首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
B Roux  M Nina  R Pomès    J C Smith 《Biophysical journal》1996,71(2):670-681
The proton transfer activity of the light-driven proton pump, bacteriorhodopsin (bR) in the photochemical cycle might imply internal water molecules. The free energy of inserting water molecules in specific sites along the bR transmembrane channel has been calculated using molecular dynamics simulations based on a microscopic model. The existence of internal hydration is related to the free energy change on transfer of a water molecule from bulk solvent into a specific binding site. Thermodynamic integration and perturbation methods were used to calculate free energies of hydration for each hydrated model from molecular dynamics simulations of the creation of water molecules into specific protein-binding sites. A rigorous statistical mechanical formulation allowing the calculation of the free energy of transfer of water molecules from the bulk to a protein cavity is used to estimate the probabilities of occupancy in the putative bR proton channel. The channel contains a region lined primarily by nonpolar side-chains. Nevertheless, the results indicate that the transfer of four water molecules from bulk water to this apparently hydrophobic region is thermodynamically permitted. The column forms a continuous hydrogen-bonded chain over 12 A between a proton donor, Asp 96, and the retinal Schiff base acceptor. The presence of two water molecules in direct hydrogen-bonding association with the Schiff base is found to be strongly favorable thermodynamically. The implications of these results for the mechanism of proton transfer in bR are discussed.  相似文献   

2.
Zoete V  Meuwly M  Karplus M 《Proteins》2005,61(1):79-93
A calculation of the binding free energy for the dimerization of insulin has been performed using the molecular mechanics-generalized Born surface area approach. The calculated absolute binding free energy is -11.9 kcal/mol, in approximate agreement with the experimental value of -7.2 kcal/mol. The results show that the dimerization is mainly due to nonpolar interactions. The role of the hydrogen bonds between the 2 monomers appears to give the direction of the interactions. A per-atom decomposition of the binding free energy has been performed to identify the residues contributing most to the self association free energy. Residues B24-B26 are found to make the largest favorable contributions to the dimerization. Other residues situated at the interface between the 2 monomers were found to make favorable but smaller contributions to the dimerization: Tyr B16, Val B12, and Pro B28, and to an even lesser extent, Gly B23. The energy decomposition on a per-residue basis is in agreement with experimental alanine scanning data. The results obtained from a single trajectory (i.e., the dimer trajectory is also used for the monomer analysis) and 2 trajectories (i.e., separate trajectories are used for the monomer and dimer) are similar.  相似文献   

3.
Soulages JL  Arrese EL 《Biochemistry》2000,39(34):10574-10580
The structure of the exchangeable apolipoprotein, apolipophorin-III from Locusta migratoria, apoLp-III, is described as a bundle of five amphipathic alpha-helices. To study the interaction of each of the helices of apoLp-III with a lipid surface, we designed five single-Trp mutants, each containing a Trp residue in a different alpha-helix. The Trp residues were located in the nonpolar domains of the amphipathic alpha-helices. The kinetics of the spontaneous interaction of the mutants with dimyristoylphosphatidylcholine (DMPC) indicated that all mutants behaved as typical exchangeable apolipoproteins. Circular dichroism in the far-UV indicated that all proteins have a high and similar helical content in the lipid-bound state. The interaction of the Trp residues with the lipid surface was investigated in recombinant lipoprotein particles made with DMPC. The properties of the Trp residues were investigated by fluorescence spectroscopy. These studies showed major changes in the spectroscopic properties of the Trp residues upon binding to lipid. These changes are observed with all single-Trp mutants, indicating that a major conformational change, which affects the properties of all helices, takes place upon binding to lipid. The position of the fluorescence maximum, the quenching efficiency of acrylamide as determined by steady-state and time-resolved fluorescence, and the fluorescence lifetimes of the single-Trp mutants suggest that helices 1, 4, and 5 interact with the nonpolar domains of the lipid. The properties of the Trp in helices 2 and 3 suggest that these helices adopt a different binding configuration than helices 1, 4, and 5. Helices 2 and 3 appear to be interacting with the polar headgroups of the phospholipids or constitute a different domain that does not interact with the lipid surface.  相似文献   

