首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new class of microtubule-associated proteins in plants   总被引:4,自引:0,他引:4  
In plants there are three microtubule arrays involved in cellular morphogenesis that have no equivalent in animal cells. In animals, microtubules are decorated by another class of proteins - the structural MAPS - which serve to stabilize microtubules and assist in their organization. The best-studied members of this class in plants are the MAP-65 proteins that can be purified together with plant microtubules after several cycles of polymerization and depolymerization. Here we identify three similar MAP-65 complementary DNAs representing a small gene family named NtMAP65-1, which encode a new set of proteins, collectively called NtMAP65-1. We show that NtMAP65-1 protein localizes to areas of overlapping microtubules, indicating that it may function in the behaviour of antiparallel microtubules in the mitotic spindle and the cytokinetic phragmoplast.  相似文献   

2.
Mao T  Jin L  Li H  Liu B  Yuan M 《Plant physiology》2005,138(2):654-662
The organization and dynamics of microtubules are regulated by microtubule-associated proteins, or MAPs. In Arabidopsis (Arabidopsis thaliana), nine genes encode proteins of the evolutionarily conserved MAP65 family. We proposed that different MAP65s might have distinct roles in the interaction with microtubules. In this study, two AtMAP65 proteins, AtMAP65-1 and AtMAP65-6, were chosen to test this hypothesis in vitro. Although both fusion proteins were able to cosediment with microtubules in vitro, different properties on tubulin polymerization and microtubule bundling were observed. AtMAP65-1 was able to promote tubulin polymerization, enhance microtubule nucleation, and decrease the critical concentration for tubulin polymerization. It also induced the formation of large microtubule bundles by forming cross-bridges between microtubules evenly along the whole length of microtubules. In the presence of AtMAP65-1, microtubule bundles were more resistant to cold and dilution treatments. AtMAP65-6, however, demonstrated no activity in promoting tubulin polymerization and stabilizing preformed microtubules. AtMAP65-6 induced microtubules to form a mesh-like network with individual microtubules. Cross-bridge-like interactions were only found at regional sites between microtubules. The microtubule network induced by AtMAP65-6 was more resistant to high concentration of NaCl than the bundles induced by AtMAP65-1. Purified monospecific anti-AtMAP65-6 antibodies revealed that AtMAP65-6 was associated with mitochondria in Arabidopsis cells. It was concluded that these two MAP65 proteins were targeted to distinct sites, thus performing distinct functions in Arabidopsis cells.  相似文献   

3.
Meng Q  Du J  Li J  Lü X  Zeng X  Yuan M  Mao T 《Plant molecular biology》2010,74(6):537-547
Three genes that encode MAP65-1 family proteins have been identified in the Nicotiana tabacum genome. In this study, NtMAP65-1c fusion protein was shown to bind and bundle microtubules (MTs). Further in vitro investigations demonstrated that NtMAP65-1c not only alters MT assembly and nucleation, but also exhibits high MT stabilizing activity against cold or katanin-induced destabilization. Analysis of NtMAP65-1c-GFP expressing BY-2 cells clearly demonstrated that NtMAP65-1c was able to bind to MTs during specific stages of the cell cycle. Furthermore, in vivo, NtMAP65-1c-GFP-bound cortical MTs displayed an increase in resistance against the MT-disrupting drug, propyzamide, as well as against cold temperatures. Taken together, these results strongly suggest that NtMAP65-1c stabilizes MTs and is involved in the regulation of MT organization and cellular dynamics.  相似文献   

