首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
HUW LLOYD 《Ibis》2008,150(4):735-745
Habitat restoration strategies for fragmented high Andean forest landscapes must consider the influence of within‐patch habitat quality on bird abundance. I examined vegetation and bird abundance at three locations within a highly fragmented Polylepis forest landscape in the Cordillera Vilcanota, southern Peru. Across the landscape, there was significant variation in the vegetation structure of Polylepis forest patches of different size categories, especially in terms of tree girth, tree height, tree density, and canopy vegetation structure. Principal Component Analysis extracted five factors of habitat quality, which together accounted for 74.2% of the variability within 15 habitat variables. Polylepis bird species differed in their responses to habitat quality but, overall, variation in Polylepis bird abundance was not fully captured by the range of habitat quality variables. Tall, dense vegetation cover was clearly important for 11 conservation‐important species, a high density of large trees was important for 10 species and primary forest ground cover was important for eight species. Habitat quality exhibited no significant influence on the abundance of only one species –Asthenes urubambensis. The abundance of seven species was associated with lower elevation forest, but only one species was associated with higher elevation forest. Management of habitat quality in large and medium remnant forest patches throughout the Cordillera Vilcanota, particularly in the 3800–4200 m elevation range, will be a cornerstone in ensuring the persistence of the majority of conservation‐important bird species populations.  相似文献   

2.
The movement ability of species in fragmented landscapes must be considered if habitat restoration strategies are to allow maximum benefit in terms of increased or healthier wildlife populations. We studied movements of a range of bird species between woodland patches within a high‐altitude Polylepis/matrix landscape in the Cordillera Vilcanota, Peru. Movement rates between Polylepis patches differed across guilds, with arboreal omnivores, arboreal sally‐strikers and nectarivores displaying the highest movement rates, and understorey guilds and arboreal sally‐gleaners the lowest movement rates. Birds tend to avoid flights to more distant neighboring patches, especially when moving from patches which were themselves isolated. The decline in bird flight frequencies with increasing patch isolation followed broken‐stick models most closely, and while we suggest that there is evidence for a decline in between‐patch movements over distances of 30–210 m, there was great variability in movement rates across individual patches. This variability is presumably a result of complex interactions between patch size, quality and configuration, and flight movement patterns of individual bird species. Our study does, however, highlight the contribution small woodland patches make toward fragmented Polylepis ecosystem functioning, and we suggest that, where financial resources permit, small patch restoration would be an important compliment to the restoration of larger woodland patches. Most important is that replanting takes place within 200 m or so of existing larger patches. This will be especially beneficial in allowing more frequent use of woodland elements within the landscape and in improving the total area of woodland patches that are functionally connected.  相似文献   

3.
In fragmented landscapes, changes in habitat availability, patch size, shape and isolation may affect survival of local populations. Proposing efficient conservation strategies for such species relies initially on distinguishing the particular effects of those factors. To address these issues, we investigated the occurrence of 3 bird species in fragmented Brazilian Atlantic Forest landscapes. Playback techniques were used to collect presence/absence data of these species inside 80 forest patches, and incidence models were used to infer their occupancy pattern from landscape spatial structure. The relative importance of patch size, shape and surrounding forest cover and isolation was assessed using a model selection approach based on maximum likelihood estimation. The presence of all species was in general positively affected by the amount of surrounding habitat and negatively affected by inter‐patch distances. The joint effects of patch size and the surrounding landscape characteristics were important determinants of occupancy for two species. The third species was affected only by forest cover and mean patch isolation. Our results suggest that local species presence is in general more influenced by the isolation from surrounding forests than by patch size alone. We found evidence that, in highly fragmented landscapes, birds that can not find patches large enough to settle may be able to overcome short distances through the matrix and include several nearby patches within their home‐ranges to complement their resource needs. In these cases, patches must be defined as functionally connected habitat networks rather than mere continuous forest segments. Bird conservation strategies in the Atlantic forest should focus on increasing patch density and connectivity, in order to implement forest networks that reduce the functional isolation between large remnants with remaining core habitat.  相似文献   