4.
Gorfe AA  Jelesarov I 《Biochemistry》2003,42(40):11568-11576
The N-terminal domain of the bacterial integrase Tn916 specifically recognizes the 11 bp DNA target site by positioning the face of a three-stranded beta-sheet into the major groove. Binding is linked to structural adaptation. We have characterized INT-DBD binding to DNA in detail by calorimetry [Milev, S., Gorfe, A., Karshikoff, A., Clubb, R. T., Bosshard, H. R., and Jelesarov, I. (2003) Biochemistry 42, 3481-3491]. Our thermodynamic analysis has indicated that the major driving force of association is the hydrophobic effect while polar interactions contribute less. To gain more comprehensive information about the binding process, we performed a computational analysis of the binding free energy and report here the results. A hybrid molecular mechanics/continuum approach was followed. The total binding free energy is predicted with reasonable accuracy. The calculations confirm that nonpolar effects stabilize the protein-DNA complex while electrostatics opposes binding. Structural changes optimizing surface complementarity are costly in terms of energy. The energetic consequences from the replacement of nine DNA-contacting residues by alanine were investigated. The calculations correctly predict the binding affinity decrease of eight mutations and the destabilizing effect of one wild-type residue. Bulky side chains stabilize the wild-type complex through packing interactions and favorable nonpolar dehydration, but the net nonpolar energy changes do not correlate with the relative affinity loss upon mutation. Discrete protein-DNA electrostatic interactions may be net stabilizing or net destabilizing depending on the local environment. In contrast to nonpolar energy changes, the magnitude of the electrostatic free energy ranks the mutations according to the experimentally measured DeltaDeltaG. Free energy decomposition analysis from a structural perspective leads to detailed information about the thermodynamic strategy used by INT-DBD for sequence-specific DNA binding.  相似文献   

5.
Membrane proteins, of which the majority seem to contain one or more alpha-helix, constitute approx. 30% of most genomes. A complete understanding of the nature of helix/bilayer interactions is necessary for an understanding of the structural principles underlying membrane proteins. This review describes computer simulation studies of helix/bilayer interactions. Key experimental studies of the interactions of alpha-helices and lipid bilayers are briefly reviewed. Surface associated helices are found in some membrane-bound enzymes (e.g. prostaglandin synthase), and as stages in the mechanisms of antimicrobial peptides and of pore-forming bacterial toxins. Transmembrane alpha-helices are found in most integral membrane proteins, and also in channels formed by amphipathic peptides or by bacterial toxins. Mean field simulations, in which the lipid bilayer is approximated as a hydrophobic continuum, have been used in studies of membrane-active peptides (e.g. alamethicin, melittin, magainin and dermaseptin) and of simple membrane proteins (e.g. phage Pf1 coat protein). All atom molecular dynamics simulations of fully solvated bilayers with transmembrane helices have been applied to: the constituent helices of bacteriorhodopsin; peptide-16 (a simple model TM helix); and a number of pore-lining helices from ion channels. Surface associated helices (e.g. melittin and dermaseptin) have been simulated, as have alpha-helical bundles such as bacteriorhodopsin and alamethicin. From comparison of the results from the two classes of simulation, it emerges that a major theoretical challenge is to exploit the results of all atom simulations in order to improve the mean field approach.  相似文献   

6.
Aquaporins are integral membrane proteins found in diverse animal and plant tissues that mediate the permeability of plasma membranes to water molecules. Projection maps of two-dimensional crystals of aquaporin-1 (AQP1) reconstituted in lipid membranes suggested the presence of six to eight transmembrane helices in the protein. However, data from other sequence and spectroscopic analyses indicate that this protein may adopt a porin-like beta-barrel fold. In this paper, we use Fourier transform infrared spectroscopy to characterize the secondary structure of highly purified native and proteolyzed AQP1 reconstituted in membrane crystalline arrays and compare it to bacteriorhodopsin. For this analysis the fractional secondary structure contents have been determined by using several different algorithms. In addition, a neural network-based evaluation of the Fourier transform infrared spectra in terms of numbers of secondary structure segments and their interconnections [sij] has been performed. The following conclusions were reached: 1) AQP1 is a highly helical protein (42-48% alpha-helix) with little or no beta-sheet content. 2) The alpha-helices have a transmembrane orientation, but are more tilted (21 degrees or 27 degrees, depending on the considered refractive index) than the bacteriorhodopsin helices. 3) The helices in AQP1 undergo limited hydrogen/deuterium exchange and thus are not readily accessible to solvent. Our data support the AQP1 structural model derived from sequence prediction and epitope insertion experiments: AQP1 is a protein with at least six closely associated alpha-helices that span the lipid membrane.  相似文献   

