首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.

Introduction

Collecting feces is easy. It offers direct outcome to endogenous and microbial metabolites.

Objectives

In a context of lack of consensus about fecal sample preparation, especially in animal species, we developed a robust protocol allowing untargeted LC-HRMS fingerprinting.

Methods

The conditions of extraction (quantity, preparation, solvents, dilutions) were investigated in bovine feces.

Results

A rapid and simple protocol involving feces extraction with methanol (1/3, M/V) followed by centrifugation and a step filtration (10 kDa) was developed.

Conclusion

The workflow generated repeatable and informative fingerprints for robust metabolome characterization.
  相似文献   

2.

Background

Behavioral changes in patients with amyotrophic lateral sclerosis (ALS) mirror those found in frontotemporal dementia (FTD). Considering the high rate of neuropsychiatric symptoms found in ALS patients, this paper examines whether caregiver burden is associated with behavioral changes over and above the physical disability of patients with ALS, and if the presence of caregivers’ depression, anxiety and stress also impacts on caregiver burden.

Methods

140 caregivers of patients with ALS participated in a postal survey investigating patients’ neuropsychiatric symptoms (Cambridge Behaviour Inventory Revised CBI-R), motor function (Amyotrophic Lateral Sclerosis Functional Rating Scale Revised - ALSFRS-R), caregiver burden (Zarit Burden Interview), and caregiver mood (Depression, Anxiety and Stress Scale- DASS21). Seventy four percent of them were caregivers of patients with limb onset and 25.7% were caregivers of patients with bulbar onset.

Results

Moderate to severe behavioral changes were reported in 10-40% of patients with ALS. The levels of depression, anxiety and stress in the caregivers reached 20%. Burden was high in 48% of the caregivers. The strongest predictor of high caregiver burden was ALS patients’ abnormal behavior rather than physical disability, with an odds ratio of 1.4, followed by caregivers’ stress.

Conclusions

Our study has identified that behavioral changes (e.g. disinhibition, impulsivity) and caregiver stress have greater impact on caregiver burden than level and pattern of physical disability.
  相似文献   

3.

Introduction

Amyotrophic lateral sclerosis (ALS) and Parkinson’s disease (PD) are two severe neurodegenerative disorders for which the disease mechanisms are poorly understood and reliable biomarkers are absent.

Objectives

To identify metabolite biomarkers for ALS and PD, and to gain insights into which metabolic pathways are involved in disease.

Methods

Nuclear magnetic resonance (NMR) metabolomics was utilized to characterize the metabolite profiles of cerebrospinal fluid (CSF) and plasma from individuals in three age, gender, and sampling-date matched groups, comprising 22 ALS, 22 PD and 28 control subjects.

Results

Multivariate analysis of NMR data generated robust discriminatory models for separation of ALS from control subjects. ALS patients showed increased concentrations of several metabolites in both CSF and plasma, these are alanine (CSF fold change = 1.22, p = 0.005), creatine (CSF-fc = 1.17, p = 0.001), glucose (CSF-fc = 1.11, p = 0.036), isoleucine (CSF-fc = 1.24, p = 0.002), and valine (CSF-fc = 1.17, p = 0.014). Additional metabolites in CSF (creatinine, dimethylamine and lactic acid) and plasma (acetic acid, glutamic acid, histidine, leucine, pyruvate and tyrosine) were also important for this discrimination. Similarly, panels of CSF-metabolites that discriminate PD from ALS and control subjects were identified.

Conclusions

The results for the ALS patients suggest an affected creatine/creatinine pathway and an altered branched chain amino acid (BCAA) metabolism, and suggest links to glucose and energy metabolism. Putative metabolic markers specific for ALS (e.g. creatinine and lactic acid) and PD (e.g. 3-hydroxyisovaleric acid and mannose) were identified, while several (e.g. creatine and BCAAs) were shared between ALS and PD, suggesting some overlap in metabolic alterations in these disorders.
  相似文献   

4.

Introduction

Atherosclerotic diseases are the leading cause of death worldwide. Biomarkers of atherosclerosis are required to monitor and prevent disease progression. While mass spectrometry is a promising technique to search for such biomarkers, its clinical application is hampered by the laborious processes for sample preparation and analysis.

