首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dendritic cells (DCs) play a major role in the innate immune response since they recognize a broad repertoire of PAMPs mainly via Toll-like receptors (TLRs). During Helicobacter pylori (H. pylori) infection, TLRs have been shown to be important to control cytokine response particularly in murine DCs. In the present study we analyzed the effect of blocking TLRs on human DCs. Co-incubation of human DCs with H. pylori resulted in the release of the pro-inflammatory cytokines IL-12p70, IL-6 and IL-10. Release of IL-12p70 and IL-10 was predominantly influenced when TLR4 signaling was blocked by adding specific antibodies, suggesting a strong influence on subsequent T cell responses through TLR4 activation on DCs. Co-incubation of H. pylori-primed DC with allogeneic CD4+ T cells resulted in the production of IFN-γ and IL-17A as well as the expression of Foxp3, validating a mixed Th1/Th17 and Treg response in vitro. Neutralization of TLR4 during H. pylori infection resulted in significantly decreased amounts of IL-17A and IFN-γ and reduced levels of Foxp3-expressing and IL-10-secreting T cells. Our findings suggest that DC cytokine secretion induced upon TLR4-mediated recognition of H. pylori influences inflammatory and regulatory T cell responses, which might facilitate the chronic bacterial persistence.  相似文献   

2.
Nerve growth factor (NGF) has been shown to play important roles in the differentiation, function, and survival of immune cells, contributing to immune responses and pathogenesis of autoimmune diseases. Dendritic cells (DCs) are a potent initiator for immune and inflammatory responses upon recognition of pathogens via Toll-like receptors (TLR). However, expression of NGF and its receptors on human monocyte-derived DCs (MoDCs) and the role of NGF in the response of DCs to TLR ligands remain to be investigated. In the present study, we demonstrate that there were weak expressions of NGF and no expression of NGF receptors p140(TrkA) and p75(NTR) on human immature MoDCs, however, the expression of NGF and p75(NTR) on MoDCs could be significantly up-regulated by LPS in a dose- and time-dependent manner. NGF could markedly promote LPS-induced expression of HLA-DR, CD40, CD80, CD83, CD86, CCR7, secretion of IL-12p40 and proinflammatory cytokines IL-1, IL-6, TNF-alpha, and the T cell-stimulating capacity of MoDCs, indicating that NGF can promote LPS-induced DC maturation. The promoting effect of NGF on LPS-induced MoDCs maturation could be completely abolished by pretreatment of MoDCs with p75(NTR) antagonist, suggesting that LPS-induced p75(NTR) mediates the effect. Furthermore, increased activation of the p38MAPK and NF-kappaB pathways has been shown to be responsible for the NGF-promoted DC maturation. Therefore, NGF facilitates TLR4 signaling-induced maturation of human DCs through LPS-up-regulated p75(NTR) via activation of p38 MAPK and NF-kappaB pathways, providing another mechanism for the involvement of NGF in the immune responses and pathogenesis of autoimmune diseases.  相似文献   

3.
Dendritic cells (DCs) play a key role in immune function through antigen presentation by MHC and CD1, as well as cytokine production that shapes the immune response. Here we report that butyrate, a histone deacetylase inhibitor, inhibits the functional differentiation of human monocyte-derived DCs. Mature DCs were generated from monocytes in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4), followed by 2 day LPS stimulation. Butyrate treatment throughout the culture period inhibited the expression of CD1 molecules, but not on CD83, CD86, and MHC molecules. The suppression was exerted at protein and mRNA levels. Butyrate-treated immature DCs also showed decreased expression of CD1 molecules. Moreover the butyrate-treated immature DCs showed lower production of IL-12 p40 and IL-6 in response to lipopolysaccharides and induced less Th1 cells in allogenic mixed lymphocyte reactions. Our results imply that histone acetylation is involved in regulating immune responses through regulating functional differentiation of DC. Thus HDAC may be one of the targets for controlling the immune response.  相似文献   

