首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
以500个茶(Camellia sinensis(L.)O.Ktze.)叶片的蛋白质作为数据集,比较TargetP、WoLF PSORT、LocTree和Plant-mPLoc 4种软件预测亚细胞定位的可信度和灵敏度。结果显示,4种软件预测可信度均高于80%,依次排序为TargetP > LocTree > WoLF PSORT > Plant-mPLoc。其中,LocTree对细胞质蛋白和分泌蛋白检测灵敏度最高,但对叶绿体蛋白灵敏度最低;Plant-mPLoc检测核蛋白最灵敏,但对细胞质蛋白最不敏感;TargetP检测叶绿体蛋白最灵敏,但仅能区分3个亚细胞器官;WoLF PSORT对分泌蛋白检测灵敏度最低,但对其他蛋白均较灵敏。基于上述结果,该研究针对4种软件提出了合理的使用建议。  相似文献   

2.
Maize protein EMB564 is a member of group 1 LEA (late embryogenesis abundant) proteins. Currently, the molecular functions of group 1 LEA proteins remain largely unclear. We here report on the functional assignment to EMB564 by computational analysis. EMB564 is predicted as nuclear localization by five different predictors including CELLO, Plant-mPLoc, WoLF PSORT, Predotar and TargetP. EMB564 is found to be remote homologous with DNA/RNA helicases and single-stranded DNA-binding proteins, and their sequences contains similar DNA/RNA binding sites. Furthermore, the three-dimensional (3D) model of EMB564 structurally resembles a variety of nuclear and DNA/RNA-binding proteins, especially those involving in the regulation of cell division, chromosomal replication and DNA unwinding or repairing. Our results reveal that EMB564 protein is most likely to function within the cell nucleus.  相似文献   

3.
Meta-prediction seeks to harness the combined strengths of multiple predicting programs with the hope of achieving predicting performance surpassing that of all existing predictors in a defined problem domain. We investigated meta-prediction for the four-compartment eukaryotic subcellular localization problem. We compiled an unbiased subcellular localization dataset of 1693 nuclear, cytoplasmic, mitochondrial and extracellular animal proteins from Swiss-Prot 50.2. Using this dataset, we assessed the predicting performance of 12 predictors from eight independent subcellular localization predicting programs: ELSPred, LOCtree, PLOC, Proteome Analyst, PSORT, PSORT II, SubLoc and WoLF PSORT. Gorodkin correlation coefficient (GCC) was one of the performance measures. Proteome Analyst is the best individual subcellular localization predictor tested in this four-compartment prediction problem, with GCC = 0.811. A reduced voting strategy eliminating six of the 12 predictors yields a meta-predictor (RAW-RAG-6) with GCC = 0.856, substantially better than all tested individual subcellular localization predictors (P = 8.2 × 10−6, Fisher's Z-transformation test). The improvement in performance persists when the meta-predictor is tested with data not used in its development. This and similar voting strategies, when properly applied, are expected to produce meta-predictors with outstanding performance in other life sciences problem domains.  相似文献   

4.
Methods for predicting bacterial protein subcellular localization   总被引:1,自引:0,他引:1  
The computational prediction of the subcellular localization of bacterial proteins is an important step in genome annotation and in the search for novel vaccine or drug targets. Since the 1991 release of PSORT I--the first comprehensive algorithm to predict bacterial protein localization--many other localization prediction tools have been developed. These methods offer significant improvements in predictive performance over PSORT I and the accuracy of some methods now rivals that of certain high-throughput laboratory methods for protein localization identification.  相似文献   