4.
Habitat fragmentation results in landscape configuration, which affects the species that inhabit it. As a consequence, natural habitat is replaced by different anthropogenic plantation types (e.g. pasture, agriculture, forestry plantations and urban areas). Anthropogenic plantations are important for biodiversity maintenance because some species or functional groups can use it as a complementary habitat. However, depending on plantation permeability, it can act as a barrier to the movement of organisms between habitat patches, such as forest fragments, reducing functional connectivity for many species. Anthropogenic plantations are becoming the most common land use and cover type in the Anthropocene and biodiversity conservation in fragmented landscapes requires information on how different plantation types affect the capacity of the species to move through the landscape. In this study, we evaluated the influence of the type and structure of plantations on the movement of two forest‐dependent understory bird species – plain antvireo (Dysithamnus mentalis) and flavescent warbler (Myiothlyps flaveola) – within a highly fragmented landscape of Atlantic Forest hotspot. Knowing that forestry plantation is assumed to be more permeable to dependent forest bird species than open ones, we selected six study areas containing a forest fragment and surrounding plantation: three with sugarcane plantation and three with Eucalyptus sp. plantation. We used playback calls to stimulate the birds to leave forest fragments and traverse the plantations. Control trials were also carried out inside the forest fragments to compare the distances crossed. We observed that individuals moved longer distances inside forest than between plantation types, which demonstrate that plantations do constrict the movements of both species. The two plantation types equally impeded the movements of the species, suggesting the opposite of the general assumption that forestry plantations are more permeable. Our results indicate that, for generalist species, plantation type does not matter, but its presence negatively impacts movement of these bird species. We highlight that plantations have negative influences on the movements of common bird species, and discuss why this is important when setting conservation priorities.  相似文献   

5.
The scattered and dwindling Polylepis woodlands of the high Andean global hotspot have been identified as being of particular importance to biodiversity conservation, and yet little is known of the make-up of their faunal communities, how these vary across landscapes, and how well species might tolerate matrix/edge habitats. We examined the bird communities and vegetation characteristics of Polylepis woodlands and the surrounding matrix habitats at three sites in the Cordillera Vilcanota, southern Perú (3,400–4,500 m). The vegetation structure of woodlands varied significantly across the three sites but all were dominated by two Polylepis tree species, with mossy ground cover. Matrix habitats were treeless and dominated by ground-level puna grass-steppe or boulder scree vegetation. Bird species richness and diversity, encounter rates and the number of globally-threatened and restricted-range bird species were consistently higher in the Polylepis forests, than in matrix habitat. We used canonical correspondence analysis (CCA) to identify habitat gradients across the landscape, and to classify bird species according to their association with Polylepis, the matrix or Polylepis-matrix interface. There were few matrix-restricted bird species, but around half the bird community, including fourteen threatened or restricted-range species, were Polylepis-dependant. Many of these species had very narrow niches. The Polylepis-matrix interface was dominated by species traditionally considered invasive ecological generalists. Our study illustrates the overriding importance of Polylepis interior habitats, indicating that conservation strategies for high Andean birds must focus on patch size maintenance/enlargement, enhancement of within-patch habitat quality, and efforts to safeguard connectivity of suitable habitat across what is essentially an inhospitable puna/scree matrix.  相似文献   