4.
The 65-kD microtubule-associated protein (MAP65) family is a family of plant microtubule-bundling proteins. Functional analysis is complicated by the heterogeneity within this family: there are nine MAP65 genes in Arabidopsis thaliana, AtMAP65-1 to AtMAP65-9. To begin the functional dissection of the Arabidopsis MAP65 proteins, we have concentrated on a single isoform, AtMAP65-1, and examined its effect on the dynamics of mammalian microtubules. We show that recombinant AtMAP65-1 does not promote polymerization and does not stabilize microtubules against cold-induced microtubule depolymerization. However, we show that it does induce microtubule bundling in vitro and that this protein forms 25-nm cross-bridges between microtubules. We further demonstrate that the microtubule binding region resides in the C-terminal half of the protein and that Ala409 and Ala420 are essential for the interaction with microtubules. Ala420 is a conserved amino acid in the AtMAP65 family and is mutated to Val in the cytokinesis-defective mutant pleiade-4 of the AtMAP65-3/PLEIADE gene. We show that AtMAP65-1 can form dimers and that a region in the N terminus is responsible for this activity. Neither the microtubule binding region nor the dimerization region alone could induce microtubule bundling, strongly suggesting that dimerization is necessary to produce the microtubule cross-bridges. In vivo, AtMAP65-1 is ubiquitously expressed both during the cell cycle and in all plant organs and tissues with the exception of anthers and petals. Moreover, using an antiserum raised to AtMAP65-1, we show that AtMAP65-1 binds microtubules at specific stages of the cell cycle.  相似文献   

5.
In Arabidopsis thaliana, the microtubule-associated protein AtMAP65-1 shows various functions on microtubule dynamics and organizations. However, it is still an open question about whether AtMAP65-1 binds to tubulin dimers and how it regulates microtubule dynamics. In present study, the tubulin-binding activity of AtMAP65-1 was investigated. Pull-down and co-sedimentation experiments demonstrated that AtMAP65-1 bound to tubulin dimers, at a molar ratio of 1 : 1. Cross-linking experiments showed that AtMAP65-1 bound to tubulin dimers by interacting with alpha-tubulin of the tubulin heterodimer. Interfering the bundling effect of AtMAP65-1 by addition of salt and monitoring the tubulin assembly, the experiment results indicated that AtMAP65-1 promoted tubulin assembly by interacting with tubulin dimers. In addition, five truncated versions of AtMAP65-1, namely AtMAP65-1 deltaN339 (amino acids 340-587); AtMAP65-1 deltaN494 (amino acids 495-587); AtMAP65-1 340-494 (amino acids 340-494); AtMAP65-1 deltaC495 (amino acids 1-494) and AtMAP65-1 deltaC340 (amino acids 1-339), were tested for their binding activities and roles in tubulin polymerization in vitro. Four (AtMAP65-1 deltaN339, deltaN494, AtMAP65-1 340-494 and deltaC495) from the five truncated proteins were able to co-sediment with microtubules, and three (AtMAP65-1 deltaN339, deltaN494 and AtMAP65-1 340-494) of them could bind to tubulin dimers in vitro. Among the three truncated proteins, AtMAP65-1 deltaN339 showed the greatest activity to promote tubulin polymerization, AtMAP65-1 deltaN494 exhibited almost the same activity as the full length protein in promoting tubulin assembly, and AtMAP65-1 340-494 had minor activity to promote tubulin assembly. On the contrast, AtMAP65-1 deltaC495, which bound to microtubules but not to tubulin dimers, did not affect tubulin assembly. Our study suggested that AtMAP65-1 might promote tubulin assembly by binding to tubulin dimers in vivo.  相似文献   