5.
Many species of Gram-negative bacteria are pathogenic bacteria that can cause disease in a host organism. This pathogenic capability is usually associated with certain components in Gram-negative cells. Therefore, developing an automated method for fast and reliable prediction of Gram-negative protein subcellular location will allow us to not only timely annotate gene products, but also screen candidates for drug discovery. However, protein subcellular location prediction is a very difficult problem, particularly when more location sites need to be involved and when unknown query proteins do not have significant homology to proteins of known subcellular locations. PSORT-B, a recently updated version of PSORT, widely used for predicting Gram-negative protein subcellular location, only covers five location sites. Also, the data set used to train PSORT-B contains many proteins with high degrees of sequence identity in a same location group and, hence, may bear a strong homology bias. To overcome these problems, a new predictor, called "Gneg-PLoc", is developed. Featured by fusing many basic classifiers each being trained with a stringent data set containing proteins with strictly less than 25% sequence identity to one another in a same location group, the new predictor can cover eight subcellular locations; that is, cytoplasm, extracellular space, fimbrium, flagellum, inner membrane, nucleoid, outer membrane, and periplasm. In comparison with PSORT-B, the new predictor not only covers more subcellular locations, but also yields remarkably higher success rates. Gneg-PLoc is available as a Web server at http://202.120.37.186/bioinf/Gneg. To support the demand of people working in the relevant areas, a downloadable file is provided at the same Web site to list the results identified by Gneg-PLoc for 49 907 Gram-negative protein entries in the Swiss-Prot database that have no subcellular location annotations or are annotated with uncertain terms. The large-scale results will be updated twice a year to cover the new entries of Gram-negative bacterial proteins and reflect the new development of Gneg-PLoc.  相似文献   

6.
Subcellular proteomics, as an important step to functional proteomics, has been a focus in proteomic research. However, the co-purification of "contaminating" proteins has been the major problem in all the subcellular proteomic research including all kinds of mitochondrial proteome research. It is often difficult to conclude whether these "contaminants" represent true endogenous partners or artificial associations induced by cell disruption or incomplete purification. To solve such a problem, we applied a high-throughput comparative proteome experimental strategy, ICAT approach performed with two-dimensional LC-MS/MS analysis, coupled with combinational usage of different bioinformatics tools, to study the proteome of rat liver mitochondria prepared with traditional centrifugation (CM) or further purified with a Nycodenz gradient (PM). A total of 169 proteins were identified and quantified convincingly in the ICAT analysis, in which 90 proteins have an ICAT ratio of PM:CM>1.0, while another 79 proteins have an ICAT ratio of PM:CM<1.0. Almost all the proteins annotated as mitochondrial according to Swiss-Prot annotation, bioinformatics prediction, and literature reports have a ratio of PM:CM>1.0, while proteins annotated as extracellular or secreted, cytoplasmic, endoplasmic reticulum, ribosomal, and so on have a ratio of PM:CM<1.0. Catalase and AP endonuclease 1, which have been known as peroxisomal and nuclear, respectively, have shown a ratio of PM:CM>1.0, confirming the reports about their mitochondrial location. Moreover, the 125 proteins with subcellular location annotation have been used as a testing dataset to evaluate the efficiency for ascertaining mitochondrial proteins by ICAT analysis and the bioinformatics tools such as PSORT, TargetP, SubLoc, MitoProt, and Predotar. The results indicated that ICAT analysis coupled with combinational usage of different bioinformatics tools could effectively ascertain mitochondrial proteins and distinguish contaminant proteins and even multilocation proteins. Using such a strategy, many novel proteins, known proteins without subcellular location annotation, and even known proteins that have been annotated as other locations have been strongly indicated for their mitochondrial location.  相似文献   

7.
Prediction of protein subcellular locations using fuzzy k-NN method   总被引:7,自引:0,他引:7  
MOTIVATION: Protein localization data are a valuable information resource helpful in elucidating protein functions. It is highly desirable to predict a protein's subcellular locations automatically from its sequence. RESULTS: In this paper, fuzzy k-nearest neighbors (k-NN) algorithm has been introduced to predict proteins' subcellular locations from their dipeptide composition. The prediction is performed with a new data set derived from version 41.0 SWISS-PROT databank, the overall predictive accuracy about 80% has been achieved in a jackknife test. The result demonstrates the applicability of this relative simple method and possible improvement of prediction accuracy for the protein subcellular locations. We also applied this method to annotate six entirely sequenced proteomes, namely Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, Oryza sativa, Arabidopsis thaliana and a subset of all human proteins. AVAILABILITY: Supplementary information and subcellular location annotations for eukaryotes are available at http://166.111.30.65/hying/fuzzy_loc.htm  相似文献   