4.
Alcohol consumption inhibits accessory cell function and Ag-specific T cell responses. Myeloid dendritic cells (DCs) coordinate innate immune responses and T cell activation. In this report, we found that in vivo moderate alcohol intake (0.8 g/kg of body weight) in normal volunteers inhibited DC allostimulatory capacity. Furthermore, in vitro alcohol treatment during DC differentiation significantly reduced allostimulatory activity in a MLR using naive CD4(+) T cells, and inhibited tetanus toxoid Ag presentation by DCs. Alcohol-treated DCs showed reduced IL-12, increased IL-10 production, and a decrease in expression of the costimulatory molecules CD80 and CD86. Addition of exogenous IL-12 and IL-2, but not neutralization of IL-10, during MLR ameliorated the reduced allostimulatory capacity of alcohol-treated DCs. Naive CD4(+) T cells primed with alcohol-treated DCs showed decreased IFN-gamma production that was restored by exogenous IL-12, indicating inhibition of Th1 responses. Furthermore, CD4(+) T cells primed with alcohol-treated DCs were hyporesponsive to subsequent stimulation with the same donor-derived normal DCs, suggesting the ability of alcohol-treated DCs to induce T cell anergy. LPS-induced maturation of alcohol-treated immature DCs partially restored the reduced allostimulatory activity, whereas alcohol given only during DC maturation failed to inhibit DC functions, suggesting that alcohol primarily impairs DC differentiation rather than maturation. NFkappaB activation, a marker of DC maturation was not affected by alcohol. Taken together, alcohol both in vitro and in vivo can impair generation of Th1 immune responses via inhibition of DC differentiation and accessory cell function through mechanisms that involve decreased IL-12 induction.  相似文献   

5.
Yan X  Xiu F  An H  Wang X  Wang J  Cao X 《Life sciences》2007,80(4):307-313
Fever improves survival and shortens disease duration in microbial infections. However, the mechanisms of these beneficial responses still remain elusive. Toll-like receptors (TLRs) play important roles in sensing microbes invading and therefore we hypothesized that fever range temperature may enhance responsiveness of dendritic cells (DCs) to lipopolysaccharide (LPS) by promoting TLR4 expression and signaling. In this study, we found that pretreatment of DCs with 39.5 degrees C temperature can up-regulate TLR4 expression in DCs and enhances LPS-induced DC production of interleukins (IL) IL-6, IL-10 and IL-12 but not tumor necrosis factor alpha (TNF-alpha). Blockade of the autocrine action of IL-10 could increase LPS-induced TNF-alpha and IL-12 production in DCs. Further experiments confirmed that TLR4 ligation activates extracellular signal-regulated kinase (ERK), p38, and nuclear factor-kappaB pathways more potently in DCs pretreated with 39.5 degrees C. We conclude that fever range temperature can promote TLR4 expression and signaling in DCs, leading to enhancement of immune responses to inflammatory stimuli. These results might reveal a possible mechanistic explanation for the significance of fever in activating innate immune responses.  相似文献   

6.
Dendritic cells (DCs) play critical roles in cross-priming to induce the CTL response against infection; however, the molecular mechanisms for the regulation of DC cross-priming need to be investigated further, which may help to improve the potency of DC vaccines through engineering modifications. Our previous studies showed that β2 integrin CD11b could control TLR-triggered NK cell cytotoxicity and macrophage inflammatory responses. CD11b is also abundantly expressed in DCs, but it is unknown whether CD11b participates in the regulation of DC cross-priming for the CTL response. Also, because microRNAs (miRNAs) are important regulators of the immune response, it remains unclear whether miRNAs are regulated by CD11b in DCs. In this study, we showed that CD11b deficiency upregulated TLR9-triggered, but not TLR4-triggered, IL-12p70 production in DCs, subsequently promoting DC cross-priming of the CTL response. Further experiments showed that CD11b selectively promoted TLR9-triggered miR-146a upregulation in DCs by sustaining late-phase NF-κB activation. Additionally, Notch1, a known positive regulator of IL-12p70 production in DCs, was confirmed to be directly targeted by miR-146a. miR-146a upregulation and Notch1 repression were determined to be responsible for the reduced IL-12p70 production in TLR9-triggered wild-type DCs compared with that in CD11b-deficient DCs. Therefore, CD11b and downstream miR-146a may be new negative regulators for DC cross-priming by suppressing Notch1 expression and IL-12p70 production. Our data indicate a new mechanism for the regulation of DC cross-priming through integrins and miRNAs.  相似文献   