6.
In higher plant cells, thus far only a few molecules have been inferred to be involved in microtubule organizing centers (MTOCs). Examination of a 49 kDa tobacco protein, homologous to a 51 kDa protein involved in sea urchin MTOCs, showed that it also accumulated at the putative MTOC sites in tobacco BY-2 cells. In this report, we show that the 49 kDa protein is likely to play a significant role in microtubule organization in vitro. We have established a system prepared from BY-2 cells, capable of organizing microtubules in vitro. The fraction, which was partially purified from homogenized miniprotoplasts (evacuolated protoplasts) by salt extraction and subsequent ion exchange chromatography, contained many particles of diameters about 1 micron after desalting by dialysis. When this fraction was incubated with purified porcine brain tubulin, microtubules were elongated radially from the particles and organized into structures similar to the asters observed in animal cells, and therefore also termed "asters" here. Since we could hardly detect BY-2 tubulin molecules in this fraction, the microtubules in "asters" seemed to be solely composed of the added porcine tubulin. Tubulin molecules were newly polymerized at the ends of the microtubules distal to the particles, and the elongation rate of microtubules was more similar to the reported rate of the plus-ends than that of the minus-ends in vitro. By fluorescence microscopy, the 49 kDa protein was shown to be located at the particles. Thus, its location at the centers of the "asters" suggests that the protein plays a role in microtubule organization in vitro.  相似文献   

7.
Taxol binds to polymerized tubulin in vitro   总被引:20,自引:8,他引:12       下载免费PDF全文
Taxol, a natural plant product that enhances the rate and extent of microtubule assembly in vitro and stabilizes microtubules in vitro and in cells, was labeled with tritium by catalytic exchange with (3)H(2)O. The binding of [(3)H]taxol to microtubule protein was studied by a sedimentation assay. Microtubules assembled in the presence of [(3)H]taxol bind drug specifically with an apparent binding constant, K(app), of 8.7 x 19(-7) M and binding saturates with a calculated maximal binding ration, B(max), of 0.6 mol taxol bound/mol tubulin dimer. [(3)H]Taxol also binds and assembles phosphocellulose-purified tubulin, and we suggest that taxol stabilizes interactions between dimers that lead to microtubule polymer formation. With both microtubule protein and phosphocellulose- purified tubulin, binding saturation occurs at approximate stoichiometry with the tubulin dimmer concentration. Under assembly conditions, podophyllotoxin and vinblastine inhibit the binding of [(3)H]taxol to microtubule protein in a complex manner which we believe reflects a competition between these drugs, not for a single binding site, but for different forms (dimer and polymer) of tubulin. Steady-state microtubules assembled with GTP or with 5’-guanylyl-α,β-methylene diphosphonate (GPCPP), a GTP analog reported to inhibit microtubule treadmilling (I.V. Sandoval and K. Weber. 1980. J. Biol. Chem. 255:6966-6974), bind [(3)H]taxol with approximately the same stoichiometry as microtubules assembled in the presence of [(3)H]taxol. Such data indicate that a taxol binding site exists on the intact microtubule. Unlabeled taxol competitively displaces [(3)H]taxol from microtubules, while podophyllotoxin, vinblastine, and CaCl(2) do not. Podophyllotoxin and vinblastine, however, reduce the mass of sedimented taxol-stabilized microtubules, but the specific activity of bound [(3)H]taxol in the pellet remains constant. We conclude that taxol binds specifically and reversibly to a polymerized form of tubulin with a stoichiometry approaching unity.  相似文献   

8.
Microtubule protein isolated from nucleated chicken erythrocytes was examined with respect to composition and assembly properties to determine its significance in a microtubule bundle called the marginal band. 1) The protein contains greater than 95% tubulin with small amounts of tau polypeptides and no high molecular weight polypeptides. 2) Microtubule assembly in vitro at 37 degrees C is characterized by low levels of nucleation, despite an abundance of ring oligomers at 5 degrees C, as indicated by long lag times, slow assembly rates, and microtubules that are twice as long as brain microtubules assembled under the same conditions. 3) By radioimmunoassay and sodium dodecyl sulfate gel analysis we determined that 0.6% of erythrocyte protein is tubulin of which three-quarters is in a nonextractable form and is associated with the microtubule bundle and the cell cortex. From these values the in vivo concentrations of total tubulin and tubulin dimer subunits are 2.4 and 0.7 mg/ml, respectively. The value of 0.7 mg/ml is close to the range of values of 0.1-0.6 mg/ml for the critical concentration of erythrocyte microtubule protein in vitro, suggesting that the assembly properties of tubulin in vitro and in vivo are similar.  相似文献   