7.
We develop a simple but rigorous model of protein-protein association kinetics based on diffusional association on free energy landscapes obtained by sampling configurations within and surrounding the native complex binding funnels. Guided by results obtained on exactly solvable model problems, we transform the problem of diffusion in a potential into free diffusion in the presence of an absorbing zone spanning the entrance to the binding funnel. The free diffusion problem is solved using a recently derived analytic expression for the rate of association of asymmetrically oriented molecules. Despite the required high steric specificity and the absence of long-range attractive interactions, the computed rates are typically on the order of 10(4)-10(6) M(-1) sec(-1), several orders of magnitude higher than rates obtained using a purely probabilistic model in which the association rate for free diffusion of uniformly reactive molecules is multiplied by the probability of a correct alignment of the two partners in a random collision. As the association rates of many protein-protein complexes are also in the 10(5)-10(6) M(-1) sec(-1) range, our results suggest that free energy barriers arising from desolvation and/or side-chain freezing during complex formation or increased ruggedness within the binding funnel, which are completely neglected in our simple diffusional model, do not contribute significantly to the dynamics of protein-protein association. The transparent physical interpretation of our approach that computes association rates directly from the size and geometry of protein-protein binding funnels makes it a useful complement to Brownian dynamics simulations.  相似文献   

8.
Proteins are folded to avoid exposure of the nonpolar groups to water because water‐mediated interactions between nonpolar groups are a promising factor in the thermodynamic stabilities of proteins—which is a well‐accepted view as one of the unique effects of hydrophobic interactions. This article poses a critical question for this classical view by conducting an accurate solvation free‐energy calculation for a thermodynamic cycle of a protein folding using a liquid‐state density functional theory. Here, the solvation‐free energy for a leucine zipper formation was examined in the coiled‐coil protein GCN4‐p1, a typical model for hydrophobic interactions, which demonstrated that water‐mediated interactions were unfavorable for the association of nonpolar groups in the native state, while the dispersion forces between them were, instead, responsible for the association. Furthermore, the present analysis well predicted the isolated helical state stabilized by pressure, which was previously observed in an experiment. We reviewed the problems in the classical concept and semiempirical presumption that the energetic cost of the hydration of nonpolar groups is a driving force of folding.  相似文献   

9.
The role of water molecules on the protein-ligand interface during macromolecular association has been determined. The free energy of association of insulin has been calculated by the methods of molecular mechanics and continual electrostatics (Poisson-Boltzmann model). The previously developed scheme of the decomposition of association free energy onto contributions from individual interactions has been used to calculate intermolecular interactions, the solvation free energy, and the entropies of the process of macromolecular association. An analysis of the calculated oscillation spectra indicated that the presence of water molecules on the protein-protein interface promotes an increase in the contribution of vibration entropy to the free energy of association due to the enhancement of the flexibility of the complex. It was shown that water molecules involved in the formation of protein-water-ligand hydrogen bond network change the balance of forces in the system.  相似文献   

10.
Protein association in lipid membranes is a complex process with thermodynamics directed by a multitude of different factors. Amino-acid sequence is a molecular parameter that affects dimerization as shown by limited directed mutations along the transmembrane domains. Membrane-mediated interactions are also important although details of such contributions remain largely unclear. In this study, we probe directly the free energy of association of Glycophorin A by means of extensive parallel Monte Carlo simulations with recently developed methods and a model that accounts for sequence-specificity while representing lipid membranes faithfully. We find that lipid-induced interactions are significant both at short and intermediate separations. The ability of molecules to tilt in a specific hydrophobic environment extends their accessible interfaces, leading to intermittent contacts during protein recognition. The dimer with the lowest free energy is largely determined by the favorable lipid-induced attractive interactions at the closest distance. Finally, the coarse-grained model employed herein, together with the extensive sampling performed, provides estimates of the free energy of association that are in excellent agreement with existing data.  相似文献   

11.
The novel symmetric squarylium derivative SQ-1 has been synthesized and tested for its sensitivity to the formation of protein-lipid complexes. SQ-1 binding to the model membranes composed of zwitterionic lipid phosphatidylcholine (PC) and its mixtures with anionic lipid cardiolipin (CL) in different molar ratios was found to be controlled mainly by hydrophobic interactions. Lysozyme (Lz) and ribonuclease A (RNase) exerted an influence on the probe association with lipid vesicles resulting presumably from the competition between SQ-1 and the proteins for bilayer free volume and modification of its properties. The magnitude of this effect was much higher for lysozyme which may stem from the amphipathy of protein alpha-helix involved in the membrane binding. Varying membrane composition provides evidence for the dye sensitivity to both hydrophobic and electrostatic protein-lipid interactions. Fluorescence anisotropy studies uncovered the restriction of SQ-1 rotational mobility in lipid environment in the presence of Lz and RNase being indicative of the incorporation of the proteins into bilayer interior. The results of binding, fluorescence quenching and kinetic experiments suggested lysozyme-induced local lipid demixing upon protein association with negatively charged membranes with threshold concentration of CL for the lipid demixing being 10 mol%.  相似文献   