6.
Many species of mature forest-nesting birds (“forest birds”) undergo a pronounced shift in habitat use during the post-fledging period and move from their forest nesting sites into areas of early-successional vegetation. Mortality is high during this period, thus understanding the resource requirements of post-fledging birds has implications for conservation. Efforts to identify predictors of abundance of forest birds in patches of early-successional habitats have so far been equivocal, yet these previous studies have primarily focused on contiguously forested landscapes and the potential for landscape-scale influences in more fragmented and modified landscapes is largely unknown. Landscape composition can have a strong influence on the abundance and productivity of forest birds during the nesting period, and could therefore affect the number of forest birds in the landscape available to colonize early-successional habitats during the post-fledging period. Therefore, the inclusion of landscape characteristics should increase the explanatory power of models of forest bird abundance in early-successional habitat patches during the post-fledging period. We examined forest bird abundance and body condition in relation to landscape and habitat characteristics of 15 early-successional sites during the post-fledging season in Massachusetts. The abundance of forest birds was influenced by within-patch habitat characteristics, however the explanatory power of these models was significantly increased by the inclusion of landscape fragmentation and the abundance of forest birds in adjacent forest during the nesting period for some species and age groups. Our findings show that including factors beyond the patch scale can explain additional variation in the abundance of forest birds in early-successional habitats during the post-fledging period. We conclude that landscape composition should be considered when siting early-successional habitat to maximize its benefit to forest birds during the post-fledging period, and should also be included in future investigations of post-fledging habitat use by forest birds.  相似文献   

7.
Abstract This study investigates how abundance, diversity and composition of understorey spiders were influenced by four different forest habitats in a southern Brazilian Araucaria forest. The study area encompasses a landscape mosaic comprised of Araucaria forest, Araucaria plantation, Pinus plantation, and Eucalyptus plantation. Understorey spiders were collected by beating the vegetation inside three patches of each forest habitat. To assess possible predictors of spider assemblage structure, several patch features were analysed: potential prey abundances, estimation of vegetation cover, diversity index of vegetation types, patch ages, patch areas, and geographical distance between patches. To assess the influence of high‐level taxa approaches on spider assemblage patterns, analyses were carried out individually for family, genera and species levels. Additionally, Mantel tests were carried out in underlying similarity matrices between each taxon. Significant differences in spider abundances among forest habitats were found. Pinus plantations showed the highest abundance of spiders and Eucalyptus plantations showed the lowest abundance. Spider abundance was significantly influenced by patch ages, geographical distance and vegetation cover. Expected numbers of families, genera and species did not vary among forest habitats. Spider composition of two Eucalyptus patches differed from the other forest patches, probably due to their low vegetation cover and isolation. Genera composition was the best correlate of species composition, showing that a higher‐level surrogate can be an alternative to the species approach. The understorey spider diversity in this managed area could be maintained when suitable habitat structures are provided, thus ensuring the connectivity between different habitat types. Further studies should focus on individual species responses to the conversion of native forest to monocultures.  相似文献   

8.
Because spatial connectivity is critical to dispersal success and persistence of species in highly fragmented landscapes, the way that we envision and measure connectivity is consequential for biodiversity conservation. Connectivity metrics used for predictive modeling of spatial turnover and patch occupancy for metapopulations, such as with Incidence Function Models (IFM), incorporate distances to and sizes of possible source populations. Here, our focus is on whether habitat quality of source patches also is considered in these connectivity metrics. We propose that effective areas (weighted by habitat quality) of source patches should be better surrogates for population size and dispersal potential compared to unadjusted patch areas. Our review of a representative sample of the literature revealed that only 12.5% of studies incorporated habitat quality of source patches into IFM-type connectivity metrics. Quality of source patches generally was not taken into account in studies even if habitat quality of focal patches was included in analyses. We provide an empirical example for a metapopulation of a rare wetland species, the round-tailed muskrat (Neofiber alleni), demonstrating that a connectivity metric based on effective areas of source patches better predicts patch colonization and occupancy than a metric that used simple patch areas. The ongoing integration of landscape ecology and metapopulation dynamics could be hastened by incorporating habitat quality of source patches into spatial connectivity metrics applied to species conservation in fragmented landscapes.  相似文献   