9.
Tau protein function in living cells   总被引:20,自引:14,他引:6       下载免费PDF全文
《The Journal of cell biology》1986,103(6):2739-2746
Tau protein from mammalian brain promotes microtubule polymerization in vitro and is induced during nerve cell differentiation. However, the effects of tau or any other microtubule-associated protein on tubulin assembly within cells are presently unknown. We have tested tau protein activity in vivo by microinjection into a cell type that has no endogenous tau protein. Immunofluorescence shows that tau protein microinjected into fibroblast cells associates specifically with microtubules. The injected tau protein increases tubulin polymerization and stabilizes microtubules against depolymerization. This increased polymerization does not, however, cause major changes in cell morphology or microtubule arrangement. Thus, tau protein acts in vivo primarily to induce tubulin assembly and stabilize microtubules, activities that may be necessary, but not sufficient, for neuronal morphogenesis.  相似文献   

10.
The involvement of high molecular weight microtubule-associated proteins (HMW-MAPs) in the process of taxol-induced microtubule bundling has been studied using immunofluorescence and electron microscopy. Immunofluorescence microscopy shows that HMW-MAPs are released from microtubules in granulosa cells which have been extracted in a Triton X-100 microtubule-stabilizing buffer (T-MTSB), unless the cells are pretreated with taxol. 1.0 microM taxol treatment for 48 h results in microtubule bundle formation and the retention of HMW-MAPs in these cells upon extraction with T-MTSB. Electron microscopy demonstrates that microtubules in control cytoskeletons are devoid of surface structures whereas the microtubules in taxol-treated cytoskeletons are decorated by globular particles of a mean diameter of 19.5 nm. The assembly of 3 X cycled whole microtubule protein (tubulin plus associated proteins) in vitro in the presence of 1.0 microM taxol, results in the formation of closely packed microtubules decorated with irregularly spaced globular particles, similar in size to those observed in cytoskeletons of taxol-treated granulosa cells. Microtubules assembled in vitro in the absence of taxol display prominent filamentous extensions from the microtubule surface and center-to-center spacings greater than that observed for microtubules assembled in the presence of taxol. Brain microtubule protein was purified into 6 s and HMW-MAP-enriched fractions, and the effects of taxol on the assembly and morphology of these fractions, separately or in combination, were examined. Microtubules assembled from 6 s tubulin alone or 6 s tubulin plus taxol (without HMW-MAPs) were short, free structures whereas those formed in the presence of taxol from 6 s tubulin and a HMW-MAP-enriched fraction were extensively crosslinked into aggregates. These data suggest that taxol induces microtubule bundling by stabilizing the association of HMW-MAPs with the microtubule surface which promotes lateral aggregation.  相似文献   

11.
H W Detrich  L Wilson 《Biochemistry》1983,22(10):2453-2462
Tubulin was purified from unfertilized eggs of the sea urchin Strongylocentrotus purpuratus by chromatography of an egg supernatant fraction on DEAE-Sephacel or DEAE-cellulose followed by cycles of temperature-dependent microtubule assembly and disassembly in vitro. After two assembly cycles, the microtubule protein consisted of the alpha- and beta-tubulins (greater than 98% of the protein) and trace quantities of seven proteins with molecular weights less than 55 000; no associated proteins with molecular weights greater than tubulin were observed. When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis on urea-polyacrylamide gradient gels, the alpha- and beta-tubulins did not precisely comigrate with their counterparts from bovine brain. Two-dimensional electrophoresis revealed that urchin egg tubulin contained two major alpha-tubulins and a single major beta species. No oligomeric structures were observed in tubulin preparations maintained at 0 degrees C. Purified egg tubulin assembled efficiently into microtubules when warmed to 37 degrees C in a glycerol-free polymerization buffer containing guanosine 5'-triphosphate. The critical concentration for assembly of once- or twice-cycled egg tubulin was 0.12-0.15 mg/mL. Morphologically normal microtubules were observed by electron microscopy, and these microtubules were depolymerized by exposure to low temperature or to podophyllotoxin. Chromatography of a twice-cycled egg tubulin preparation on phosphocellulose did not alter its protein composition and did not affect its subsequent assembly into microtubules. At concentrations above 0.5-0.6 mg/mL, a concentration-dependent "overshoot" in turbidity was observed during the assembly reaction. These results suggest that egg tubulin assembles into microtubules in the absence of the ring-shaped oligomers and microtubule-associated proteins that characterize microtubule protein from vertebrate brain.  相似文献   