12.
Shimizu S  Chan HS 《Proteins》2002,49(4):560-566
Free energies of pairwise hydrophobic association are simulated in aqueous solutions of urea at concentrations ranging from 0-8 M. Consistent with the expectation that hydrophobic interactions are weakened by urea, the association of relatively large nonpolar solutes is destabilized by urea. However, the association of two small methane-sized nonpolar solutes in water has the opposite tendency of being slightly strengthened by the addition of urea. Such size effects and the dependence of urea-induced stability changes on the configuration of nonpolar solutes are not predicted by solvent accessible surface area approaches based on energetic parameters derived from bulk-phase solubilities of model compounds. Thus, to understand hydrophobic interactions in proteins, it is not sufficient to rely solely on transfer experiment data that effectively characterize a single nonpolar solute in an aqueous environment but not the solvent-mediated interactions among two or more nonpolar solutes. We find that the m-values for the rate of change of two-methane association free energy with respect to urea concentration is a dramatically nonmonotonic function of the spatial separation between the two methanes, with a distance-dependent profile similar to the corresponding two-methane heat capacity of association in pure water. Our results rationalize the persistence of residual hydrophobic contacts in some proteins at high urea concentrations and explain why the heat capacity signature (DeltaC(P)) of a compact denatured state can be similar to DeltaC(P) values calculated by assuming an open random-coil-like unfolded state.  相似文献   

13.
The analysis of integral membrane proteins or transmembrane peptides by electrospray ionization mass spectrometry (ESI-MS) is difficult since detergents, used to solubilize these hydrophobic proteins and peptides, severely suppress analyte ion formation. This problem has been addressed previously by precipitating the protein, removing the detergent, and resolubilizing the protein in a nonpolar solvent. Here, we demonstrate a method that avoids protein precipitation and resolubilization. Detergent-solubilized bacteriorhodopsin is extracted into a nonpolar solvent phase by adding a chloroform/methanol/water solvent mixture to the aqueous detergent solution. ESI mass spectra of the nonpolar, chloroform-rich phase were dominated by peaks due to bacterioopsin. Bacterioopsin precursors with partially cleaved leader sequences were seen in all mass spectra. Additional peaks were likely due to intact bacteriorhodopsin, i.e., bacterioopsin with the retinal prosthetic group attached, and to bacterioopsin associated with lipid molecules. A separation process that occurred in the fused-silica capillary leading to the electrospray tip was essential for obtaining ESI mass spectra of bacterioopsin. The extraction-into-chloroform procedure also worked well with hydrophobic, transmembrane-type peptides that were insoluble in other electrospray solvents, including 100% formic acid, and the method has application to transmembrane peptides formed from digests of integral membrane proteins.  相似文献   

14.
Berhanu WM  Masunov AE 《Biopolymers》2011,95(9):573-590
A hexapeptide with amino acid sequence NNQNTF from the elk prion protein forms amyloid fibrils. Here we use molecular dynamic simulations of the oligomers and their single point glycine mutants to study their stability. In an effort to probe the structural stability and association thermodynamic in a realistic environment, all wildtype of NNQNTF polymorphic forms with different size and their corresponding double layer 5 strands single point glycine mutants were subjected to a total of 500 ns of explicit-solvent molecular dynamics (MD) simulation. Our results show that the structural stability of the NNQNTF oligomers increases with increasing the number of β-strands for double layers. Our results also demonstrated that hydrophobic interaction is the principle driving force to stabilize the adjacent β-strands while the steric zipper is responsible for holding the neighboring β-sheet layers together. We used MM-PBSA approach free energy calculations to determine the role of nonpolar effects, electrostatics and entropy in binding. Nonpolar effects remained consistently more favorable in wild type and mutants reinforcing the importance of hydrophobic effects in protein-protein binding. While entropy systematically opposed binding in all cases, there was no observed trend in the entropy difference between wildtype and glycine mutant. Free energy decomposition shows residues situated at the interface were found to make favorable contributions to the peptide-peptide association. The study of the wild type and mutants in an explicit solvent may provide valuable insight for amyloid aggregation inhibitor design efforts.  相似文献   