Methods

We developed a rapid method to detect plasma metabolites by probe electrospray ionization mass spectrometry (PESI-MS), which employs an ambient ionization technique enabling atmospheric pressure rapid mass spectrometry. To create an automatic diagnosis system of atherosclerotic disorders, we applied machine learning techniques to the obtained spectra.

Results

Using our system, we successfully discriminated between rabbits with and without dyslipidemia. The causes of dyslipidemia (genetic lipoprotein receptor deficiency or dietary cholesterol overload) were also distinguishable by this method. Furthermore, after induction of atherosclerosis in rabbits with a cholesterol-rich diet, we were able to detect dynamic changes in plasma metabolites. The major metabolites detected by PESI-MS included cholesterol sulfate and a phospholipid (PE18:0/20:4), which are promising new biomarkers of atherosclerosis.

Conclusion

We developed a remarkably fast and easy method to detect potential new biomarkers of atherosclerosis in plasma using PESI-MS.
  相似文献   

5.

Background

Cord blood lipids are potential disease biomarkers. We aimed to determine if their concentrations were affected by delayed blood processing.

Method

Refrigerated cord blood from six healthy newborns was centrifuged every 12 h for 4 days. Plasma lipids were analysed by liquid chromatography/mass spectroscopy.

Results

Of 262 lipids identified, only eight varied significantly over time. These comprised three dihexosylceramides, two phosphatidylserines and two phosphatidylethanolamines whose relative concentrations increased and one sphingomyelin that decreased.

Conclusion

Delay in separation of plasma from refrigerated cord blood has minimal effect overall on the plasma lipidome.
  相似文献   

6.

Introduction

Although it is still at a very early stage compared to its mass spectrometry (MS) counterpart, proton nuclear magnetic resonance (NMR) lipidomics is worth being investigated as an original and complementary solution for lipidomics. Dedicated sample preparation protocols and adapted data acquisition methods have to be developed to set up an NMR lipidomics workflow; in particular, the considerable overlap observed for lipid signals on 1D spectra may hamper its applicability.

Objectives

The study describes the development of a complete proton NMR lipidomics workflow for application to serum fingerprinting. It includes the assessment of fast 2D NMR strategies, which, besides reducing signal overlap by spreading the signals along a second dimension, offer compatibility with the high-throughput requirements of food quality characterization.

Method

The robustness of the developed sample preparation protocol is assessed in terms of repeatability and ability to provide informative fingerprints; further, different NMR acquisition schemes—including classical 1D, fast 2D based on non-uniform sampling or ultrafast schemes—are evaluated and compared. Finally, as a proof of concept, the developed workflow is applied to characterize lipid profiles disruption in serum from β-agonists diet fed pigs.

Results

Our results show the ability of the workflow to discriminate efficiently sample groups based on their lipidic profile, while using fast 2D NMR methods in an automated acquisition framework.

Conclusion

This work demonstrates the potential of fast multidimensional 1H NMR—suited with an appropriate sample preparation—for lipidomics fingerprinting as well as its applicability to address chemical food safety issues.
  相似文献   

7.

Introduction

Several studies have observed serum lipid changes during malaria infection in humans. All of them were focused at analysis of lipoproteins, not specific lipid molecules. The aim of our study was to identify novel patterns of lipid species in malaria infected patients using lipidomics profiling, to enhance diagnosis of malaria and to evaluate biochemical pathways activated during parasite infection.

Methods

Using a multivariate characterization approach, 60 samples were representatively selected, 20 from each category (mild, severe and controls) of the 690 study participants between age of 0.5–6 years. Lipids from patient’s plasma were extracted with chloroform/methanol mixture and subjected to lipid profiling with application of the LCMS-QTOF method.

Results

We observed a structured plasma lipid response among the malaria-infected patients as compared to healthy controls, demonstrated by higher levels of a majority of plasma lipids with the exception of even-chain length lysophosphatidylcholines and triglycerides with lower mass and higher saturation of the fatty acid chains. An inverse lipid profile relationship was observed when plasma lipids were correlated to parasitaemia.