9.
Conservation of forest birds in fragmented landscapes requires not only determining the critical patch characteristics influencing local population persistence but also identifying patch networks providing connectivity and suitable habitat conditions necessary to ensure regional persistence. In this study, we assessed the importance of patch attributes, patch connectivity, and network components (i.e., groups of interconnected patches) in explaining the occupancy pattern of the Thorn-tailed Rayadito (Aphrastura spinicauda), a forest bird species of central Chile. Using a daily movement threshold distance, we identified a total of 16 network components of sclerophyllous forest within the study area. Among those components, patch area and vegetation structure-composition were important predictors of patch occupancy. However, the inclusion of patch connectivity and component size (i.e., the area of a network component) into the models greatly increases the models’ accuracy and parsimony. Using the best-fitted model, a total of 33 patches were predicted to be occupied by rayaditos within the study area, but such occupied patches were distributed in only six network components. These results suggest that persistence of rayaditos in central Chile requires the maintenance of large single patches and patch networks providing habitat and connectivity.  相似文献   

10.
Importance of patch scale vs landscape scale on selected forest birds   总被引:8,自引:0,他引:8  
The management and protection of natural areas have primarily occurred in isolation from surrounding land management. The structure of surrounding land cover, however, may be important to the abundance and reproductive success of birds within a habitat patch. We investigated the relative importance of forest patch area, within patch habitat and surrounding landscape forest cover on the abundance of three Neotropical migrant bird species thought to be area-sensitive (ovenbird [ Seiurus aurocapillus ], wood thrush [ Hylocichla mustelina ] and red-eyed vireo [ Vireo olivaceus ]), and on pairing success of the ovenbird. We selected 31 isolated forest patches of differing sizes, and three 80-ha plots in continuous forest each centered within non-overlapping 200-ha landscapes, such that patch area and landscape forest cover were uncorrelated among landscapes. Each study plot was surveyed to estimate abundances of territorial males and ovenbird pairing success. Landscape forest cover ( p <0.05) explained the most variation in ovenbird abundance, while percent deciduous forest cover within patches ( p <0.05) and patch size ( p <0.05) explained the most variation in red-eyed vireo and wood thrush abundance, respectively. Patch size was a significant ( p <0.05) predictor of abundance for all three study species; however, density for all species decreased significantly ( p <0.05) with patch size. Ovenbird pairing success was higher in continuous forest plots than in forest patches ( p =0.018). This study's findings suggest that the relative importance of within patch characteristics, patch size and landscape forest cover varies for different bird species, and that conservation efforts would benefit from the inclusion of all three factors.  相似文献   

11.
Aim This study investigated whether habitat fragmentation at the landscape level influences patch occupancy and abundance of the black‐headed gull, Chroicocephalus ridibundus, and whether the response of the species to environmental factors is consistent across replicated landscape plots. Location Water bodies (habitat patches) in southern Poland. Methods Surveys were conducted in two landscape types (four plots in each): (1) more‐fragmented landscape, in which habitat patches were small (mean size 2.2–6.2 ha) and far apart (mean distance 2.5–3.1 km); and (2) less‐fragmented landscape, in which habitat patches were large (mean size 9.2–16.5 ha) and separated by short distances (mean 0.9–1.4 km). Observations were performed twice in 284 potential habitat patches during the 2007 breeding season. Results Colonies were significantly more frequent and larger in the less‐fragmented landscapes than in the more‐fragmented ones. Probability of patch occupancy and number of breeding birds were positively related with patch size and these relationships were especially strong in the more‐fragmented landscapes. In the less‐fragmented landscapes, the occurrence of black‐headed gulls was negatively related to the distance to the nearest local population, but in the more‐fragmented landscapes such a relationship was not detected. As distance to the nearest habitat patch increased, the probability of the patch occupancy decreased in the more‐fragmented landscapes. Moreover, abundance was negatively influenced by distance to the nearest habitat patch, especially strongly in more‐fragmented landscapes. Proximity of corridors (rivers) positively influenced the occupation of patches regardless of landscape type. The number of islets positively influenced occupancy and abundance of local populations, and this relationship was stronger in the more‐fragmented landscapes. Main conclusions Our results are in agreement with predictions from metapopulation theory and are the first evidence that populations of black‐headed gulls may have a metapopulation structure. However, patch occupancy and abundance were differentially affected by explanatory variables in the more‐fragmented landscapes than in the less‐fragmented ones. This implies that it is impossible to derive, a priori, predictions about presence/abundance patterns based on only a single landscape.  相似文献   

