首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang Y  Chen B  Hu Y  Li J  Lin Z 《Transgenic research》2005,14(5):605-614
In a plant transformation process, it is necessary to use marker genes that allow the selection of regenerated transgenic plants. However, selectable marker genes are generally superfluous once an intact transgenic plant has been established. Furthermore, they may cause regulatory difficulties for approving transgenic crop release and commercialization. We constructed a binary expression vector with the Cre/lox system with a view to eliminating a marker gene from transgenic plants conveniently. In the vector, recombinase gene cre under the control of heat shock promoter and selectable marker gene nptII under the control of CaMV35S promoter were placed between two lox P sites in direct orientation, while the gene of interest was inserted outside of the lox P sites. By using this vector, both cre and nptII genes were eliminated from most of the regenerated plants of primary transformed tobacco through heat shock treatment, while the gene of interest was retained and stably inherited. This autoexcision strategy, mediated by the Cre/lox system and subjected to heat shock treatment to eliminate a selectable marker gene, is easy to adopt and provides a promising approach to generate marker-free transgenic plants.  相似文献   

2.
Jia H  Pang Y  Chen X  Fang R 《Transgenic research》2006,15(3):375-384
Selection markers are often indispensable during the process of plant transformation, but dispensable once transgenic plants have been established. The Cre/lox site-specific recombination system has been employed to eliminate selectable marker genes from transgenic plants. Here we describe the use of a movement function-improved Tobacco Mosaic Virus (TMV) vector, m30B, to express Cre recombinase for elimination of the selectable marker gene nptII from transgenic tobacco plants. The transgenic tobacco plants were produced by Agrobacterium-mediated transformation with a specially designed binary vector pGNG which contained in its T-DNA region a sequence complex of 35S promoter-lox-the gfp coding sequence-rbcS terminator-Nos promoter-nptII-Nos terminator-lox-the gus coding region-Nos terminator. The expression of the recombinant viral vector m30B:Cre in plant cells was achieved by placing the viral vector under the control of the 35S promoter and through agroinoculation. After co-cultivating the pGNG-leaf discs with agro35S-m30B:Cre followed by shoot regeneration without any selection, plants devoid of the lox-flanked sequences including nptII were obtained with an efficiency of about 34% as revealed by histochemical GUS assay of the regenerants. Three of 11 GUS expressing regenerants, derived from two independent transgenic lines containing single copy of the pGNG T-DNA, proved to be free of the lox-flanked sequences by Southern blot analysis. Excision of the lox-flanked sequences in the three plants could be attributed to transient expression of Cre from the viral vector at the early stage of co-cultivation, since the cre sequence could not be detected in the viral RNA molecules accumulated in the plants, nor in their genomic DNA. The parental marker-free genotype was inherited in their selfed progeny, and all of the progeny were virus-free, apparently because TMV is not seed-transmissible. Therefore, expression of Cre from a TMV-based vector could be used to eliminate selectable marker genes from transgenic tobacco plants without sexual crossing and segregation, and this strategy could be extended to other TMV-infected plant species and applicable to other compatible virus–host plant systems.  相似文献   

3.
This work is focused on the generation of selectable marker-free transgenic tobacco plants using the self excision Cre/loxP system that is controlled by a strong seed specific Arabidopsis cruciferin C (CRUC) promoter. It involves Agrobacterium-mediated transformation using a binary vector containing the gus reporter gene and one pair of the loxP sites flanking the cre recombinase and selectable nptII marker genes (floxed DNA). Surprisingly, an ectopic activation of CRUC resulting in partial excision of floxed DNA was observed during regeneration of transformed cells already in calli. The regenerated T0 plants were chimeric, but no ongoing ectopic expression was observed in these one-year-long invitro maintained plants. The process of the nptII removal was expected in the seeds; however, none of the analysed T0 transgenic lines generated whole progeny sensitive to kanamycin. Detailed analyses of progeny of selected T0-30 line showed that 10.2% GUS positive plants had completely removed nptII gene while the remaining 86.4% were still chimeras. Repeated activation of the cre gene in T2 seeds resulted in increased rate of marker-free plants, whereas four out of ten analysed chimeric T1 plants generated completely marker-free progenies. This work points out the feasibility as well as limits of the CRUC promoter in the Cre/loxP strategy. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Antibiotic and herbicide resistance genes have been used in transgene technology as powerful selection tools. Nonetheless, once transgenic events have been obtained their presence is no longer needed and can even be undesirable. In this work, we have developed a system to excise the selectable marker and the cre recombinase genes from transgenic banana cv. ‘Grande Naine’ (Musa AAA). To achieve this, the embryo specific REG-2 promoter was isolated from rice and its expression pattern in banana cell clumps, somatic embryos and regenerated plantlets was characterized by using a pREG2::uidA fusion construct. Subsequently, the REG-2 promoter was placed upstream of the cre gene, conferring Cre functionality in somatic embryos and recombination of lox sites resulting in excision of the selectable marker and cre genes. PCR analysis revealed that 41.7 % of the analysed transgenic plants were completely marker free, results that were thereafter confirmed by Southern blot hybridization. These results demonstrate the feasibility of using developmentally controlled promoters to mediate marker excision in banana. This system does not require any extra handling compared to the conventional transformation procedure and might be useful in other species regenerating through somatic embryogenesis.  相似文献   