8.
MOTIVATION: Knowing the localization of a protein within the cell helps elucidate its role in biological processes, its function and its potential as a drug target. Thus, subcellular localization prediction is an active research area. Numerous localization prediction systems are described in the literature; some focus on specific localizations or organisms, while others attempt to cover a wide range of localizations. RESULTS: We introduce SherLoc, a new comprehensive system for predicting the localization of eukaryotic proteins. It integrates several types of sequence and text-based features. While applying the widely used support vector machines (SVMs), SherLoc's main novelty lies in the way in which it selects its text sources and features, and integrates those with sequence-based features. We test SherLoc on previously used datasets, as well as on a new set devised specifically to test its predictive power, and show that SherLoc consistently improves on previous reported results. We also report the results of applying SherLoc to a large set of yet-unlocalized proteins. AVAILABILITY: SherLoc, along with Supplementary Information, is available at: http://www-bs.informatik.uni-tuebingen.de/Services/SherLoc/  相似文献   

9.
Wu ZC  Xiao X  Chou KC 《Molecular bioSystems》2011,7(12):3287-3297
Predicting protein subcellular localization is a challenging problem, particularly when query proteins may simultaneously exist at, or move between, two or more different subcellular location sites. Most of the existing methods can only be used to deal with the single-location proteins. Actually, multiple-location proteins should not be ignored because they usually bear some special functions worthy of our notice. By introducing the "multi-labeled learning" approach, a new predictor, called iLoc-Plant, has been developed that can be used to deal with the systems containing both single- and multiple-location plant proteins. As a demonstration, the jackknife cross-validation was performed with iLoc-Plant on a benchmark dataset of plant proteins classified into the following 12 location sites: (1) cell membrane, (2) cell wall, (3) chloroplast, (4) cytoplasm, (5) endoplasmic reticulum, (6) extracellular, (7) Golgi apparatus, (8) mitochondrion, (9) nucleus, (10) peroxisome, (11) plastid, and (12) vacuole, where some proteins belong to two or three locations but none has ≥ 25% pairwise sequence identity to any other in a same subset. The overall success rate thus obtained by iLoc-Plant was 71%, which is remarkably higher than those achieved by any existing predictors that also have the capacity to deal with such a stringent and complicated plant protein system. As a user-friendly web-server, iLoc-Plant is freely accessible to the public at the web-site or . Moreover, for the convenience of the vast majority of experimental scientists, a step-by-step guide is provided on how to use the web-server to get the desired results without the need to follow the complicated mathematic equations presented in this paper for its integrity. It is anticipated that iLoc-Plant may become a useful bioinformatics tool for Molecular Cell Biology, Proteomics, Systems Biology, and Drug Development.  相似文献   

10.
Revealing the subcellular location of newly discovered protein sequences can bring insight to their function and guide research at the cellular level. The rapidly increasing number of sequences entering the genome databanks has called for the development of automated analysis methods. Currently, most existing methods used to predict protein subcellular locations cover only one, or a very limited number of species. Therefore, it is necessary to develop reliable and effective computational approaches to further improve the performance of protein subcellular prediction and, at the same time, cover more species. The current study reports the development of a novel predictor called MSLoc-DT to predict the protein subcellular locations of human, animal, plant, bacteria, virus, fungi, and archaea by introducing a novel feature extraction approach termed Amino Acid Index Distribution (AAID) and then fusing gene ontology information, sequential evolutionary information, and sequence statistical information through four different modes of pseudo amino acid composition (PseAAC) with a decision template rule. Using the jackknife test, MSLoc-DT can achieve 86.5, 98.3, 90.3, 98.5, 95.9, 98.1, and 99.3% overall accuracy for human, animal, plant, bacteria, virus, fungi, and archaea, respectively, on seven stringent benchmark datasets. Compared with other predictors (e.g., Gpos-PLoc, Gneg-PLoc, Virus-PLoc, Plant-PLoc, Plant-mPLoc, ProLoc-Go, Hum-PLoc, GOASVM) on the gram-positive, gram-negative, virus, plant, eukaryotic, and human datasets, the new MSLoc-DT predictor is much more effective and robust. Although the MSLoc-DT predictor is designed to predict the single location of proteins, our method can be extended to multiple locations of proteins by introducing multilabel machine learning approaches, such as the support vector machine and deep learning, as substitutes for the K-nearest neighbor (KNN) method. As a user-friendly web server, MSLoc-DT is freely accessible at http://bioinfo.ibp.ac.cn/MSLOC_DT/index.html.  相似文献   

