initial growth, but at a slow rate. After 4 weeks of storage, the number of L. monocytogenes in the samples with a low dosage of sakacin P was 2 logs below that in the untreated control. When using a high dosage of sakacin P, the bacteriocin was detected in samples stored for up to 6 weeks. CONCLUSIONS: (i) Sakacin P is produced by a Lact. sakei strain when growing on vacuum-packed chicken cold cuts. (ii) Inhibiting effects of Lact. sakei, other than sakacin P, are active in inhibiting the growth of L. monocytogenes growing on chicken cold cuts. (iii) Sakacin P is stable on chicken cold cuts over a period of 4 weeks. SIGNIFICANCE AND IMPACT OF THE STUDY: Both sakacin P and Lact. sakei were found to have potential for use in the control of L. monocytogenes in chicken cold cuts.  相似文献   

12.

Aims

Atopic dermatitis (AD) is an inflammatory skin disease. Probiotics have been reported to modulate immune responses and thus are now being suggested as potential treatments for allergies. In this study, we investigated the inhibitory effects of Lactobacillus sakei probio 65 isolated from Kimchi on artificially inducing AD in NC/Nga mice.

Methods and Results

Oral administration of viable or heat‐inactivated Lact. sakei probio 65 improved the condition of skin and reduced scratching frequency. Serum levels of IgE and cutaneous T‐cell‐attracting chemokine (CTACK) were significantly decreased by this therapy. Dead Lact. sakei probio 65 also decreased IL‐4 and IL‐6 serum concentrations. Moreover, both live and dead Lact. sakei probio 65 inhibited the expression of Thymus and activation‐regulated chemokine and CTACK in AD‐like skin lesions. The increased levels of Foxp3 expression in the lesional skin and ears were also suppressed by Lact. sakei probio 65. In addition, Lact. sakei probio 65 inhibited β‐hexosaminidase release and the secretion of IL‐4, TNF‐α and IL‐6 from RBL‐2H3 cells.

Conclusions

Oral treatment with both viable and heat‐inactivated Lact. sakei probio 65 inhibits skin inflammation and AD‐like skin lesions, as well as mast cell activation.

Significance and Impact of the Study

Lactobacillus sakei probio 65 has an inhibitory effect on atopic dermatitis‐like skin lesions and may represent an effective new anti‐inflammatory agent.  相似文献   

13.
Summary >Screening for the bacteriocin production of strains of lactic acid bacteria from various meat and meat products resulted in the detection of a bacteriocin-producing Lactococcus lactis subsp. cremoris CTC 204, isolated from chicken. The bacteriocin inhibited not only closely related lactic acid bacteria (Lactobacillus helveticus), but also pathogenic microorganisms (Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, and Clostridium perfringens). It was inactivated by α-chymotrypsin, ficin, papain, and pronase E, but not by lipase or pepsin. This compound was heat stable even at autoclaving temperature (121°C for 10min) and was produced during refrigerated storage. It was also active over a wide pH range (2–10), but the highest activity was observed in the lower pH range. The results indicated that dipping raw beef in the bacteriocin produced by strain CTC 204 could contribute to the extension of the shelf life of refrigerated bovine meat.  相似文献   

14.
Lactobacillus curvatus L442, isolated from Greek traditional fermented sausage prepared without the addition of starters, produces a bacteriocin, curvaticin L442, which is active against the pathogen Listeria monocytogenes. The bacteriocin was purified by 50% ammonium sulphate precipitation, cation exchange, reverse phase and gel filtration chromatography. Partial N-terminal sequence analysis using Edman degradation revealed 30 amino acid residues, revealing high homology with the amino acid sequence of sakacin P. Curvaticin L442 is active at pH values between 4.0 and 9.0 and it retains activity even after incubation for 5 min at 121 °C with 1 atm of overpressure. Proteolytic enzymes and α-amylase inactivated this curvaticin, while the effect of lipase was not severe.  相似文献   