12.
Tau is a family of closely related proteins (55,000-62,000 mol wt) which are contained in the nerve cells and copolymerize with tubulin to induce the formation of microtubules in vitro. All information so far has indicated that tau is closely apposed to the microtubule lattice, and there was no indication of domains projecting from the microtubule polymer lattice. We have studied the molecular structure of the tau factor and its mode of binding on microtubules using the quick-freeze, deep-etch method (QF.DE) and low angle rotary shadowing technique. Phosphocellulose column-purified tubulin from porcine brain was polymerized with tau and the centrifuged pellets were processed by QF.DE. We observed periodic armlike elements (18.7 +/- 4.8 nm long) projecting from the microtubule surface. Most of the projections appeared to cross-link adjacent microtubules. We measured the longitudinal periodicity of tau projections on the microtubules and found it to match the 6-dimer pattern better than the 12-dimer pattern. The stoichiometry of tau versus tubulin in preparations of tau saturated microtubules was 1:approximately 5.0 (molar ratio). Tau molecules adsorbed on mica took on rodlike forms (56.1 +/- 14.1 nm long). Although both tau and MAP1 are contained in axons, competitive binding studies demonstrated that the binding sites of tau and MAP1A on the microtubule surfaces are most distinct, although they may partially overlap.  相似文献   

13.
Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone), a naphthoquinone isolated from the roots of Plumbaginaceae plants, has potential antiproliferative activity against several tumor types. We have examined the effects of plumbagin on cellular microtubules ex vivo as well as its binding with purified tubulin and microtubules in vitro. Cell viability experiments using human non-small lung epithelium carcinoma cells (A549) indicated that the IC 50 value for plumbagin is 14.6 microM. Immunofluorescence studies using an antitubulin FITC conjugated antibody showed a significant perturbation of the interphase microtubule network in a dose dependent manner. In vitro polymerization of purified tubulin into microtubules is inhibited by plumbagin with an IC 50 value of 38 +/- 0.5 microM. Its binding to tubulin quenches protein tryptophan fluorescence in a time and concentration dependent manner. Binding of plumbagin to tubulin is slow, taking 60 min for equilibration at 25 degrees C. The association reaction kinetics is biphasic in nature, and the association rate constants for fast and slow phases are 235.12 +/- 36 M (-1) s (-1) and 11.63 +/- 11 M (-1) s (-1) at 25 degrees C respectively. The stoichiometry of plumbagin binding to tubulin is 1:1 (mole:mole) with a dissociation constant of 0.936 +/- 0.71 microM at 25 degrees C. Plumbagin competes for the colchicine binding site with a K i of 7.5 microM as determined from a modified Dixon plot. Based on these data we conclude that plumbagin recognizes the colchicine binding site to tubulin. Further study is necessary to locate the pharmacophoric point of attachment of the inhibitor to the colchicine binding site of tubulin.  相似文献   