12.
土地利用变化是造成栖息地破碎、缺失与退化的重要原因。生态网络能保护重要栖息地,促进栖息地之间的物质与能量流动,对区域土地利用规划和生物多样性保护具有重要意义。以鄂州市为研究区,基于CLUE-S模型预测现状延续、生态保护和城市扩张3种土地利用情景,将生境质量作为遴选生境斑块的依据之一,以鸟类最大迁徙距离为阈值构建生态网络,从连通概率指数PC和斑块重要性指数dPC两方面,探讨土地利用变化对鸟类栖息地连通性的影响。结果表明:(1)不同情景的地类数量和空间结构均有差异,与生态保护相比,城市扩张情景的建设用地增加11603.52 hm~2,林地、耕地和水体减少5041.8 hm~2、2540.16 hm~2、3385.8 hm~2,新城区、山地风景区与水体周边是主要变化区域;(2)现状延续和城市扩张情景的生境斑块降至235块和216块,网络出现破碎化,生态保护情景增至367块,网络结构完整但空间位置改变;(3)2004—2024年PC表现为先上升后下降再上升的趋势,生态保护的PC高于现状延续和城市扩张,且利于保护短距离迁徙鸟类;(4)生态保护情景边缘型和关键小型斑块得到保护,第一等级斑块增加,城...  相似文献   

13.
Aim Habitat loss and fragmentation are amongst the greatest threats to biodiversity world‐wide. However, there is still little evidence on the relative influence of these two distinct processes on biodiversity, and no study, to date, has investigated the independent contribution of structural connectivity in addition to habitat loss and fragmentation. The aim of this study is to evaluate the independent effects of habitat loss (the decrease in total amount of habitat), habitat fragmentation per se (habitat subdivision) and structural connectivity (in the form of hedgerow networks) on the distribution of seven resident forest‐dependent birds in central Italy. Location Central Italy. Methods We strategically selected 30 landscapes (each of 16 km2 in size) with decreasing total amount of forest cover and with contrasting configuration of patches and contrasting lengths of hedgerow networks. Presence/absence of birds in each landscape unit was studied through point counts. Results The amount of forest cover in the landscape had the strongest relative influence on birds’ occupancy, whilst habitat subdivision played a negligible role. Structural connectivity and the geographic position of the landscape unit played a relatively important role for four species. Main conclusions Our study shows the importance of disentangling the contribution of different landscape properties in determining distribution patterns. Our results are consistent with the fact that halting habitat loss and carrying out habitat restoration should be conservation priorities, since habitat loss is the main factor affecting the distribution of the target species; implementation of structural connectivity through hedgerows, instead, should be evaluated with caution since its contribution is secondary to the predominant role of habitat loss.  相似文献   

14.
Fragmentation represents a serious threat to biodiversity worldwide, however its effects on epiphytic organisms is still poorly understood. We study the effect of habitat fragmentation on the genetic population structure and diversity of the red-listed epiphytic lichen, Lobaria pulmonaria, in a Mediterranean forest landscape. We tested the relative importance of forest patch quality, matrix surrounding fragments and connectivity on the genetic variation within populations and the differentiation among them. A total of 855 thalli were sampled in 44 plots (400 m2) of 31 suitable forest fragments (beeches and oaks), in the Sierra de Ayllón in central Spain. Variables related to landscape attributes of the remnant forest patches such as size and connectivity and also the nature of the matrix or tree species had no significant effects on the genetic diversity of L. pulmonaria. Values of genetic diversity (Nei’s) were only affected by habitat quality estimated as the age patches. Most of the variation (76%) in all populations was observed at the smallest sampled unit (plots). Using multiple regression analysis, we found that habitat quality is more important in explaining the genetic structure of the L. pulmonaria populations than spatial distance. The relatively high level of genetic diversity of the species in old forest patches regardless of patch size indicates that habitat quality in a highly structured forest stand determines the population size and distribution pattern of this species and its associated lichen community. Thus, conservation programmes of Mediterranean mountain forests have to prioritize area and habitat quality of old forest patches.  相似文献   