15.
This paper describes a methodology to calculate the binding free energy (ΔG) of a protein-ligand complex using a continuum model of the solvent. A formal thermodynamic cycle is used to decompose the binding free energy into electrostatic and non-electrostatic contributions. In this cycle, the reactants are discharged in water, associated as purely nonpolar entities, and the final complex is then recharged. The total electrostatic free energies of the protein, the ligand, and the complex in water are calculated with the finite difference Poisson-Boltzmann (FDPB) method. The nonpolar (hydrophobic) binding free energy is calculated using a free energy-surface area relationship, with a single alkane/water surface tension coefficient (γaw). The loss in backbone and side-chain configurational entropy upon binding is estimated and added to the electrostatic and the nonpolar components of ΔG. The methodology is applied to the binding of the murine MHC class I protein H-2Kb with three distinct peptides, and to the human MHC class I protein HLA-A2 in complex with five different peptides. Despite significant differences in the amino acid sequences of the different peptides, the experimental binding free energy differences (ΔΔGexp) are quite small (<0.3 and <2.7 kcal/mol for the H-2Kb and HLA-A2 complexes, respectively). For each protein, the calculations are successful in reproducing a fairly small range of values for ΔΔGcalc (<4.4 and <5.2 kcal/mol, respectively) although the relative peptide binding affinities of H-2Kb and HLA-A2 are not reproduced. For all protein-peptide complexes that were treated, it was found that electrostatic interactions oppose binding whereas nonpolar interactions drive complex formation. The two types of interactions appear to be correlated in that larger nonpolar contributions to binding are generally opposed by increased electrostatic contributions favoring dissociation. The factors that drive the binding of peptides to MHC proteins are discussed in light of our results.  相似文献   

16.
The topology of association of the monotopic protein cyclooxygenase-2 (COX-2) with membranes has been examined using EPR spectroscopy of spin-labeled recombinant human COX-2. Twenty-four mutants, each containing a single free cysteine substituted for an amino acid in the COX-2 membrane binding domain were expressed using the baculovirus system and purified, then conjugated with a nitroxide spin label and reconstituted into liposomes. Determining the relative accessibility of the nitroxide-tagged amino acid side chains for the solubilized COX-2 mutants, or COX-2 reconstituted into liposomes to nonpolar (oxygen) and polar (NiEDDA or CrOx) paramagnetic reagents allowed us to map the topology of COX-2 interaction with the lipid bilayer. When spin-labeled COX-2 was reconstituted into liposomes, EPR power saturation curves showed that side chains for all but two of the 24 mutants tested had limited accessibility to both polar and nonpolar paramagnetic relaxation agents, indicating that COX-2 associates primarily with the interfacial membrane region near the glycerol backbone and phospholipid head groups. Two amino acids, Phe(66) and Leu(67), were readily accessible to the non-polar relaxation agent oxygen, and thus likely inserted into the hydrophobic core of the lipid bilayer. However these residues are co-linear with amino acids in the interfacial region, so their extension into the hydrophobic core must be relatively shallow. EPR and structural data suggest that membrane interaction of COX-2 is also aided by partitioning of 4 aromatic amino acids, Phe(59), Phe(66), Tyr(76), and Phe(84) to the interfacial region, and by the electrostatic interactions of two basic amino acids, Arg(62) and Lys(64), with the phospholipid head groups.  相似文献   

17.
M Nina  B Roux    J C Smith 《Biophysical journal》1995,68(1):25-39
The light-driven proton pump, bacteriorhodopsin (bR) contains a retinal molecule with a Schiff base moiety that can participate in hydrogen-bonding interactions in an internal, water-containing channel. Here we combine quantum chemistry and molecular mechanics techniques to determine the geometries and energetics of retinal Schiff base-water interactions. Ab initio molecular orbital calculations are used to determine potential surfaces for water-Schiff base hydrogen-bonding and to characterize the energetics of rotation of the C-C single bond distal and adjacent to the Schiff base NH group. The ab initio results are combined with semiempirical quantum chemistry calculations to produce a data set used for the parameterization of a molecular mechanics energy function for retinal. Using the molecular mechanics force field the hydrated retinal and associated bR protein environment are energy-minimized and the resulting geometries examined. Two distinct sites are found in which water molecules can have hydrogen-bonding interactions with the Schiff base: one near the NH group of the Schiff base in a polar region directed towards the extracellular side, and the other near a retinal CH group in a relatively nonpolar region, directed towards the cytoplasmic side.  相似文献   