Conclusions

This study demonstrates how mapping the full physiological lipid response in plasma from malaria-infected individuals can be used to understand biochemical processes during infection. It also gives insights to how the levels of these molecules relate to acute immune responses.
  相似文献   

8.

Background

Inflammatory bowel disease is a group of pathologies characterised by chronic inflammation of the intestine and an unclear aetiology. Its main manifestations are Crohn’s disease and ulcerative colitis. Currently, biopsies are the most used diagnostic tests for these diseases and metabolomics could represent a less invasive approach to identify biomarkers of disease presence and progression.

Objectives

The lipid and the polar metabolite profile of plasma samples of patients affected by inflammatory bowel disease have been compared with healthy individuals with the aim to find their metabolomic differences. Also, a selected sub-set of samples was analysed following solid phase extraction to further characterise differences between pathological samples.

Methods

A total of 200 plasma samples were analysed using drift tube ion mobility coupled with time of flight mass spectrometry and liquid chromatography for the lipid metabolite profile analysis, while liquid chromatography coupled with triple quadrupole mass spectrometry was used for the polar metabolite profile analysis.

Results

Variations in the lipid profile between inflammatory bowel disease and healthy individuals were highlighted. Phosphatidylcholines, lyso-phosphatidylcholines and fatty acids were significantly changed among pathological samples suggesting changes in phospholipase A2 and arachidonic acid metabolic pathways. Variations in the levels of cholesteryl esters and glycerophospholipids were also found. Furthermore, a decrease in amino acids levels suggests mucosal damage in inflammatory bowel disease.

Conclusions

Given good statistical results and predictive power of the model produced in our study, metabolomics can be considered as a valid tool to investigate inflammatory bowel disease.
  相似文献   

9.

Introduction

Human plasma metabolomics offer powerful tools for understanding disease mechanisms and identifying clinical biomarkers for diagnosis, efficacy prediction and patient stratification. Although storage conditions can affect the reliability of data from metabolites, strict control of these conditions remains challenging, particularly when clinical samples are included from multiple centers. Therefore, it is necessary to consider stability profiles of each analyte.

Objectives

The purpose of this study was to extract unstable metabolites from vast metabolome data and identify factors that cause instability.

Method

Plasma samples were obtained from five healthy volunteers, were stored under ten different conditions of time and temperature and were quantified using leading-edge metabolomics. Instability was evaluated by comparing quantitation values under each storage condition with those obtained after ?80 °C storage.

Result

Stability profiling of the 992 metabolites showed time- and temperature-dependent increases in numbers of significantly changed metabolites. This large volume of data enabled comparisons of unstable metabolites with their related molecules and allowed identification of causative factors, including compound-specific enzymatic activity in plasma and chemical reactivity. Furthermore, these analyses indicated extreme instability of 1-docosahexaenoylglycerol, 1-arachidonoylglycerophosphate, cystine, cysteine and N6-methyladenosine.

Conclusion

A large volume of data regarding storage stability was obtained. These data are a contribution to the discovery of biomarker candidates without misselection based on unreliable values and to the establishment of suitable handling procedures for targeted biomarker quantification.
  相似文献   

10.

Introduction

Botanicals containing iridoid and phenylethanoid/phenylpropanoid glycosides are used worldwide for the treatment of inflammatory musculoskeletal conditions that are primary causes of human years lived with disability, such as arthritis and lower back pain.

Objectives

We report the analysis of candidate anti-inflammatory metabolites of several endemic Scrophularia species and Verbascum thapsus used medicinally by peoples of North America.

Methods

Leaves, stems, and roots were analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and partial least squares-discriminant analysis (PLS-DA) was performed in MetaboAnalyst 3.0 after processing the datasets in Progenesis QI.

Results

Comparison of the datasets revealed significant and differential accumulation of iridoid and phenylethanoid/phenylpropanoid glycosides in the tissues of the endemic Scrophularia species and Verbascum thapsus.

Conclusions

Our investigation identified several species of pharmacological interest as good sources for harpagoside and other important anti-inflammatory metabolites.
  相似文献   

11.