11.
The attainment of complete map‐based sequence for rice (Oryza sativa) is clearly a major milestone for the research community. Identifying the localization of encoded proteins is the key to understanding their functional characteristics and facilitating their purification. Our proposed method, RSLpred, is an effort in this direction for genome‐scale subcellular prediction of encoded rice proteins. First, the support vector machine (SVM)‐based modules have been developed using traditional amino acid‐, dipeptide‐ (i+1) and four parts‐amino acid composition and achieved an overall accuracy of 81.43, 80.88 and 81.10%, respectively. Secondly, a similarity search‐based module has been developed using position‐specific iterated‐basic local alignment search tool and achieved 68.35% accuracy. Another module developed using evolutionary information of a protein sequence extracted from position‐specific scoring matrix achieved an accuracy of 87.10%. In this study, a large number of modules have been developed using various encoding schemes like higher‐order dipeptide composition, N‐ and C‐terminal, splitted amino acid composition and the hybrid information. In order to benchmark RSLpred, it was tested on an independent set of rice proteins where it outperformed widely used prediction methods such as TargetP, Wolf‐PSORT, PA‐SUB, Plant‐Ploc and ESLpred. To assist the plant research community, an online web tool ‘RSLpred’ has been developed for subcellular prediction of query rice proteins, which is freely accessible at http://www.imtech.res.in/raghava/rslpred.  相似文献   

12.
MOTIVATION: There is a scarcity of efficient computational methods for predicting protein subcellular localization in eukaryotes. Currently available methods are inadequate for genome-scale predictions with several limitations. Here, we present a new prediction method, pTARGET that can predict proteins targeted to nine different subcellular locations in the eukaryotic animal species. RESULTS: The nine subcellular locations predicted by pTARGET include cytoplasm, endoplasmic reticulum, extracellular/secretory, golgi, lysosomes, mitochondria, nucleus, plasma membrane and peroxisomes. Predictions are based on the location-specific protein functional domains and the amino acid compositional differences across different subcellular locations. Overall, this method can predict 68-87% of the true positives at accuracy rates of 96-99%. Comparison of the prediction performance against PSORT showed that pTARGET prediction rates are higher by 11-60% in 6 of the 8 locations tested. Besides, the pTARGET method is robust enough for genome-scale prediction of protein subcellular localizations since, it does not rely on the presence of signal or target peptides. AVAILABILITY: A public web server based on the pTARGET method is accessible at the URL http://bioinformatics.albany.edu/~ptarget. Datasets used for developing pTARGET can be downloaded from this web server. Source code will be available on request from the corresponding author.  相似文献   

13.
14.
Predicting the subcellular localization of proteins conquers the major drawbacks of high-throughput localization experiments that are costly and time-consuming. However, current subcellular localization predictors are limited in scope and accuracy. In particular, most predictors perform well on certain locations or with certain data sets while poorly on others. Here, we present PSI, a novel high accuracy web server for plant subcellular localization prediction. PSI derives the wisdom of multiple specialized predictors via a joint-approach of group decision making strategy and machine learning methods to give an integrated best result. The overall accuracy obtained (up to 93.4%) was higher than best individual (CELLO) by ∼10.7%. The precision of each predicable subcellular location (more than 80%) far exceeds that of the individual predictors. It can also deal with multi-localization proteins. PSI is expected to be a powerful tool in protein location engineering as well as in plant sciences, while the strategy employed could be applied to other integrative problems. A user-friendly web server, PSI, has been developed for free access at http://bis.zju.edu.cn/psi/.  相似文献   

15.
Given a raw protein sequence, knowing its subcellular location is an important step toward understanding its function and designing further experiments. A novel method is proposed for the prediction of protein subcellular locations from sequences. For four categories of eukaryotic proteins the overall predictive accuracy is 82.0%, 2.6% higher than that by using SVM approach. For three subcellular locations of prokaryotic proteins, an overall accuracy of 89.9% is obtained. In accordance with the architecture of cells, a hierarchical prediction approach is designed. Based on amino acid composition extracellular proteins and intracellular proteins can be identified with accuracy of 97%.  相似文献   