7.
Dendritic cell (DC)-derived cytokines play a key role in specifying adaptive immune responses tailored to the type of pathogen encountered and the local tissue environment. However, little is known about how DCs perceive the local environment. We investigated whether endogenous Notch signaling could affect DC responses to pathogenic stimuli. We demonstrate that concurrent Notch and TLR stimulation results in a unique cytokine profile in mouse bone-marrow derived DCs characterized by enhanced IL-10 and IL-2, and reduced IL-12 expression compared with TLR ligation alone. Unexpectedly, modulation of cytokine production occurred through a noncanonical Notch signaling pathway, independent of γ-secretase activity. Modulation required de novo protein synthesis, and PI3K, JNK, and ERK activity were necessary for enhanced IL-2 expression, whereas modulation of IL-10 required only PI3K activity. Further, we show that this γ-secretase-independent Notch pathway can induce PI3K activity. In contrast, expression of the canonical Notch target gene Hes1 was suppressed in DCs stimulated with Notch and TLR ligands simultaneously. Thus, our data suggest that Notch acts as an endogenous signal that modulates cytokine expression of DCs through a noncanonical pathway and therefore has the potential to tailor the subsequent adaptive immune response in a tissue- and/or stage-dependent manner.  相似文献   

8.
Dendritic cells (DCs) have been suggested to direct a type of Th differentiation through their cytokine profile, e.g., high IL-12/IL-23 for Th1 (named DC1/immunogenic DCs) and IL-10 for Th2 (DC2/tolerogenic DCs). Suppressor of cytokine signaling (SOCS)-3 is a potent inhibitor of Stat3 and Stat4 transduction pathways for IL-23 and IL-12, respectively. We thus hypothesize that an enhanced SOCS-3 expression in DCs may block the autocrine response of IL-12/IL-23 in these cells, causing them to become a DC2-type phenotype that will subsequently promote Th2 polarization of naive T cells. Indeed, in the present study we found that bone marrow-derived DCs transduced with SOCS-3 significantly inhibited IL-12-induced activation of Stat4 and IL-23-induced activation of Stat3. These SOCS-3-transduced DCs expressed a low level of MHC class II and CD86 on their surface, produced a high level of IL-10 but low levels of IL-12 and IFN-gamma, and expressed a low level of IL-23 p19 mRNA. Functionally, SOCS-3-transduced DCs drove naive myelin oligodendrocyte glycoprotein-specific T cells to a strong Th2 differentiation in vitro and in vivo. Injection of SOCS-3-transduced DCs significantly suppressed experimental autoimmune encephalomyelitis, a Th1 cell-mediated autoimmune disorder of the CNS and an animal model of multiple sclerosis. These results indicate that transduction of SOCS-3 in DCs is an effective approach to generating tolerogenic/DC2 cells that then skew immune response toward Th2, thus possessing therapeutic potential in Th1-dominant autoimmune disorders such as multiple sclerosis.  相似文献   