18.
Apolipoprotein A-I: structure-function relationships   总被引:5,自引:0,他引:5  
The inverse relationship between high density lipoprotein (HDL) plasma levels and coronary heart disease has been attributed to the role that HDL and its major constituent, apolipoprotein A-I (apoA-I), play in reverse cholesterol transport (RCT). The efficiency of RCT depends on the specific ability of apoA-I to promote cellular cholesterol efflux, bind lipids, activate lecithin:cholesterol acyltransferase (LCAT), and form mature HDL that interact with specific receptors and lipid transfer proteins. From the intensive analysis of apoA-I secondary structure has emerged our current understanding of its different classes of amphipathic alpha-helices, which control lipid-binding specificity. The main challenge now is to define apoA-I tertiary structure in its lipid-free and lipid-bound forms. Two models are considered for discoidal lipoproteins formed by association of two apoA-I with phospholipids. In the first or picket fence model, each apoA-I wraps around the disc with antiparallel adjacent alpha-helices and with little intermolecular interactions. In the second or belt model, two antiparallel apoA-I are paired by their C-terminal alpha-helices, wrap around the lipoprotein, and are stabilized by multiple intermolecular interactions. While recent evidence supports the belt model, other models, including hybrid models, cannot be excluded. ApoA-I alpha-helices control lipid binding and association with varying levels of lipids. The N-terminal helix 44-65 and the C-terminal helix 210-241 are recognized as important for the initial association with lipids. In the central domain, helix 100-121 and, to a lesser extent, helix 122-143, are also very important for lipid binding and the formation of mature HDL, whereas helices between residues 144 and 186 contribute little. The LCAT activation domain has now been clearly assigned to helix 144-165 with secondary contribution by helix 166-186. The lower lipid binding affinity of the region 144-186 may be important to the activation mechanism allowing displacement of these apoA-I helices by LCAT and presentation of the lipid substrates. No specific sequence has been found that affects diffusional efflux to lipid-bound apoA-I. In contrast, the C-terminal helices, known to be important for lipid binding and maintenance of HDL in circulation, are also involved in the interaction of lipid-free apoA-I with macrophages and specific lipid efflux. While much progress has been made, other aspects of apoA-I structure-function relationships still need to be studied, particularly its lipoprotein topology and its interaction with other enzymes, lipid transfer proteins and receptors important for HDL metabolism.  相似文献   

19.
An experimental study of the cationic lipid-DNA binding affinity is presented. The binding free energy was determined by monitoring lipoplex dissociation under conditions of increasing salt concentration. The primary procedure was based on the extent of quenching by energy transfer of fluorophores on DNA molecules by fluorophore on a lipid as these molecules came into close association in the lipoplex. Titration calorimetry on the Dickerson dodecamer was also done, with results that were in agreement with the fluorescence data. Measurements on short oligonucleotides allowed estimation of the binding energy per nucleotide. The binding free energy is approximately 0.6 kcal/mole nucleotide for the Dickerson dodecamer and declines for longer oligonucleotides. The entropy gained upon complex formation is approximately 1 entropy unit per released counterion. The method was applied to long DNA molecules (herring and lambda-phage DNA) and revealed that complete dissociation occurs at 750 mM NaCl. Likely contributions of macromolecular desolvation and DNA flexibility to the binding energy are discussed.  相似文献   

20.
Using single-molecule force spectroscopy, we investigated the effect of single point mutations on the energy landscape and unfolding pathways of the transmembrane protein bacteriorhodopsin. We show that the unfolding energy barriers in the energy landscape of the membrane protein followed a simple two-state behavior and represent a manifestation of many converging unfolding pathways. Although the unfolding pathways of wild-type and mutant bacteriorhodopsin did not change, indicating the presence of same ensemble of structural unfolding intermediates, the free energies of the rate-limiting transition states of the bacteriorhodopsin mutants decreased as the distance of those transition states to the folded intermediate states decreased. Thus, all mutants exhibited Hammond behavior and a change in the free energies of the intermediates along the unfolding reaction coordinate and, consequently, their relative occupancies. This is the first experimental proof showing that point mutations can reshape the free energy landscape of a membrane protein and force single proteins to populate certain unfolding pathways over others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号