5.
The present study assessed the efficacy of a heat-inducible cre gene for conditional removal of the marker gene from a rice genome via Cre-lox recombination. A cre gene controlled by the soybean heat-shock promoter was introduced into the rice genome along with the recombination target (lox) construct. Cre-mediated recombination was expected to remove the marker gene and activate the promoter-less GUS gene. Six transgenic lines displayed well-regulated heat-inducible Cre activity in the callus. However, only one line that contained a single copy of the cre gene maintained this property in the regenerated plants and their progeny. Marker-free progeny were obtained from the plant that was heat-treated at the seedling stage, indicating the inheritance of the recombination ‘footprint’. The presence of the ‘footprint’ was verified by polymerase chain reaction and Southern analysis. Therefore, the cre gene controlled by the soybean heat-shock promoter is an effective tool for conditional removal of the marker gene in rice.  相似文献   

6.
We have developed a self-excision Cre-vector to remove marker genes from Brassica napus. In this vector cre recombinase gene and bar expression cassette were inserted between two lox sites in direct orientation. These lox-flanked sequences were placed between the seed-specific napin promoter and the gene of interest (vstI). Tissue-specific cre activation resulted in simultaneous excision of the recombinase and marker genes. The vector was introduced into B. napus by Agrobacterium-mediated transformation. F1 progeny of seven lines with single and multiple transgene insertions was subjected to segregation and molecular analysis. Marker-free plants could be detected and confirmed by PCR and Southern blot in all transgenic lines tested. The recombination efficiency expressed as a ratio of plants with complete gene excision to the total number of investigated plants varied from 13 to 81% dependent on the transgene copy number. Potential application of this system would be the establishment of marker-free transgenic plants in generatively propagated species.  相似文献   

7.
Here we report the production of marker-free transgenic plants expressing phenolic compounds with high pharmacological value. Our strategy consisted in simultaneous delivery of lox-target and cre-containing constructs into the plant genome by cotransformation. In the Cre-vector, the cre recombinase gene was controlled by a seed-specific napin promoter. In the lox-target construct the selectable bar gene was placed between two lox sites in direct orientation, while a napin promoter driven vstI gene was inserted outside of the lox sites. Upon seed-specific cre induction the bar expression cassette was excised from the tobacco genome. Genetic and molecular analysis of T1 progeny plants indicated DNA excision in all 10 transgenic lines tested. RP-HPLC analysis demonstrated that the expression of the vstI gene resulted in accumulation of trans-resveratrol and its glycosylated derivative piceid in seeds of all marker free lines. These findings indicate that the seed-specific marker gene excision did not interfere with the expression of the gene of interest. Our data demonstrated the feasi of a developmentally controlled cre gene to mediate site-specific excision in tobacco very efficiently.  相似文献   