9.
为探讨Arl8a(ADP—ribosylation factor-like 8A)与树突状细胞(dendritic cells.DCs)TLR4两条下游信号途径的关系,用Arl8a和GEFH1(guanine nucleotide-exchange factors H1)的siRNA转染来自野生型小鼠的DC,进行LPS刺激或未刺激处理后,检测TLR4-TRIF途径中RhoB靶蛋白MYH9的mRNA表达。然后从野生型和IFNα/β受体基因敲除小鼠中分离和培养DC,LPS刺激后收集细胞扩增总cDNA,通过实时定量PCR检测Arl8a的mRNA表达。再用Arl8a的siRNA转染DC,LPS刺激后检测IL-6和IL-12a的mRNA表达。结果表明,Arl8a和GEFH1的siRNA均能显著抑制LPS介导的MYH9的mRNA表达(P〈0.01),而且在LPs刺激后,Arl8a的mRNA表达在野生型小鼠的DC中增加,在IFNα/β受体基因敲除小鼠的DC中则未被上调。此外,Arl8a的siRNA对IL-6和IL-12a的mRNA表达没有显著效应。以上结果提示,在转录水平,Arl8a和GEFH1均对MYH9的表达有影响,并且Arl8a基因的表达与TRIF—IFNβ途径有关,Arl8a可能与MyD88途径中细胞因子IL-6和IL-12a的表达无关。  相似文献   

10.
IFN-alpha is an important cytokine for the generation of a protective T cell-mediated immune response to viruses. In this study, we asked whether IFN-alpha can regulate the functional properties of dendritic cells (DCs). We show that monocytes cultured in the presence of GM-CSF and IFN-alpha can differentiate into DCs (IFN-alpha-derived DCs (IFN-DCs)). When compared with DCs generated in the presence of GM-CSF and IL-4 (IL-4-derived DCs), IFN-DCs exhibited a typical DC morphology and expressed, in addition to DC markers CD1a and blood DC Ag 4, a similar level of costimulatory and class II MHC molecules, but a significantly higher level of MHC class I molecules. After maturation with CD40 ligand, IFN-DCs up-regulated costimulatory, class I and II MHC molecules and expressed mature DC markers such as CD83 and DC-lysosome-associated membrane protein. IFN-DCs were endowed with potent functional activities. IFN-DCs secreted large amounts of the inflammatory cytokines IL-6, IL-10, TNF-alpha, IL-1beta, and IL-18, and promoted a Th1 response that was independent of IL-12p70 and IL-18, but substantially inhibited by IFN-alpha neutralization. Furthermore, immature IFN-DCs induced a potent autologous Ag-specific immune response, as evaluated by IFN-gamma secretion and expansion of CD8(+) T cells specific for CMV. Also, IFN-DCs expressed a large number of Toll-like receptors (TLRs), including acquisition of TLR7, which is classically found on the natural type I IFN-producing plasmacytoid DCs. Like plasmacytoid DCs, IFN-DCs could secrete IFN-alpha following viral stimulation or TLR7-specific stimulation. Taken together, these results illustrate the critical role of IFN-alpha at the early steps of immune response to pathogens or in autoimmune diseases.  相似文献   

11.
Plexins are a family of genes (A,B,C, and D) that are expressed in many organ systems. Plexins expressed in the immune system have been implicated in cell movement and cell-cell interaction during the course of an immune response. In this study, the expression pattern of Plexin-B2 and Plexin-D1 in dendritic cells (DCs), which are central in immune activation, was investigated. Plexin-B2 and Plexin-D1 are reciprocally expressed in myeloid and plasmacytoid DC populations. Plasmacytoid DCs have high Plexin-B2 but low Plexin-D1, while the opposite is true of myeloid DCs. Expression of Plexin-B2 and Plexin-D1 is modulated upon activation of DCs by TLR ligands, TNFα, and anti-CD40, again in a reciprocal fashion. Semaphorin3E, a ligand for Plexin-D1 and Plexin-B2, is expressed by T cells, and interestingly, is dramatically higher on Th2 cells and on DCs. The expression of Plexins and their ligands on DCs and T cells suggest functional relevance. To explore this, we utilized chimeric mice lacking Plxnb2 or Plxnd1. Absence of Plexin-B2 and Plexin-D1 on DCs did not affect the ability of these cells to upregulate costimulatory molecules or the ability of these cells to activate antigen specific T cells. Additionally, Plexin-B2 and Plexin-D1 were dispensable for chemokine-directed in-vitro migration of DCs towards key DC chemokines, CXCL12 and CCL19. However, the absence of either Plexin-B2 or Plexin-D1 on DCs leads to constitutive expression of IL-12/IL-23p40. This is the first report to show an association between Plexin-B2 and Plexin-D1 with the negative regulation of IL-12/IL-23p40 in DCs. This work also shows the presence of Plexin-B2 and Plexin-D1 on mouse DC subpopulations, and indicates that these two proteins play a role in IL-12/IL-23p40 production that is likely to impact the immune response.  相似文献   