Introduction

Concerning NMR-based metabolomics, 1D spectra processing often requires an expert eye for disentangling the intertwined peaks.

Objectives

The objective of NMRProcFlow is to assist the expert in this task in the best way without requirement of programming skills.

Methods

NMRProcFlow was developed to be a graphical and interactive 1D NMR (1H & 13C) spectra processing tool.

Results

NMRProcFlow (http://nmrprocflow.org), dedicated to metabolic fingerprinting and targeted metabolomics, covers all spectra processing steps including baseline correction, chemical shift calibration and alignment.

Conclusion

Biologists and NMR spectroscopists can easily interact and develop synergies by visualizing the NMR spectra along with their corresponding experimental-factor levels, thus setting a bridge between experimental design and subsequent statistical analyses.
  相似文献   

12.

Background

Planar cell polarity (PCP) is a phenomenon in which epithelial cells are polarized along the plane of a tissue. PCP is critical for a variety of developmental processes and is regulated by a set of evolutionarily conserved PCP signaling proteins. Many of the PCP proteins adopt characteristic asymmetric localizations on the opposing cellular boundaries. Currently, the molecular mechanisms that establish and maintain this PCP asymmetry remain largely unclear. Newly synthesized integral PCP proteins are transported along the secretory transport pathway to the plasma membranes. Once delivered to the plasma membranes, PCP proteins undergo endocytosis. Recent studies reveal insights into the intracellular trafficking of PCP proteins, suggesting that intracellular trafficking of PCP proteins contributes to establishing the PCP asymmetry.

Objective

To understand the intracellular trafficking of planar cell polarity proteins in the secretory transport pathway and endocytic transport pathway.

Methods

This review summarizes our current understanding of the intracellular trafficking of PCP proteins. We highlights the molecular mechanisms that regulate sorting of PCP proteins into transport vesicles and how the intracellular trafficking process regulates the asymmetric localizations of PCP proteins.

Results

Current studies reveal novel insights into the molecular mechanisms mediating intracellular trafficking of PCP proteins. This process is critical for delivering newly synthesized PCP proteins to their specific destinations, removing the unstable or mislocalized PCP proteins from the plasma membranes and preserving tissue polarity during proliferation of mammalian skin cells.

Conclusion

Understanding how PCP proteins are delivered in the secretory and endocytic transport pathway will provide mechanistic insights into how the asymmetric localizations of PCP proteins are established and maintained.
  相似文献   

13.

Background

Amyotrophic Lateral Sclerosis (ALS) is a rapid progressive neurodegenerative disease, characterized by a selective loss of motor neurons, brain stem and spinal cord which leads to deterioration of motor abilities. Devices that promote interaction with tasks on computers can enhance performance and lead to greater independence and utilization of technology.

Objective

To evaluate performance on a computer task in individuals with ALS using three different commonly used non-immersive devices.

Method

Thirty individuals with ALS (18 men and 12 women, mean age 59?years, range 44–74?years) with a mean score of 26, (minimum score of 14 and maximum 41) on the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) and 30 healthy controls matched for age and gender, participated. All participants were randomly divided into three groups, each using a different device system (motion tracking, finger motion control or touchscreen) to perform three task phases (acquisition, retention and transfer).

Results

Both the ALS and control group (CG) showed better performance on the computer task when using the touchscreen device, but there was limited transfer of performance onto the task performed on the Finger Motion control or motion tracking. However, we found that using the motion tracking device led to transfer of performance to the touchscreen.

Conclusion

This study presents novel and important findings when selecting interaction devices for individuals with ALS to access technology by demonstrating immediate performance benefits of using a touchscreen device, such as improvement of motor skills. There were possible transferable skills obtained when using virtual systems which may allow flexibility and enable individuals to maintain performance overtime.

Trial registration

Registration name: Virtual Task in Amyotrophic Lateral Sclerosis; Registration number: NCT03113630; retrospectively registered on 04/13/2017. Date of enrolment of the first participant to the trial: 02/02/2016.
  相似文献   

14.