15.
Lactobacillus sakei is a lactic acid bacterium important in food microbiology mainly due to its ability to ferment and preserve meat. The genome sequence of L. sakei strain 23K has revealed specialized metabolic capacities that reflect the bacterium’s adaption to meat products, and that differentiate it from other LAB. An extensive genomic diversity analysis was conducted to elucidate the core features of the species, and to provide a better comprehension of niche adaptation of the organism. Here, we describe the genomic comparison of 18 strains of L. sakei originating mainly from processed meat against the 23K strain by comparative genome hybridization. Pulsed field gel electrophoresis was used to estimate the genome sizes of the strains, which varied from 1.880 to 2.175 Mb, and the 23K genome was among the smallest. Consequently, a large part of the genome of this strain belongs to a common gene pool invariant in this species. The majority of genes important in adaption to meat products, the ability to flexibly use meat components, and robustness during meat processing and storage were conserved, such as genes involved in nucleoside scavenging, catabolism of arginine, and the ability to cope with changing redox and oxygen levels, which is indicative of the role these genes play in niche specialization within the L. sakei species. Moreover, an additional set of sequenced L. sakei genes beyond the 23K genome was present on the microarray used, and it was demonstrated that all the strains carry remnants of or complete bacteriocin operons. The genomic divergence corresponded mainly to five regions in the 23K genome, which showed features consistent with horizontal gene transfer. Carbohydrate-fermentation profiles of the strains were evaluated in light of the CGH data, and for most substrates, the genotypes were consistent with the phenotypes. We have demonstrated a highly conserved organization of the L. sakei genomes investigated, and the 23K strain is a suitable model organism to study core features of the L. sakei species.  相似文献   

16.
Aims: To isolate and characterize bacterial strains derived from Lactobacillus casei and Lactobacillus paracasei strains and resistant to phage MLC‐A. Methods and Results: Two of nine assayed strains rendered resistant mutants with recovery efficiencies of 83% (Lact. paracasei ATCC 27092) and 100% (Lact. casei ATCC 27139). DNA similarity coefficients (RAPD–PCR) confirmed that no significant genetic changes occurred while obtaining resistant mutants. Neither parent nor mutant strains spontaneously released phages. Phage‐resistant mutants were tested against phages PL‐1, J‐1, A2 and MLC‐A8. Lactobacillus casei ATCC 27092 mutants showed, overall, lower phage resistance than Lact. paracasei ATCC 27092 ones, but still higher than that of the parent strain. Lactobacillus paracasei ATCC 27092 mutants moderately adsorbed phage MLC‐A only in calcium presence, although their parent strain successfully did it with or without calcium. Adsorption rates for Lact. casei ATCC 27139 and its mutants were highly influenced by calcium. Again, phage adsorption was higher on the original strain. Conclusions: Several isolates derived from two Lact. casei and Lact. paracasei strains showed resistance to phage MLC‐A but also to other Lact. casei and Lact. paracasei phages. Significance and Impact of the Study: This study highlights isolation of spontaneous bacteriophage‐resistant mutants from Lact. casei and Lact. paracasei as a good choice for use in industrial rotation schemes.  相似文献   

17.
Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442, isolated from dry fermented sausages, produce bacteriocins antagonistic towards closely related species and pathogens, such as Listeria monocytogenes. The bacteriocins were inactivated by proteolytic enzymes and lipase but not by catalase and lysozyme. They were also heat stable, retaining activity after heating at 100 °C for 60 min. The bacteriocins were stable at pH values ranging from 2.0 to 8.0. Bacteriocin production was observed at low temperatures (10 and 4 °C) and in meat juice. The maximum bacteriocin activity was observed at the end of the exponential growth phase. The bacteriocins were produced in media with initial pH values ranging from 5.0 to 7.5, but not in media with a pH lower than 5.0 (weak bacteriocin activity of the antibacterial compound produced by Ln. mesenteroides L124 was observed at pH 4.5). Both bacteriocins exhibited strong bactericidal activity following cell/bacteriocin contact.  相似文献   