12.
Although toll-like receptor (TLR) signals are critical for promoting antigen presenting cell maturation, it remains unclear how stimulation via different TLRs influence dendritic cell (DC) function and the subsequent adaptive response in vivo. Furthermore, the relationship between TLR-induced cytokine production by DCs and the consequences on the induction of a functional immune response is not clear. We have established a murine model to examine whether TLR3 or TLR4 mediated DC maturation has an impact on the cytokines required to break tolerance and induce T-cell-mediated autoimmunity. Our study demonstrates that IL-12 is not absolutely required for the induction of a CD8 T-cell-mediated tissue specific immune response, but rather the requirement for IL-12 is determined by the stimuli used to mature the DCs. Furthermore, we found that IFNα is a critical pathogenic component of the cytokine milieu that circumvents the requirement for IL-12 in the induction of autoimmunity. These studies illustrate how different TLR stimuli have an impact on DC function and the induction of immunity.  相似文献   

13.
Streptococcus suis is an important swine pathogen and an emerging zoonotic agent of septicemia and meningitis. Knowledge on host immune responses towards S. suis, and strategies used by this pathogen for subversion of these responses is scarce. The objective of this study was to identify the immune receptors involved in S. suis recognition by dendritic cells (DCs). Production of cytokines and expression of co-stimulatory molecules by DCs were shown to strongly rely on MyD88-dependent signaling pathways, suggesting that DCs recognize S. suis and become activated mostly through Toll-like receptor (TLR) signaling. Supporting this fact, TLR2−/− DCs were severely impaired in the release of several cytokines and the surface expression of CD86 and MHC-II. The release of IL-12p70 and CXC10, and the expression of CD40 were found to depend on signaling by both TLR2 and TLR9. The release of IL-23 and CXCL1 were partially dependent on NOD2. Finally, despite the fact that MyD88 signaling was crucial for DC activation and maturation, MyD88-dependent pathways were not implicated in S. suis internalization by DCs. This first study on receptors involved in DC activation by S. suis suggests a major involvement of MyD88 signaling pathways, mainly (but not exclusively) through TLR2. A multimodal recognition involving a combination of different receptors seems essential for DC effective response to S. suis.  相似文献   

14.
15.
Dendritic cells (DC) are critical actors in the initiation of primary immune responses and regulation of self-tolerance. The steroid sex hormone 17beta-estradiol (E(2)) has been shown to promote the differentiation of DCs from bone marrow (BM) precursors in vitro. However, the estrogen receptor (ER) involved in this effect has not yet been characterized. Using recently generated ERalpha- or ERbeta-deficient mice, we investigated the role of ER isotypes in DC differentiation and acquisition of effector functions. We report that estrogen-dependent activation of ERalpha, but not ERbeta, is required for normal DC development from BM precursors cultured with GM-CSF. We show that reduced numbers of DCs were generated in the absence of ERalpha activation and provide evidence for a cell-autonomous function of ERalpha signaling in DC differentiation. ERalpha-deficient DCs were phenotypically and functionally distinct from wild-type DCs generated in the presence of estrogens. In response to microbial components, ERalpha-deficient DCs failed to up-regulate MHC class II and CD86 molecules, which could account for their reduced capacity to prime naive CD4(+) T lymphocytes. Although they retained the ability to express CD40 and to produce proinflammatory cytokines (e.g., IL-12, IL-6) upon TLR engagement, ERalpha-deficient DCs were defective in their ability to secrete such cytokines in response to CD40-CD40L interactions. Taken together, these results provide the first genetic evidence that ERalpha is the main receptor regulating estrogen-dependent DC differentiation in vitro and acquisition of their effector functions.  相似文献   