8.
To study the impact of different DNA configurations on the stability of transgene expression, a variant of the cre gene was developed. This variant allows for the highly efficient in planta removal of its own loxP-flanked coding sequence as well as other DNAs flanked by ectopic heterospecific lox sites, either lox511 or lox2272 or both, in trans. The plant intron-containing cre gene, cre INT , was configured in such a way that self-excision generated an intact hygromycin resistance selectable marker gene. In this combination, all selected transformants showed highly efficient excision. Plants obtained showed no indication of any chimerism, indicating a cell autonomous nature of the hygromycin selection during transformation and regeneration. The highly efficient concomitant removal of wildtype and heterospecific lox site-flanked DNA demonstrated that upon retransformation with the self-excising cre INT , sufficient amounts of Cre enzyme were produced prior to its removal. Plants obtained with cre INT showed much less frequently the Cre-associated phenomenon of reduced fertility than plants obtained with a continuous presence of Cre recombinase. The cre INT system has therefore advantages over systems with a continuously present Cre. The cre INT system was successfully used for removal of two chromatin boundary elements from transgene cassettes in tobacco. Analysis of plants with and without boundary elements on the same chromosomal location will contribute to a better evaluation of the role of such elements in the regulation of transgene expression in plants.  相似文献   

9.
Zhang Y  Li H  Ouyang B  Lu Y  Ye Z 《Biotechnology letters》2006,28(16):1247-1253
Marker-free transgenic tomato plants harboring a synthetic Bacillus thuringiensis endotoxin gene, cryIAc, were obtained by using a chemically regulated, Cre/loxP-mediated site-specific DNA recombination system, in which the selectable marker neomycin phosphotransferase gene flanked by two directly oriented loxP sites was located between the cauliflower mosaic virus 35S promoter and a promoterless cryIAc. Upon induction by 2 μM β-estradiol, sequences encoding the selectable marker and cre sandwiched by two loxP sites were excised from the tomato genome, leading to activation of the downstream endotoxin gene cryIAc with high expression levels as shown by Northern blot and ELISA assay (250–790 ng g−1 fresh wt) in T1 generation. For transgenic line with single transgenic loci, 15% of T1 progenies were revealed marker-free. This autoexcision strategy provides an effective approach to eliminate a selectable marker gene from transgenic tomato, thus expediting the public acceptance of genetically modified crop.  相似文献   

10.
Bai X  Wang Q  Chu C 《Transgenic research》2008,17(6):1035-1043
Based on the Cre/loxP system, we have developed a novel marker-free system mediating a direct auto-excision of loxP-flanked marker genes from T1 transgenic rice without any treatment or further offspring crossing. To achieve this, the floral-specific promoter OsMADS45 was isolated from rice and the expression patterns of OsMADS45 promoter was characterised by using the pOs45:GUS transgenic plants. Furthermore, the binary vector with Cre recombinase under the control of OsMADS45 promoter was constructed and introduced into rice by Agrobacterium-mediated transformation and transgenic rice plants were generated. Southern blot analysis showed that auto-excision of the selective markers occurred in some T1 progeny of the transgenic plants, suggesting that a high auto-excision frequency can be achieved with our Cre/loxP system. This auto-excision strategy provides an efficient way of removing the selectable marker gene from transgenic rice. Xianquan Bai and Qiuyun Wang contributed equally to the work.  相似文献   

11.
A variety of selection systems have been developed for transformation of forage crops. To compare the most frequently used systems, we tested three selectable marker genes for their selection efficiency under four selection procedures for the production of transgenic tall fescue. Embryogenic calluses initiated from mature embryos were bombarded with three constructs containing either the phosphinothricin acetyltransferase (bar) gene, the hygromycin phosphotransferase (hpt) gene or the neomycin phosphotransferase II (nptII) gene. Transformation efficiency was strongly influenced by the selectable marker gene, selection procedure and genotype. The highest transformation efficiency was observed using the bar gene in combination with bialaphos. Average transformation efficiencies with bialaphos, phosphinothricin (glufosinate), hygromycin and paromomycin selection across the two callus lines used in the experiments were 9.4%, 4.4%, 5.2% and 1.6%, respectively. Southern blot analysis revealed the independent nature of the tested transgenic plants and a complex transgene integration pattern with multiple insertions.  相似文献   