15.
The persistence of species taxa within fragmented habitats is dependent on the source–sink metapopulation processes, and forest patch size and isolation are key factors. Unveiling species–patch area and/or species–patch isolation relationships may help provide crucial information for species and landscape management. In this study, relationship between forest patch size and isolation with abundance and occupancy probability of forest-dependent birds was investigated. This study was based within a coastal landscape that faces deleterious human activities such as clearing for agriculture. The study aimed to answer the question of whether the size and extent of isolation of forest patches influence abundance and/or occupancy probability of forest-specialist and generalist birds. Two bird species, namely Tiny Greenbul Phyllastrephus debilis subsp. rabai and Yellow-bellied Greenbul Chlorocichla flaviventris, were used as models. Birds were surveyed using distance sampling methods, and spatial metrics were measured from satellite imagery. Focal forest size and distance between forest patches were the most influential metrics whereby abundance and occupancy probabilities increased with increasing patch size, but were negatively influenced by increasing gaps between patches. These findings provide evidence of the existence of patch size/ isolation–occupancy relationships characterised by higher occupancy rate of large patches and distance-dependent dispersal, which decreased with increasing gaps between patches. Controlling deleterious human activities that reduce forest size should be a priority for the long-term conservation of forest-dependent birds.  相似文献   

16.
Abstract One of the main consequences of habitat loss and fragmentation is the increase in patch isolation and the consequent decrease in landscape connectivity. In this context, species persistence depends on their responses to this new landscape configuration, particularly on their capacity to move through the interhabitat matrix. Here, we aimed first to determine gap‐crossing probabilities related to different gap widths for two forest birds (Thamnophilus caerulescens, Thamnophilidae; and Basileuterus culicivorus, Parulidae) from the Brazilian Atlantic rainforest. These values were defined with a playback technique and then used in analyses based on graph theory to determine functional connections among forest patches. Both species were capable of crossing forest gaps between patches, and these movements were related to gap width. The probability of crossing 40 m gaps was 50% for both species. This probability falls to 10% when the gaps are 60 m (for B. culicivorus) or 80 m (for T. caerulescens). Actually, birds responded to stimulation about two times more distant inside forest trials (control) than in gap‐crossing trials. Models that included gap‐crossing capacity improved the explanatory power of species abundance variation in comparison to strictly structural models based merely on patch area and distance measurements. These results highlighted that even very simple functional connectivity measurements related to gap‐crossing capacity can improve the understanding of the effect of habitat fragmentation on bird occurrence and abundance.  相似文献   

17.
Human activities often cause habitat fragmentation and how forest fragments affect species range distributions has implications for ecology and conservation. However, few studies have considered communities within the same landscape. Here, we analyzed metacommunity structure to determine the range distributions for species in four taxonomic groups (amphibians, birds, social wasps, and trees) in a patchy landscape of semi‐deciduous Atlantic forest in southwestern Brazil. Although trees are a key component of the environment for animals in forested patches, the ranges of bird, wasp, and amphibian species did not change in concert with the species ranges of trees. The species ranges of amphibians and social wasps were unaffected by fragmentation gradients and exhibited independent distribution patterns (i.e., random structure). In contrast, birds and trees exhibited range turnover along different fragmentation gradients, indicating that species show idiosyncratic responses to abiotic factors (i.e., Gleasonian structure). For birds, some less‐resilient species occurred only in fragments with a large area of native vegetation at a radius of 5 km from the center of the sampled forest fragments, whereas other more stress‐tolerant species occurred only in sites with small areas of native vegetation. For trees, some later succession species (e.g., animal‐dispersed seeds) occurred only in fragments with high connectivity, whereas earlier‐recruiting species (e.g., wind‐dispersed seeds) occurred in fragments with low connectivity. Thus, determining the effects of human‐modified landscapes on species range distributions, even within the same landscape, might not be a trivial task.  相似文献   