16.
Antiviral immunity requires recognition of viral pathogens and activation of cytotoxic and Th cells by innate immune cells. In this study, we demonstrate that hepatitis C virus (HCV) core and nonstructural protein 3 (NS3), but not envelope 2 proteins (E2), activate monocytes and myeloid dendritic cells (DCs) and partially reproduce abnormalities found in chronic HCV infection. HCV core or NS3 (not E2) triggered inflammatory cytokine mRNA and TNF-alpha production in monocytes. Degradation of I-kappa B alpha suggested involvement of NF-kappa B activation. HCV core and NS3 induced production of the anti-inflammatory cytokine, IL-10. Both monocyte TNF-alpha and IL-10 levels were higher upon HCV core and NS3 protein stimulation in HCV-infected patients than in normals. HCV core and NS3 (not E2) inhibited differentiation and allostimulatory capacity of immature DCs similar to defects in HCV infection. This was associated with elevated IL-10 and decreased IL-2 levels during T cell proliferation. Increased IL-10 was produced by HCV patients' DCs and by core- or NS3-treated normal DCs, while IL-12 was decreased only in HCV DCs. Addition of anti-IL-10 Ab, not IL-12, ameliorated T cell proliferation with HCV core- or NS3-treated DCs. Reduced allostimulatory capacity in HCV core- and NS3-treated immature DCs, but not in DCs of HCV patients, was reversed by LPS maturation, suggesting more complex DC defects in vivo than those mediated by core or NS3 proteins. Our results reveal that HCV core and NS3 proteins activate monocytes and inhibit DC differentiation in the absence of the intact virus and mediate some of the immunoinhibitory effects of HCV via IL-10 induction.  相似文献   

17.
IL-12 and TNF-alpha production by dendritic cells (DCs) is a critical step in the initiation of local inflammation and adaptive immune responses. We show in this study that a small molecule immune response modifier that is a Toll-like receptor 7 (TLR7) agonist induces IL-12 and TNF-alpha production from murine CD11c(+)CD11b(+)CD8(-) DCs, a subset not previously known for this activity. Stimulation of these DCs through TLR7 in vivo induces significant cytokine production even 12 h after initial stimulation, as well as migration of the DC into T cell zones of the lymphoid tissue. In contrast, stimulation through TLR4 and TLR9 induced IL-12 production predominantly from CD8(+) DCs, consistent with previously published data. All TLR stimuli induced the increase in surface expression of the activation markers B7-1, B7-2, and class II in both CD8(+) and CD8(-) DCs, demonstrating that CD8(+) DCs do respond to TLR7-mediated stimuli. To date this is the only known stimuli to induce preferential cytokine production from CD8(-) DCs. Given the efficacy of TLR7 agonists as antiviral agents, the data collectively indicate that stimulation of CD8(-) DCs through TLR7 most likely plays a role in the generation of antiviral immune responses.  相似文献   

18.
Modulation of CD4 Th cell differentiation by ganglioside GD1a in vitro   总被引:1,自引:0,他引:1  
Cell surface gangliosides are shed by tumors into their microenvironment. In this study they inhibit cellular immune responses, including APC development and function, which is critical for Th1 and Th2 cell development. Using human dendritic cells (DCs) and naive CD4(+) T cells, we separately evaluated Th1 and Th2 development under the selective differentiating pressures of DC1-inducing pertussis toxin (PT) and DC2-inducing cholera toxin (CT). High DC IL-12 production after PT exposure and high DC IL-10 production after CT exposure were observed, as expected. However, when DCs were first preincubated with highly purified G(D1a) ganglioside, up-regulation of costimulatory molecules was blunted, and PT-induced IL-12 production was reduced, whereas CT-induced IL-10 production was increased. The combination of these effects could contribute to a block in the Th1 response. In fact, when untreated naive T cells were coincubated with ganglioside-preincubated, Ag-exposed DCs, naive Th cell differentiation into Th effector cells was reduced. Both the subsequent DC1-induced T cell production of IFN-gamma (Th1 marker) and DC2-induced T cell IL-4 production (Th2) were inhibited. Thus, ganglioside exposure of DC impairs, by at least two distinct mechanisms, the ability to induce Th differentiation, which could adversely affect the development of an effective cellular antitumor immune response.  相似文献   