Background

The brain predominantly expressed RING finger protein, Znf179, is known to be important for embryonic neuronal differentiation during brain development. Downregulation of Znf179 has been observed in motor neurons of adult mouse models for amyotrophic lateral sclerosis (ALS), yet the molecular function of Znf179 in neurodegeneration has never been previously described. Znf179 contains the classical C3HC4 RING finger domain, and numerous proteins containing C3HC4 RING finger domain act as E3 ubiquitin ligases. Hence, we are interested to identify whether Znf179 possesses E3 ligase activity and its role in ALS neuropathy.

Methods

We used in vivo and in vitro ubiquitination assay to examine the E3 ligase autoubiquitination activity of Znf179 and its effect on 26S proteasome activity. To search for the candidate substrates of Znf179, we immunoprecipitated Znf179 and subjected to mass spectrometry (MS) analysis to identify its interacting proteins. We found that ALS/ FTLD-U (frontotemporal lobar degeneration (FTLD) with ubiquitin inclusions)-related neurodegenerative TDP-43 protein is the E3 ligase substrate of Znf179. To further clarify the role of E3 ubiquitin ligase Znf179 in neurodegenerative TDP-43-UBI (ubiquitinated inclusions) (+) proteinopathy, the effect of Znf179-mediated TDP-43 polyubiquitination on TDP-43 protein stability, aggregate formation and nucleus/cytoplasm mislocalization were evaluated in vitro cell culture system and in vivo animal model.

Results

Here we report that Znf179 is a RING E3 ubiquitin ligase which possesses autoubiquitination feature and regulates 26S proteasome activity through modulating the protein expression levels of 19S/20S proteasome subunits. Our immunoprecipitation assay and MS analysis results revealed that the neuropathological TDP-43 protein is one of its E3 ligase substrate. Znf179 interactes with TDP-43 protein and mediates polyubiquitination of TDP-43 in vitro and in vivo. In neurodegenerative TDP-43 proteinopathy, we found that Znf179-mediated polyubiquitination of TDP-43 accelerates its protein turnover rate and attenuates insoluble pathologic TDP-43 aggregates, while knockout of Znf179 in mouse brain results in accumulation of insoluble TDP-43 and cytosolic TDP-43 inclusions in cortex, hippocampus and midbrain regions.

Conclusions

Here we unveil the important role for the novel E3 ligase Znf179 in TDP-43-mediated neuropathy, and provide a potential therapeutic strategy for combating ALS/ FTLD-U neurodegenerative pathologies.
  相似文献   

15.
16.

Background

To assess the feasibility of using automated capture of Electronic Medical Record (EMR) data to build predictive models for amyotrophic lateral sclerosis (ALS) outcomes.

Methods

We used an Informatics for Integrating Biology and the Bedside search discovery tool to identify and extract data from 354 ALS patients from the University of Kansas Medical Center EMR. The completeness and integrity of the data extraction were verified by manual chart review. A linear mixed model was used to model disease progression. Cox proportional hazards models were used to investigate the effects of BMI, gender, and age on survival.

Results

Data extracted from the EMR was sufficient to create simple models of disease progression and survival. Several key variables of interest were unavailable without including a manual chart review. The average ALS Functional Rating Scale – Revised (ALSFRS-R) baseline score at first clinical visit was 34.08, and average decline was ??0.64 per month. Median survival was 27?months after first visit. Higher baseline ALSFRS-R score and BMI were associated with improved survival, higher baseline age was associated with decreased survival.

Conclusions

This study serves to show that EMR-captured data can be extracted and used to track outcomes in an ALS clinic setting, potentially important for post-marketing research of new drugs, or as historical controls for future studies. However, as automated EMR-based data extraction becomes more widely used there will be a need to standardize ALS data elements and clinical forms for data capture so data can be pooled across academic centers.
  相似文献   

17.

Background

Until recently, plant metabolomics have provided a deep understanding on the metabolic regulation in individual plants as experimental units. The application of these techniques to agricultural systems subjected to more complex interactions is a step towards the implementation of translational metabolomics in crop breeding.