14.
In acentriolar higher plant cells, the surface of the nucleus acts as a microtubule-organizing center, substituting for the centrosome. However, the protein factors responsible for this microtubule organization are unknown. The nuclear surfaces of cultured tobacco BY-2 cells possess particles that generate microtubules. We attempted to isolate the proteins in these particles to determine their role in microtubule organization. When incubated with plant or mammalian tubulin, some, but not all, of the isolated nuclei generated abundant microtubules radially from their surfaces. The substance to induce the formation of radial microtubules was confirmed by SDS-PAGE to be a protein with apparent molecular mass of 38 kDa. Partial analysis of the amino acid sequences of the peptide fragments suggested it was a histone H1-related protein. Cloning and cDNA sequence analysis confirmed this and revealed that when the recombinant protein was incubated with tubulin, it could organize microtubules as well as the 38-kDa protein. Histone H1 and tubulin formed complexes immediately, even on ice, and then clusters of these structures were formed. These clusters generated radial microtubules. This microtubule-organizing property was confined to histone H1; all other core histones failed to act as organizers. On immunoblot analysis, rabbit antibodies raised against the 38-kDa protein cross-reacted with histone H1 proteins from tobacco BY-2 cells. These antibodies virtually abolished the ability of the nucleus to organize radial microtubules. Indirect immunofluorescence showed that the antigen was distributed at the nuclear plasm and particularly at nuclear periphery independently from DNA.  相似文献   

15.
Viruses exploit a variety of cellular components to complete their life cycles, and it has become increasingly clear that use of host cell microtubules is a vital part of the infection process for many viruses. A variety of viral proteins have been identified that interact with microtubules, either directly or via a microtubule-associated motor protein. Here, we report that Ebola virus associates with microtubules via the matrix protein VP40. When transfected into mammalian cells, a fraction of VP40 colocalized with microtubule bundles and VP40 coimmunoprecipitated with tubulin. The degree of colocalization and microtubule bundling in cells was markedly intensified by truncation of the C terminus to a length of 317 amino acids. Further truncation to 308 or fewer amino acids abolished the association with microtubules. Both the full-length and the 317-amino-acid truncation mutant stabilized microtubules against depolymerization with nocodazole. Direct physical interaction between purified VP40 and tubulin proteins was demonstrated in vitro. A region of moderate homology to the tubulin binding motif of the microtubule-associated protein MAP2 was identified in VP40. Deleting this region resulted in loss of microtubule stabilization against drug-induced depolymerization. The presence of VP40-associated microtubules in cells continuously treated with nocodazole suggested that VP40 promotes tubulin polymerization. Using an in vitro polymerization assay, we demonstrated that VP40 directly enhances tubulin polymerization without any cellular mediators. These results suggest that microtubules may play an important role in the Ebola virus life cycle and potentially provide a novel target for therapeutic intervention against this highly pathogenic virus.  相似文献   

16.
A factor (33K protein) that modulates tubulin polymerization in vitro has been purified to homogeneity from porcine brain by ammonium sulfate fractionation and Whatman DE52, Toyo-pearl HW65C and Bio-Gel A 0.5 m column chromatographies. The purified fraction was free of nucleic acids and sugars. The activity of the purified 33K protein is pronase E sensitive but apparently heat- and trypsin-resistant though it undergoes tryptic digestion. The 33K protein inhibits polymerization of brain microtubule proteins in a dose-dependent manner and partially depolymerizes preformed microtubules. It also inhibits polymerization of purified starfish tubulin and microtubule elongation involving fragellar outer doublet microtubules and purified porcine brain tubulin. This suggests that the target of the 33K protein is tubulin rather than microtubule-associated proteins. The 33K protein causes incomplete depolymerization of microtubules and a new steady state is quickly attained which is apparently independent of microtubule mass concentration. Divalent cations such as calcium and magnesium do not modulate the inhibitory activity of the 33K protein.  相似文献   