18.
Aim To evaluate the joint and independent effects of spatial location, landscape composition and landscape structure on the distribution patterns of bird and carabid beetle assemblages in a mosaic landscape dominated by pine plantation forests. Location A continuous 3000‐ha landscape mosaic with native maritime pine Pinus pinaster plantations of different ages, deciduous woodlands and open habitats, located in the Landes de Gascogne forest of south‐western France. Methods We sampled breeding birds by 20‐min point counts and carabid beetles by pitfall trapping using a systematic grid sampling of 200 points every 400 m over the whole landscape. Explanatory variables were composed of three data sets derived from GIS habitat mapping: (1) spatial variables (polynomial terms of geographical coordinates of samples), (2) landscape composition as the percentage cover of the six main habitats, and (3) landscape structure metrics including indices of fragmentation and spatial heterogeneity. We used canonical correspondence analysis with variance partitioning to evaluate the joint and independent effects of the three sets of variables on the ordination of species assemblages. Moran's I correlograms and Mantel tests were used to assess for spatial structure in species distribution and relationships with separate landscape attributes. Results Landscape composition was the main factor explaining the distribution patterns of birds and carabids at the mesoscale of 400 × 400 m. Independent effects of spatial variables and landscape structure were still significant for bird assemblages once landscape composition was controlled for, but not for carabid assemblages. Spatial distributions of birds and carabids were primarily influenced by the amount of heathlands, young pine plantations, herbaceous firebreaks and deciduous woodlands. Deciduous woodland species had positive responses to edge density, while open habitat species were positively associated with mean patch area. Main conclusions Forest birds were favoured by an increase in deciduous woodland cover and landscape heterogeneity, but there was no evidence for a similar effect on carabid beetles. Fragmentation of open habitats negatively affected both early‐successional birds and carabids, specialist species being restricted to large heathlands and young plantations. Several birds of conservation concern were associated with mosaics of woodlands and grasslands, especially meadows and firebreaks. Conserving biodiversity in mosaic plantation landscapes could be achieved by the maintenance of a significant amount of early‐successional habitats and deciduous woodland patches within a conifer plantation matrix.  相似文献   

19.
道路对林地景观连接度的影响——以巩义市为例   总被引:1,自引:0,他引:1  
梁国付  许立民  丁圣彦 《生态学报》2014,34(16):4775-4784
基于景观连接度原理,借用景观连接度指数,在地理信息系统支持下,探讨了巩义市山区林地景观在不同距离阈值下连接度的变化,定量分析了道路对林地景观连接度的影响。结果显示,随着景观距离阈值的增大,无论是否有道路,林地景观整体可能连通性指数值都表现为逐渐增大;对林地景观连接度起"非常高"和"高"作用的林地斑块数量都比较少,但占林地总面积比例较大,面积大的林地斑块在提高景观连接度中起的作用较大;道路的分割使得林地斑块重要值降低,就单一斑块而言,随着景观距离阈值的增大,分割成的小斑块的重要值降低程度在逐渐减小。  相似文献   

20.
We censused breeding birds for three years in natural landscape mosaics of virgin old-growth spruce forest and mire in a large protected forest area in northern Sweden Twenty forest patches, ranging from 0 2 to 17 8 ha in size, were selected in two matrix types, dominated by forest and mire, respectively Patches were very similar with regards to habitat features There was a strong effect of patch area on species richness, but no effect of matrix type Standardization of species richness by rarefaction revealed that small patches (<5 ha) had fewer and large patches (>10 ha) more species than expected Overall distribution of species across patches showed a highly significant nested pattern, indicating that a few habitat generalists occupy all size classes, whereas more demanding species avoid small patches regardless of landscape composition Individual species tended to be distributed evenly across patch classes and no significant edge effect in terms of density of birds was found Our results have bearings on actions to preserve avian diversity in northern boreal forests small patches (<5 ha) provide habitat only for habitat generalists, and therefore larger (>10 ha) patches should be preserved  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号