18.
A total of 51 Lactobacillus sakei and 28 Lactobacillus curvatus strains from different origins were screened for their potential to produce biogenic amines (BAs), and for their diversity of peptidolytic systems and specific aminotransferases (AraT, BcaT) that initiate amino acid conversion to volatiles relevant for aroma formation in meat products. The profiles of volatiles formed (volatilomes) were analysed in the headspace of fermentations by solid phase microextraction followed by GC-MS analysis. Tyramine-forming potential was detected only within L. curvatus and was strain-dependent. Histamine decarboxylase (HDC) activity could only be detected in one L. sakei strain, previously described as histidine decarboxylase positive (HDC+). Peptide transporters and peptidases were nearly ubiquitous in L. sakei and only a few strains lacked single peptidases. In L. curvatus, differences were detected in the occurrence of peptidase genes detected with PCR primers derived from L. sakei. All strains lacked known aminotransferases specific for branched-chain amino acids (BCAAs) and aromatic amino acids (ACAAs). Although L. sakei is suggested as a genetically very heterogenous species, and relatedness between L. curvatus and L. sakei at the genomic level is rather low, they appeared to be nearly uniform in the genes forming the peptidolytic system. The volatilomes of L. sakei and L. curvatus strains were qualitatively nearly identical. However, slight differences in the formation of single volatile compounds and the interaction with staphylococci may impact upon sausage fermentation which occurs over a period of many weeks. Among the compounds expected to contribute to the aroma were dimethyldisulphide, 3-methyl-1-butanol, acetic acid, 1-butanol and butanoic acid.  相似文献   

19.
Lactobacillus species are usually used as starters for the production of fermented products, and some strains are capable of producing antimicrobial substances, such as bacteriocins. Because these characteristics are highly desirable, research are continually being performed for novel Lactobacillus strains with bacteriocinogenic potential for use by food industries. The aim of this study was to characterise the bacteriocinogenic potential and activity of Lactobacillus isolates. From a lactic acid bacteria culture collection obtained from raw milk and cheese, 27 isolates were identified by 16S rDNA as Lactobacillus spp. and selected for the detection of lantibiotics biosynthesis genes, bacteriocin production, antimicrobial spectra, and ideal incubation conditions for bacteriocin production. Based on the obtained results, 21 isolates presented at least one of the three lantibiotics biosynthesis genes (lanB, lanC or lamM), and 23 isolates also produced antimicrobial substances with sensitivity to at least one proteinase, indicating their bacteriocinogenic activity. In general, the isolates had broad inhibitory activity, mainly against Listeria spp. and Staphylococcus spp. strains, and the best antimicrobial performance of the isolates occurred when they were cultivated at 25 °C for 24 or 48 h or at 35 °C for 12 h. The present study identified the bacteriocinogenic potential of Lactobacillus isolates obtained from raw milk and cheese, suggesting their potential use as biopreservatives in foods.  相似文献   

20.
The probiotic characteristics of Lactobacillus curvatus DN317, a strain isolated from chicken ceca, were evaluated. This strain was selected for study from the isolated Lactobacillus strains because it has specific anti-microbial activity against Campylobacter jejuni ATCC 33560, Camp. jejuni NCTC 11168, Listeria monocytogenes ATCC 7644, and Bacillus subtilis ATCC 8633. Lact. curvatus DN317 showed an auto-aggregation percentage of 72% and presented the highest co-aggregation with Lact. monocytogenes ATCC 7644 (68%) compared to B. subtilis ATCC 8633 (45%), Camp. jejuni ATCC 33560 (36%), and Camp. jejuni NCTC 11168 (35%). The data revealed that Lact. curvatus DN317 could survive at 0.25% bile, maintain viability at pH 2.5 for 30 min, produce biosurfactants, and adhere to Caco-2 cells. Quantification of IL-6, IL-8, IL-10, and β-defensin 2 levels shows that Lact. curvatus DN317 induces an increase in IL-8 and β-defensin 2 secretion, while the levels of IL-6 and IL-10 do not change. Lact. curvatus DN317 showed high levels of esterase and cysteine arylamidase activities (5); moderate levels of esterase lipase, β-galactosidase, and α-galactosidase activities (4, 3); and weak levels of leucine arylamidase, valine arylamidase, and acid phosphatase activity (1). Various activities were obtained of α-chymotrypsin, β-glucuronidase, β-glucosidase, and N-acetyl-β-glucosaminidase, which have been associated with intestinal diseases. Lact. curvatus DN317 lowered the cholesterol level in MRS with and without bile. Antibiotic susceptibility tests indicated that DN317 was sensitive to ampicillin, gentamicin, kanamycin, streptomycin, tetracycline, clindamycin, erythromycin, and vancomycin but was resistant to chloramphenicol and ciprofloxacin. These results suggest that Lact. curvatus DN317 could potentially function as a probiotic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号