17.
A protein of 15 kDa (p15) was isolated from Trypanosoma brucei subpellicular microtubules by tubulin affinity chromatography. The protein bound tubulin specifically both in its native form and after SDS-PAGE in tubulin overlay experiments. p15 promoted both the in vitro polymerization of purified calf brain tubulin and the bundling of preformed mammalian microtubules. Immunolabeling identified p15 at multiple sites along microtubule polymers comprising calf brain tubulin and p15 as well as on the subpellicular microtubules of cryosectioned trypanosomes. Antibodies directed against p15 did not cross react with mammalian microtubules. It is suggested that p15 is a trypanosome-specific microtubule-associated protein (MAP) that contributes to the unique organization of the subpellicular microtubules.  相似文献   

18.
Microtubule plus-end proteins CLIP-170 and EB1 dynamically track the tips of growing microtubules in vivo. Here we examine the association of these proteins with microtubules in vitro. CLIP-170 binds tubulin dimers and co-assembles into growing microtubules. EB1 binds tubulin dimers more weakly, so no co-assembly is observed. However, EB1 binds to CLIP-170, and forms a co-complex with CLIP-170 and tubulin that is recruited to growing microtubule plus ends. The interaction between CLIP-170 and EB1 is competitively inhibited by the related CAP-Gly protein p150Glued, which also localizes to microtubule plus ends in vivo. Based on these observations, we propose a model in which the formation of distinct plus-end complexes may differentially affect microtubule dynamics in vivo.  相似文献   

19.
We have isolated a protein factor from Xenopus eggs that promotes microtubule assembly in vitro. Assembly promotion was associated with a 215-kD protein after a 1,000-3,000-fold enrichment of activity. The 215-kD protein, termed Xenopus microtubule assembly protein (XMAP), binds to microtubules with a stoichiometry of 0.06 mol/mol tubulin dimer. XMAP is immunologically distinct from the Xenopus homologues to mammalian brain microtubule-associated proteins; however, protein species immunologically related to XMAP with different molecular masses are found in Xenopus neuronal tissues and testis. XMAP is unusual in that it specifically promotes microtubule assembly at the plus-end. At a molar ratio of 0.01 mol XMAP/mol tubulin the assembly rate of the microtubule plus-end is accelerated 8-fold while the assembly rate of the minus-end is increased only 1.8-fold. Under these conditions XMAP promotes a 10-fold increase in the on-rate constant (from 1.4 s-1.microM-1 for microtubules assembled from pure tubulin to 15 s-1.microM-1), and a 10-fold decrease in off-rate constant (from 340 to 34 s-1). Given its stoichiometry in vivo, XMAP must be the major microtubule assembly factor in the Xenopus egg. XMAP is phosphorylated during M-phase of both meiotic and mitotic cycles, suggesting that its activity may be regulated during the cell cycle.  相似文献   

20.
Sodium-orthovanadate (100-700 microM) added to purified pig brain microtubule protein (molar ratios 13-90 moles vanadate/mole tubulin) inhibits to a considerable extent the assembly (up to 65%) and the disassembly rates (up to 60%) of microtubules, as determined by turbidimetry. Vanadate added to preformed microtubules did not appreciably alter the turbidity level of the samples, however, the disassembly rates were decreased in the same manner as when vanadate was added prior to polymerization. Microtubule protein kept on ice for 3-6 hours became more susceptible to vanadate than freshly prepared protein. The effect of vanadate was independent of the GTP concentration at which the polymerization assays were performed (0.025 to 1 mM GTP). In the presence of taxol, which increases the rate and extent of microtubule formation, vanadate had no effect on assembly rates. Disassembly was inhibited, however, much less than in the presence of vanadate alone. Electron microscopy and polyacrylamide gel electrophoresis did not reveal differences between microtubules prepared in the presence or in the absence of vanadate. This is consistent with the notion that vanadate does not interfere with the interaction between tubulin and the high-molecular weight microtubule-associated proteins. Apparently vanadate brings about an allosteric change of the microtubule protein(s) resulting in the abnormal polymerization kinetics of tubulin found in our study. The above results may be relevant for studies where the effects of vanadate on intracellular motility are interpreted as being solely due to a specific inhibition of ATPases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号