16.
Neural networks have been trained to predict the subcellular location of proteins in prokaryotic or eukaryotic cells from their amino acid composition. For three possible subcellular locations in prokaryotic organisms a prediction accuracy of 81% can be achieved. Assigning a reliability index, 33% of the predictions can be made with an accuracy of 91%. For eukaryotic proteins (excluding plant sequences) an overall prediction accuracy of 66% for four locations was achieved, with 33% of the sequences being predicted with an accuracy of 82% or better. With the subcellular location restricting a protein's possible function, this method should be a useful tool for the systematic analysis of genome data and is available via a server on the world wide web.  相似文献   

17.
MOTIVATION: The subcellular location of a protein is closely correlated to its function. Thus, computational prediction of subcellular locations from the amino acid sequence information would help annotation and functional prediction of protein coding genes in complete genomes. We have developed a method based on support vector machines (SVMs). RESULTS: We considered 12 subcellular locations in eukaryotic cells: chloroplast, cytoplasm, cytoskeleton, endoplasmic reticulum, extracellular medium, Golgi apparatus, lysosome, mitochondrion, nucleus, peroxisome, plasma membrane, and vacuole. We constructed a data set of proteins with known locations from the SWISS-PROT database. A set of SVMs was trained to predict the subcellular location of a given protein based on its amino acid, amino acid pair, and gapped amino acid pair compositions. The predictors based on these different compositions were then combined using a voting scheme. Results obtained through 5-fold cross-validation tests showed an improvement in prediction accuracy over the algorithm based on the amino acid composition only. This prediction method is available via the Internet.  相似文献   

18.
He J  Gu H  Liu W 《PloS one》2012,7(6):e37155
It is well known that an important step toward understanding the functions of a protein is to determine its subcellular location. Although numerous prediction algorithms have been developed, most of them typically focused on the proteins with only one location. In recent years, researchers have begun to pay attention to the subcellular localization prediction of the proteins with multiple sites. However, almost all the existing approaches have failed to take into account the correlations among the locations caused by the proteins with multiple sites, which may be the important information for improving the prediction accuracy of the proteins with multiple sites. In this paper, a new algorithm which can effectively exploit the correlations among the locations is proposed by using gaussian process model. Besides, the algorithm also can realize optimal linear combination of various feature extraction technologies and could be robust to the imbalanced data set. Experimental results on a human protein data set show that the proposed algorithm is valid and can achieve better performance than the existing approaches.  相似文献   

19.
相似性比对预测蛋白质亚细胞区间   总被引:1,自引:0,他引:1  
王雄飞  张梁  薛卫  赵南  徐焕良 《微生物学通报》2016,43(10):2298-2305
【目的】对蛋白质所属的亚细胞区间进行预测,为进一步研究蛋白质的生物学功能提供基础。【方法】以蛋白质序列的氨基酸组成、二肽、伪氨基酸组成作为序列特征,用BLAST比对改进K最近邻分类算法(K-nearest neighbor,KNN)实现蛋白序列所属亚细胞区间预测。【结果】在Jackknife检验下,数据集CH317三种特征的成功率分别为91.5%、91.5%和89.3%,数据集ZD98成功率分别为93.9%、92.9%和89.8%。【结论】BLAST比对改进KNN算法是预测蛋白质亚细胞区间的一种有效方法。  相似文献   

20.
A set of 58 nuclearly encoded thylakoid-integral membrane proteins from four plant species was identified, and their amino termini were assigned unequivocally based upon mass spectrometry of intact proteins and peptide fragments. The dataset was used to challenge the Web tools ChloroP, TargetP, SignalP, PSORT, Predotar, and MitoProt II for predicting organelle targeting and transit peptide proteolysis sites. ChloroP and TargetP reliably predicted chloroplast targeting but only reliably predicted transit peptide cleavage sites for soluble proteins targeted to the stroma. SignalP (eukaryote settings) accurately predicted the transit peptide cleavage site for soluble proteins targeted to the lumen. SignalP (Gram-negative bacteria settings) reliably predicted peptide cleavage of integral thylakoid proteins inserted into the membrane via the "spontaneous" pathway. The processing sites of more common thylakoid-integral proteins inserted by the signal recognition peptide-dependent pathway were not well predicted by any of the programs. The results suggest the presence of a second thylakoid processing protease that recognizes the transit peptide of integral proteins inserted via the spontaneous mechanism and that this mechanism may be related to the secretory mechanism of Gram-negative bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号