19.
We investigated the hypothesis that the enhanced Ag-presenting function of IL-10-deficient dendritic cells (DCs) is related to specific immunoregulatory cytoskeletal molecules expressed when exposed to Ags. We analyzed the role of a prominent cytoskeletal protein, LEK1, in the immunoregulation of DC functions; specifically cytokine secretion, costimulatory molecule expression, and T cell activation against Chlamydia. Targeted knockdown of LEK1 expression using specific antisense oligonucleotides resulted in the rapid maturation of Chlamydia-exposed DCs as measured by FACS analysis of key activation markers (i.e., CD14, CD40, CD54, CD80, CD86, CD197, CD205, and MHC class II). The secretion of mostly Th1 cytokines and chemokines (IL-1a, IL-9, IL-12, MIP-1a, and GM-CSF but not IL-4 and IL-10) was also enhanced by blocking of LEK1. The function of LEK1 in DC regulation involves cytoskeletal changes, since the dynamics of expression of vimentin and actin, key proteins of the cellular cytoskeleton, were altered after exposure of LEK1 knockdown DCs to Chlamydia. Furthermore, targeted inhibition of LEK1 expression resulted in the enhancement of the immunostimulatory capacity of DCs for T cell activation against Chlamydia. Thus, LEK1 knockdown DCs activated immune T cells at least 10-fold over untreated DCs. These results suggest that the effect of IL-10 deficiency is mediated through LEK1-related events that lead to rapid maturation of DCs and acquisition of the capacity to activate an elevated T cell response. Targeted modulation of LEK1 expression provides a novel strategy for augmenting the immunostimulatory function of DCs for inducing an effective immunity against pathogens.  相似文献   

20.
LPS tolerance has been investigated extensively in monocytes/macrophages. However, the LPS restimulation studies are not well documented in dendritic cells (DCs). In the present study, we investigated influences of TLR restimulation using murine bone marrow-derived DCs. Purified bone marrow-derived DCs (>98% CD11c+ B220-) were stimulated with TLR4 and TLR2 ligands for 24 h and then cultured with medium alone for 48 h as a resting interval (TLR4,2-primed DCs). The TLR4-MD2 expression was markedly reduced immediately after the TLR stimulation, but was restored following the resting interval. The TLR4,2-primed DCs exhibited significantly enhanced IL-10 production, but markedly diminished IL-12p40 production upon TLR4 restimulation compared with naive (unprimed) DCs. TLR4-mediated activation of p38 MAPK was markedly suppressed, whereas that of ERK1/2 was enhanced in the TLR4,2-primed DCs compared with naive DCs. Blocking the activation of ERK1/2 with U0126 reduced the enhanced IL-10 production by the TLR4,2-primed DCs upon the TLR4 restimulation. The U0126 showed no significant effects on the IL-12p40 production. Thus, the enhanced ERK1/2 activation appears to be, at least in part, responsible for the enhanced IL-10 production in the TLR4,2-primed DCs. In addition, TNFR-associated factor 3 expression was significantly up-regulated in the TLR4,2-primed DCs compared with that in naive DCs. We demonstrated in this study that DCs primed with TLR4 and TLR2 ligands and rested for 48 h showed enhanced IL-10 production upon TLR4 restimulation. The enhanced IL-10 production by the TLR4,2-primed DCs may be attributed to the altered balance of intracellular signaling pathways via p38 MAPK, ERK1/2, and TNFR-associated factor 3 upon TLR restimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号