12.
Wheat streak mosaic virus (WSMV), vectored by Wheat curl mite, has been of great economic importance in the Great Plains of the United States and Canada. Recently, the virus has been identified in Australia, where it has spread quickly to all major wheat growing areas. The difficulties in finding adequate natural resistance in wheat prompted us to develop transgenic resistance based on RNA interference (RNAi). An RNAi construct was designed to target the nuclear inclusion protein ‘a’ (NIa) gene of WSMV. Wheat was stably cotransformed with two plasmids: pStargate‐NIa expressing hairpin RNA (hpRNA) including WSMV sequence and pCMneoSTLS2 with the nptII selectable marker. When T1 progeny were assayed against WSMV, ten of sixteen families showed complete resistance in transgenic segregants. The resistance was classified as immunity by four criteria: no disease symptoms were produced; ELISA readings were as in uninoculated plants; viral sequences could not be detected by RT‐PCR from leaf extracts; and leaf extracts failed to give infections in susceptible plants when used in test‐inoculation experiments. Southern blot hybridization analysis indicated hpRNA transgene integrated into the wheat genome. Moreover, accumulation of small RNAs derived from the hpRNA transgene sequence positively correlated with immunity. We also showed that the selectable marker gene nptII segregated independently of the hpRNA transgene in some transgenics, and therefore demonstrated that it is possible using these techniques, to produce marker‐free WSMV immune transgenic plants. This is the first report of immunity in wheat to WSMV using a spliceable intron hpRNA strategy.  相似文献   

13.
The Cre/lox site-specific recombination controls the excision of a target DNA segment by recombination between two lox sites flanking it, mediated by the Cre recombinase. We have studied the functional expression of the Cre/lox system to excise a transgene from the rice genome. We developed transgenic plants carrying the target gene, hygromycin phosphotransferase (hpt) flanked by two lox sites and transgenic plants harboring the Cre gene. Each lox plant was crossed with each Cre plant reciprocally. In the Cre/lox hybrid plants, the Cre recombinase mediates recombination between two lox sites, resulting in excision of the hpt gene. The recombination event could be detected because it places the CaMV 35S promoter of the hpt gene adjacent to a promoterless gusA gene; as a result the gusA gene is activated and its expression could be visualized. In 73 Cre/lox hybrid plants from various crosses of T0 transgenic plants, 19 expressed GUS, and in 132 Cre/lox hybrid plants from crosses of T2 transgenic plants, 77 showed GUS expression. Molecular data proved the excision event occurred in all the GUS+ plants. Recombination occurred with high efficiency at the early germinal stage, or randomly during somatic development stages. Received. 2 April 2001 / Accepted: 29 June 2001  相似文献   

14.
The bacteriophage P1 Cre—lox site-specific recombination system has been used to integrate DNA specifically at lox sites previously placed in the tobacco genome. As integrated molecules flanked by wild-type lox sites can readily excise in the presence of Cre recombinase, screening for mutant lox sites that can resist excisional recombination was performed. In gene integration experiments, wild-type and mutant lox sites were used in conjunction with two strategies for abolishing post-integration Cre activity: (i) promoter displacement of a cre-expression construct present in the target genome; and (ii) transient expression of cre. When the promoter displacement strategy was used, integrant plants were recovered after transformation with constructs containing mutant lox sequences, but not with constructs containing wild-type lox sites. When cre was transiently expressed, integrant plants were obtained after transformation with either mutant or wild-type lox sites. DNA rearrangements at the target locus were less frequent when mutant lox sites were used. DNA integration at the genomic lox site was usually without additional insertions in the genome. Thus, the Cre—lox site-specific recombination system is useful for the single-copy integration of DNA into a chromosomal lox site.  相似文献   

15.
The Cre/loxP site-specific recombination system has been applied in various plant species including maize (Zea mays) for marker gene removal, gene targeting, and functional genomics. A BIBAC vector system was adapted for maize transformation with a large fragment of genetic material including a herbicide resistance marker gene, a 30 kb yeast genomic fragment as a marker for fluorescence in situ hybridization (FISH), and a 35S-lox-cre recombination cassette. Seventy-five transgenic lines were generated from Agrobacterium-mediated transformation of a maize Hi II line with multiple B chromosomes. Eighty-four inserts have been localized among all 10 A chromosome pairs by FISH using the yeast DNA probe together with a karyotyping cocktail. No inserts were found on the B chromosomes; thus a bias against the B chromosomes by the Agrobacterium-mediated transformation was revealed. The expression of a cre gene was confirmed in 68 of the 75 transgenic lines by a reporter construct for cre/lox mediated recombination. The placement of the cre/lox site-specific recombination system in many locations in the maize genome will be valuable materials for gene targeting and chromosome engineering.  相似文献   