Aim of Review

We present here a review paper discussing advances in the knowledge reached in the last years derived from the application of metabolomic techniques that evolved from biomarker discovery to improve crop yield and quality.

Key Scientific Concepts of Review

Translational metabolomics applied to crop breeding programs.
  相似文献   

18.

Introduction

Differences in the metabolite profiles between serum and plasma are incompletely understood.

Objectives

To evaluate metabolic profile differences between serum and plasma and among plasma sample subtypes.

Methods

We analyzed serum, platelet rich plasma (PRP), platelet poor plasma (PPP), and platelet free plasma (PFP), collected from 8 non-fasting apparently healthy women, using untargeted standard 1D and CPMG 1H NMR and reverse phase and hydrophilic (HILIC) UPLC-MS. Differences between metabolic profiles were evaluated using validated principal component and orthogonal partial least squares discriminant analysis.

Results

Explorative analysis showed the main source of variation among samples was due to inter-individual differences with no grouping by sample type. After correcting for inter-individual differences, lipoproteins, lipids in VLDL/LDL, lactate, glutamine, and glucose were found to discriminate serum from plasma in NMR analyses. In UPLC-MS analyses, lysophosphatidylethanolamine (lysoPE)(18:0) and lysophosphatidic acid(20:0) were higher in serum, and phosphatidylcholines (PC)(16:1/18:2, 20:3/18:0, O-20:0/22:4), lysoPC(16:0), PE(O-18:2/20:4), sphingomyelin(18:0/22:0), and linoleic acid were lower. In plasma subtype analyses, isoleucine, leucine, valine, phenylalanine, glutamate, and pyruvate were higher among PRP samples compared with PPP and PFP by NMR while lipids in VLDL/LDL, citrate, and glutamine were lower. By UPLC-MS, PE(18:0/18:2) and PC(P-16:0/20:4) were higher in PRP compared with PFP samples.

Conclusions

Correction for inter-individual variation was required to detect metabolite differences between serum and plasma. Our results suggest the potential importance of inter-individual effects and sample type on the results from serum and plasma metabolic phenotyping studies.
  相似文献   

19.

Introduction

Low birth weight is associated with an increased risk of heart disease, high blood pressure and diabetes in adult life. Fetal growth is determined by nutrient availability, which is related to placenta nutrient transport. Medium chain fatty acids (MCFAs) are a particular class of nutrients, known to be a readily available energy source. Until now no data are reported on these MCFAs in low birth weight fetus.

Aim

This is a prospective study conducted in a tertiary center of prenatal diagnosis to investigate the maternal and fetal MCFAs levels in appropriate for gestational age (AGA), intrauterine growth restricted (IUGR), and small for gestational age (SGA) pregnancies.

Method

The plasmatic levels of MCFAs in AGA, IUGR and SGA mother–infant pairs were quantified by gas chromatography–mass spectrometry. The analytical method had a linearity range of 0.1–50 mg/L and a limit of quantification of 0.03 mg/L. Reduced fetal growth was defined as an estimated fetal weight below the 3rd–10th percentile for gestational age, with (IUGR) or without (SGA) fetal Doppler abnormalities.

Result

Maternal and fetal MCFAs plasma levels were significantly different among SGA, IUGR and AGA groups. Additionally, the observed MCFAs fetal to maternal ratio is >1 for IUGR group, whilst for SGA and AGA the fetal to maternal ratio is less than one.

Conclusion

Changes in MCFAs levels in fetal and maternal plasma are not related to placental functionality or nutrients availability, suggesting the presence of a de novo biosynthesis.
  相似文献   

20.

Background

Pseudomyxoma peritonei is a rare condition consisting of mucinous ascites, most commonly arising from mucinous tumors of the appendix and occasionally from the ovary. Very rarely mucinous implants arise in the retroperitoneum without any intra-peritoneal involvement. This has been termed as pseudomyxoma extraperitonei.

Case presentation

We report a case of a 57 year old man who developed pseudomyxoma extraperitonei, 35 years after undergoing an appendicectomy for a perforated appendix.

Conclusions

Pseudomyxoma extraperitonei has been previously reported, however we report the longest incubation period of 35 years for this condition.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号