16.
Perennial ryegrass (Lolium perenne L.) is the most important grass species in areas with a temperate climate. Biolistic transfer of a ubiquitin promoter driven nptII expression cassette into mature or immature tissue derived calli of perennial ryegrass followed by paromomycin selection, resulted in the rapid and efficient production of fertile transgenic ryegrass plants. Transformation efficiencies after paromomycin selection in combination with the nptII selectable marker compared favourably with hygromycin selection in combination with the hph selectable marker. In total 83 independent nptII expressing plants were produced. Transformation frequency was highly affected by genotype, explant, selection regime and the duration of the callus induction period. The optimised transformation protocol for mature embryo derived calli of turf-type or forage-type cultivars resulted in an average transformation efficiency of 5.2% or 6.6% respectively. This converts into 1.7 or 2.2 independent transgenic plants per bombardment. Immature inflorescence- and immature embryo-derived calli were also successfully used as target for the gene transfer, resulting in transformation efficiencies of up to 3.7% or 11.42% respectively. Transgenic plants were transferred to soil 12 or 9 weeks after excision of mature and immature embryos or inflorescences respectively. Transgene integration and expression were confirmed by PCR and ELISA or western blot analysis. Southern blot analysis confirmed the independent nature of the transgenic lines. The majority of lines showed the integration of two to six transgene copies, while 21% of the analysed lines had a single copy insert. A short tissue culture period in comparison to recently published reports seems to be beneficial for the production of normal and fertile transgenic ryegrass plants. Consequently we report for the first time molecular evidence for sexual transgene transmission in fertile transgenic perennial ryegrass.  相似文献   

17.
Previously, we described a Cre-lox based strategy to convert a complex multi-copy integration pattern to a single-copy transgene (Srivastava et al., 1999). When a lox-containing transgenic line of wheat was crossed with a cre-expressing line, extra copies of the transgene were deleted by site-specific recombination. This process included the removal of a lox-flanked selection marker gene, bar. Three out of six F1 plants were chimeric for the resolved and the complex loci because both completely resolved and incompletely resolved patterns were found in the F2 population. From one F1 plant, 4 out of 20 F2 progeny showed not only incomplete resolution of the complex integration pattern, but also the presence of a circular loxP-bar-nos3 fragment, which we refer to as the bar circle. This bar circle was detected in subsequent generations, and was associated with the presence of both the lox transgene and the cre locus. We hypothesize that the cre gene in these bar circle plants must have undergone a genetic or epigenetic change that altered the spatial and/or temporal pattern of cre expression. Late expression might excise the DNA incompletely, and late in development. What is surprising is that the DNA is not degraded, but remains in the cells as an extra-chromosomal circular molecule.  相似文献   

18.
The aim of this research was to generate selectable marker-free transgenic tomato plants with improved tolerance to abiotic stress. An estradiol-induced site-specific DNA excision of a selectable marker gene using the Cre/loxP DNA recombination system was employed to develop transgenic tomato constitutively expressing AtIpk2β, an inositol polyphosphate 6-/3-kinase gene from Arabidopsis thaliana. Transgenic tomato plants containing a selectable marker were also produced as controls. The expression of AtIpk2β conferred improved resistance to drought, cold and oxidative stress in both sets of transgenic tomato plants. These results demonstrate the feasibility of using this Cre/loxP-based marker elimination strategy to generate marker-free transgenic crops with improved stress tolerance.  相似文献   

19.
The presence of antibiotic-resistant genes in genetically engineered crops together with the target gene has generated a number of environmental and consumer concerns. In order to alleviate public concerns over the safety of food derived from transgenic crops, marker gene elimination is desirable. Marker-free transgenic tomato plants were obtained by using a salicylic-acid-regulated Cre–loxP-mediated site-specific DNA recombination system in which the selectable marker neomycin phosphotransferase nptII and cre genes were flanked by two directly oriented loxP sites. Upon induction by salicylic acid, the cre gene produced a recombinase that eliminated sequences encoding nptII and cre genes, sandwiched by two loxP sites from the tomato genome. Regenerant plants with the Cre–loxP system were obtained by selection on kanamycin media and polymerase chain reaction (PCR) screening. Transgenic plants were screened for excision by PCR using nptII, cre, and PR-1a promoter primers following treatment with salicylic acid. The footprint of the excision was determined by sequencing the T-DNA borders after a perfect recombination event. The excision efficiency was 38.7%. A new plant transformation vector, pBLNSC (Genbank accession number EU327497), was developed, containing six cloning sites and the self-excision system. This provided an effective approach to eliminate the selectable marker gene from transgenic tomato, thus expediting public acceptance of genetically modified tomato.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号